Sonographic Measurement of Fetal Kidney Length as Parameter for Fetal Weight Estimation for Sudanese Population

Nagla Khalid¹, Bushra Ahmed², Moawia Gameraddin³, Mohamed Yousef⁴

¹Department of Diagnostic Radiologic Technology; Faculty of Applied Medical Sciences, Najran University, KSA
²Hail University, College of Medical Applied Sciences, Department of Diagnostic, Radiological Sciences, Hail – KSA
³Department of Diagnostic Radiologic Technology, Faculty of Applied Medical Sciences; Taibah University, Medina, Saudi Arabia
⁴Collage of Medical Radiological Sciences, Sudan University of science and technology, Khartoum Sudan

Abstract: Background: As far as independent extrauterine existence and optimum survival of the fetus is concerned birth weight is undoubtedly one of the most significant determinants of neonatal survival. It has become increasingly important, especially for the prevention of prematurity, evaluation of pelvic disproportion before induction of labor and detection of Intra Uterine Growth Restriction. Objective: This study aimed to evaluate the validity and efficiency of prediction of fetal birth weight by measuring fetal kidney length. Material and methods: Descriptive quantitative cross sectional study was conducted in AL sheikh hospital Omdurman during period from August 2012-2015 to evaluate the validity of fetal kidney length for fetal weight estimation using Ultrasonography. A total number of 384 pregnant women aged between 15-45 years old attended for routine checkup were studied after 17 years old of gestational, and the data analyzed by Statistical package for social science (SPSS). The results revealed that there was linear and strong correlation between the mean of (LMP) Gestational age with biometric indices, kidney length and fetal weight (p˂ 0.05). The was strong a significant correlation between fetal weight and fetal kidney length (p< 0.05). There was no statistically significant correlation between the mean of the FWT and maternal age, weight, high, body mass index, parity and fetal gender (p>0.05). The module derived indicated that the fetal kidney length can estimate fetal weight in combining with biparietal diameter, femur length with estimate error of 319 grams. Conclusion: It concluded that the fetal kidney length is a valuable tool for fetal weight estimation.

Keywords: Kidney length, Fetal, Weight, Estimation, Sonography

1. Introduction

The correct determination of the fetal weight prior to delivery is most important and greatly influence the clinical management, the outcome of pregnancy, delivery and survival of the newborn, especially in case such as fetal macrosomia, fetal growth restriction, breech presentation or in a trail of vaginal birth after previous cesarean section. Fetal weight estimation has a significant bearing on management decisions on labor, therapy markedly improving perinatal outcome.[1]

Obstetric Sonographic assessment for obtaining fetal biometric measurements to predict fetal weight has been integrated into the mainstream of obstetric practice in the last quarter of a century. Estimation of fetal weight based on ultrasound images plays a key role in prenatal care. Obtaining accurate expected fetal weight (EFW) is of paramount importance in the prediction of fetal compromise and in management of labor. Ultrasound is a major tool for fetal weight estimation, due to its noninvasiveness, portability and relatively low cost. In clinical applications, the fetal weight estimates based on several ultrasound measurements with the regression analysis. The accuracy of EFW is disturbed by two main factors, the one is the random errors in measurements, and the other is the impropriety of regression equations.[2, 3]

The most accepted way of diagnosing abnormal growth in a fetus is to calculate the EFW using standard ultrasound measurements, then to compare the estimated weight with an accepted standard. Some tables still in use were based on the birth weight distribution at different gestational ages of children born in the 1960s or 1970s. 68 Kramer questioned the reliability of these and many subsequent studies. The problems he identified were that patients often had an unconfirmed gestational age, infants were included with implausible birth weight, there was an insufficient sample size at lower gestational ages, the samples were not population based, and the studies used inadequate statistical modeling techniques. He and his colleagues published sex-specific growth standards that avoided these problems.[4]

To address the issue of normal fetal growth before term, several authors have started since 1960s and developed in utero fetal weight standard at Ultrasound with no single equation clearly superior due to the differences in methods, variation in racial, population socioeconomic characteristic, sample size, source of data, geographic location, and criteria of exclusion.[5]

Many formulas and tables are available for the prediction of fetal weight. These formulas are based on a variety of combinations of BPD, HC, AC, and FL. The predictive accuracy of these formulas ranges from ±14.8% to ±20.2% (±2 SD). The most popular of these have been compiled in a review by Nyberg and colleagues. All incorporate the abdominal circumference because this is the standard measurement most susceptible to the variations in fetal soft tissue mass. Although the abdominal circumference alone is
a fairly good marker for detecting abnormal fetal growth, the
addition of other standard measurements to estimated weight
formulas increases their accuracy. It has been shown that
the addition of measurements beyond the standard set (BPD,
HC, AC, and FL) does not significantly improve weight
estimations. It appears that the error inherent in obtaining
the basic measurements (especially the AC) is great enough
to obscure any refinement in accuracy that might be gained
from additional measurements. Formulas are often compared
against a commonly used table (Shepard and colleagues,
1987) [5, 6, 7].

There have been several strategies aimed at improving the
performance of ultrasound for estimating fetal weight. One
is to develop formulas based on subpopulations of fetuses,
such as those who are preterm or are thought to be small or
large for gestational age. Although this approach seems
reasonable, most studies have not shown an improvement in
the accuracy of weight estimates. The kidneys are normally situated
on both sides of the spine just caudad to the liver. Typically,
the kidneys have the same configuration as in postnatal
life—round in axial and ovoid in long-axis views. [8]

Fetal kidney length correlates well with gestational age. Can
be used reliably as an additional parameter to predict
gestational age in the third trimester of pregnancy in
conjunction with other established parameters or when other
methods fail to contribute to the assessment of gestational
age [9].

This study aimed to evaluate the validity and efficiency of
fetal kidney length for fetal weight estimation.

2. Material and Methods

Descriptive quantitative cross-sectional study was conducted
in AL sheikh hospital Omdurman during period from August
2012-2015 to evaluate the validity of fetal kidney length for
fetal weight estimation using Ultrasoundography. A total
number of 384 pregnant women aged between 15-45 years
old were attended for routine checkup were studies after 17
years old of gestational. Patient with singleton pregnancy,
who were certain of their last menstrual period and who had
regular menstrual cycle. Women known hypertension,
diabetes, oligohydramnios, poly hydramnios, multiple
pregnancy, intrauterine growth restricted, chronic renal
diseases and fetal anomalies were excluded from the study.

Data was collected through data collected sheet which
included demographic characteristics and ultrasound
measurement. Ultrasound scanning was performed using
curve array real time ultrasound machine equipped with 3.5
MHz transducer. Fetal biometry of KL, BPD, FL and FWT
was measured and the result was analyzed.

Statistical Analysis

Statistical analyses were performed using SPSS software
v.20 and MD Excel. Correlations between various maternal
parameters (age, weight, height, BMI, parity) and fetal
ultrasonographic measurements with fetal weight were
calculated. Correlations between fetal weight and
ultrasonographic fetal measurements were evaluated using
Pearson’s correlation co-efficient. Stepwise linear regression
analysis was performed to predict fetal weight.

3. Results

384 pregnant women were collected in the study. Women
with maternal and fetal pathology that affected fetal kidney
length was excluded from the study. The mean age, weight,
body mass index was 26.8 ± 5.9, 66.2 ± 11.5, 160.2 ± 4.9
and 25.7 ± 4.5 respectively. Most of the pregnant women in
the study sample were multigravida (69.5%) whereas primigravida
were (30.5%). (Table 1) Most of the fetuses in the study sample
were female, there were 125 (32.6%) male, 248 (64.6%) female
and 11 (2.9) unknown fetal gender (missing
=11 cases) 2.9%. There was a strong linear correlation
between the mean fetal weight and FL, FKL, and BPD
(r=0.916, 0.916, and 0.832 respectively (Table 2, Figures 2–
4). There was no correlation between FKL and maternal age,
weight, height, BMI, parity, socioeconomic status, or fetal
sex (Table 3). There were no significant differences between
right and left FKL. A model using a combination of Femur
length (FL), Biparetal diameter (BPD), and mean fetal
ekidney length (KLm) revealed that a combination of all three
biometric parameters gave the most accurate estimation of
Fetal weight with estimate error (Er) of 319 grams The
following linear regression equation was used to calculate
GA based on these three parameters (Table 5, 6).

Table 2: Show personal Correlation coefficient of fetal weight
with (LMP) Gestational age and ultrasonic fetal biometric
parameters (n=384)

<table>
<thead>
<tr>
<th></th>
<th>LMP</th>
<th>FL</th>
<th>BPD</th>
<th>FWT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL</td>
<td>.938**</td>
<td>.923**</td>
<td>.904**</td>
<td>.864**</td>
</tr>
<tr>
<td>BPD</td>
<td>.952**</td>
<td>.916**</td>
<td>.931**</td>
<td>.854*</td>
</tr>
<tr>
<td>FWT</td>
<td></td>
<td>.832**</td>
<td></td>
<td>.832*</td>
</tr>
</tbody>
</table>

LMP: last menstrual period; FL: femur length;
FWT: fetal weight; KLm: kidney length (mean RT <)

There was linear and strong correlation between the mean
of (LMP) Gestational age with biometric indices, kidney
length and fetal weight. The best correlation coefficient
was observed between LMP and femur length.

Table 3: Person correlation coefficient of mean fetal weight
with maternal and fetal characteristics:

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>N</th>
<th>Person correlation</th>
<th>Sig(2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>384</td>
<td>.047</td>
<td>.361</td>
</tr>
<tr>
<td>Weight</td>
<td>384</td>
<td>.061</td>
<td>.230</td>
</tr>
<tr>
<td>High</td>
<td>384</td>
<td>.036</td>
<td>.488</td>
</tr>
<tr>
<td>Body mass index</td>
<td>384</td>
<td>.105**</td>
<td>.075</td>
</tr>
<tr>
<td>Parity</td>
<td>384</td>
<td>.031</td>
<td>.540</td>
</tr>
<tr>
<td>Socioeconomic status</td>
<td>384</td>
<td>.148***</td>
<td>.004</td>
</tr>
<tr>
<td>Fetal gender</td>
<td>373</td>
<td>.093</td>
<td>.073</td>
</tr>
</tbody>
</table>

*correlation was significant at the 0.05(2-tailed)
**correlation was significant at the 0.01(2-tailed)

There was no statistically significant correlation between
the mean of the FWT and maternal age, weight, high, body
mass index, parity and fetal gender (p>0. 05). However,
there were statistically significant differences between
FWT and socioeconomic status (p < 0.05).
Table 4: Shows linear regression analysis for FWT estimation

<table>
<thead>
<tr>
<th>Coefficients*</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>-2493.022</td>
<td>88.241</td>
<td>-28.252</td>
</tr>
<tr>
<td></td>
<td>Biparietal diameter in mm</td>
<td>55.488</td>
<td>1.114</td>
<td>.931</td>
</tr>
<tr>
<td>2</td>
<td>(Constant)</td>
<td>-2286.511</td>
<td>92.984</td>
<td>-24.590</td>
</tr>
<tr>
<td></td>
<td>Biparietal diameter in mm</td>
<td>37.153</td>
<td>3.505</td>
<td>.623</td>
</tr>
<tr>
<td></td>
<td>Femur length in mm</td>
<td>20.300</td>
<td>3.694</td>
<td>.323</td>
</tr>
<tr>
<td>3</td>
<td>(Constant)</td>
<td>-2402.561</td>
<td>96.184</td>
<td>-24.979</td>
</tr>
<tr>
<td></td>
<td>Biparietal diameter in mm</td>
<td>35.240</td>
<td>3.479</td>
<td>.591</td>
</tr>
<tr>
<td></td>
<td>Femur length in mm</td>
<td>15.115</td>
<td>3.871</td>
<td>.241</td>
</tr>
<tr>
<td></td>
<td>fetal kidney length in mm</td>
<td>18.090</td>
<td>4.698</td>
<td>.132</td>
</tr>
</tbody>
</table>

Fetal weight can estimate by a combination of femur length, biparietal diameter and kidney length.

Table 5: Show the models derived from the various biometric indices summery combinations for fetal weight estimation

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.931*</td>
<td>.867</td>
<td>.866</td>
<td>336.99</td>
</tr>
<tr>
<td>2</td>
<td>.936*</td>
<td>.876</td>
<td>.876</td>
<td>324.80</td>
</tr>
<tr>
<td>3</td>
<td>.939*</td>
<td>.881</td>
<td>.880</td>
<td>319.07</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Biparietal diameter in mm
b. Predictors: (Constant), Biparietal diameter in mm, Femur length in mm
c. Predictors: (Constant), Biparietal diameter in mm, Femur length in mm, fetal kidney length in mm

Table 6: Shows linear regression equations defining the relationships between LMP gestational age and various indices for FWT estimation:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Equation</th>
<th>R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPD</td>
<td>FWT=(55.488*BPD)-2493.022</td>
<td>.867</td>
<td>336.9887</td>
</tr>
<tr>
<td>BPD, FL</td>
<td>FWT=[37.153 *BPD+20.300FL]-2286.511</td>
<td>.876</td>
<td>324.8048</td>
</tr>
<tr>
<td>BPD, FL, KL</td>
<td>FWT=[35.240BPD+15.115FL+18.090*KL]-2402.561</td>
<td>.881</td>
<td>319.0655</td>
</tr>
</tbody>
</table>

The most accurate equation were a combination of all parameters with SE of 319.0655 grams.

Figure 1: Shows parity distribution
Figure 2: Shows Regression of FWT with KL

Figure 3: Shows Regression of FWT with FL
4. Discussions

Accurate sonographic EFW can be an intangible objectively for any sonographer because the endpoint or the ultrasound estimated fetal weight will lead to a management decision that will have a direct impact on the mother and fetus. Polyhydramnios, oligohydramnios, fetal macrosomia, and intrauterine growth restriction can lead to potential complications affecting management decisions for patients presenting in labor and delivery. Fetal weight estimations that are frequently determined by sonography play a major role in obstetric decision making and management. Both low birth weight and excessive fetal weight at delivery are associated with an increased risk of newborn complications during labor and delivery.[10].

Ultrasounds methods do not estimate fetal weight directly rather they do so indirectly by measuring the various segments of the body. Two dimensional ultrasonography is routinely used for the purpose, and the estimated fetal weight is calculated using appropriate tables or integrated computer programs. The most frequently used parameters include the biparietal diameter, abdominal circumference and femur length. There is a cumulative error inherent in each of the fetal dimensions measured. Then, there is acoustic shadowing at extreme ends of diaphysis. A single formula is not capable of covering the entire range of fetal weight.[11] This study was descriptive quantitative cross sectional study conducted on 384 Sudanese pregnant women to evaluate the validity of fetal kidney length for fetal weight estimation.

![Figure 4: Shows regression of FWT with BPD](image)

A variety of formulas and parameters have been correlated with fetal weight. Among them, the Shepard formula, which includes BPD and AC,[12] and the Hadlock formula using FL and AC[6] are widely accepted and commonly used for estimation of fetal weight. These parameters are considered to be more accurate and simpler than others.[14, 16] The results from combining all three parameters (BPD, FL, and AC) for predicting fetal weight appear to be controversial in the literature. Hadlock and coworkers[17] and Rose and McCallum[18] found that combining all of these parameters produced more accurate results than the use of only two parameters, but Woo and Wan[19] conversely found no improvement in predictive accuracy over that of formulas using two parameters. However the present study include FL, BPD and KL for fetal weight estimation.

In the present study fetal kidney length can reliably using for fetal weight estimation in combine with FL and BPD with estimate error of 319.06 grams the accuracy of this formula is 88.1 % (R Square). The correlation of this formula with fetal weight estimation is 0.939 (r).However in had lack formula using ultrasound to estimated fetal weight by measuring HC, AC and FL found that the estimated error was 299.11 grams and twari and sood shows an average error of 364.96 grams.[20]

5. Conclusion

This descriptive quantitative cross sectional study demonstrate that fetal weight estimation could be estimated accurately by measuring fetal kidney length in combine with BPD and FL.

The limitation of this study that the researcher were not compare between the actual birth weight and ultrasound fetal weight using FKL, FL and BPD.

Fetal kidney length is valid for fetal weight estimation in combine with femur length and Biparietal diameter with estimate error of 319.06 grams.

References

[1] Boyd ME, Usher RH, and McLean FH. Fetal macrosomia: prediction, risks, proposed

