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Abstract: We focus on the system of reaction-diffusion equations. We prove the existence of steady state solution of mutualistic system
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1. Introduction

In this paper, we consider the system of reaction diffusion
equations [2, 3]. The equations is given by the following
system:

u, = Au+ ufa(t,x) — b(t, x)u + c(t, x)v],
(1.1)
v, = Av +v[d(t, x) + e(t, x)u — f(t, x)v].
here a,b,c,d,e and f are sufficiently smooth functions
defined on a cylinder Q X [0,T], where Q is a smooth
bounded domain in R", A denotes the Laplacian with respect
to the wvariables x = (x1,%3,...,%,) €, a/av denotes
derivative in the direction of the outer normal to 9Q at
x € 90 and u(t, x), v(t, x) is a solution of (1.1).
We assume that g, ..., f are strictly positive and periodic in
the time variable t with period T > 0.
The boundary condition is supposed by

ou
v

_av

= =0
aaxpor] OV

80x[0,T]

(1.2)

and the initial condition is given by

u(x' t)|t=0 = uo(x)!v(x;t)ltzo = VO(X). (13)

2. The Existence of Steady State Solutions

Consider the following steady state problem:
{ut=Au+u[a—bu+cv], 2.1
v, =Av+v[d+eu—fvl] ’
and

here a,b,c,d,e and fare positive constants

u(t, x), v(t,x) is a solution of (2.1).

Steady state solution satisfies the following equations:
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fitu,v) = u(a—Bbu + cv) = 0,
fu,v) = v(d + euld—fv) =0

and then we compute the Jacobian

4= (a —bu+ cv) — bu cu

- ev (d+eu—fv)—fv

Now we find intersection points:
Ly =all—bu + cv
L, =d+ eu—0fv

0, (2,2)
0. (2,3)

from Eq (2.2) in u axis the point is (3, 0), from Eq (2.3) in
v axis the point is (0,£) now we solving the simultaneous
equations (2.2)@ — (2.3) and then we find (u*,v*) =

af +cd ae+bd) b ¢ e .
(bf_ce ore) 3% > 7 there are four equilibriums points

0, 0), (%, 0), (0,1) and (u*,v*) now we are discuss the

f
stability for these points:

. a—2 0
(i) det(A — 12) ) = det [ 0 4l /1]
Ay, A, > 0 then this point is unstable.

[a —2b.8—1 - l
d+ . A

= 0 then

(ii) det(A — 1/1)(%_0) =det

0 then 4; < 0,4, > 0 the point is unstable.
a+l-2 0

(iif) det(A — I2) 0, = det ’ =
i i —d—-2
OthenA; > 0,1, <0
the point is unstable.
; _ —bu* -2 cu* _
(10) det(A = D)y = det |yt /1] —0

=(-bu = A)(—fv* — 1) —ceuw'v* =0
=22+ (bu* + fv)A + (bf —ce)u*v* =0
_—(bw* + fv*) +/(bu* + fv*)? — 4(bf — ce)u*v*
- 2
ReA 5, <0 if% > ]% under this condition the point (u*, v*) is
stable.

/‘11,2

Lemma 1 Let P = (uy,v1),Q = (uy,v,) be any two
distinct points in R; and let I} be any smooth curve lying in
R; with end points P,Q where R; is any one of the four
regions as following:
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Ri: filp,@) < 0,£,(p,q) < O,Ry: fi(p, @)
< O'fz(P'CI) > 0

Ry: filp, @) > 0,/2(0,9) < O,Ry: fi(p,q)
> 0,f;(p.q) >0

These four regions are closely related to the following
corresponding (liifferential Inegualities. ,
Li:p z2filba)a =2fma)T2:p
, 2 fiq),q < L9
G:p <fibaa zf(pa)li:p
<fia).q < flpq)

then there exists a pair of smooth functions (p(t), q(t)) with
values on [ for all t > 0 such that:

(1) (p(O), CI(O)) = (u]J vl); hmtl—mo (p(t)l Q(t)) = (uZ! 772)
(2) (p, q) satisfies the corresponding differential inequalities
in Fi

Proof: we show the lemma for [;; in R, since it is
representative and is more relevant to later applications.
Consider the case where I, is the straight line PQ. Since P, Q
are in R, there exists

8> 0 such that:

{max{fl (w,v), (u,v) € PQ < -6},
= (2.4)
min{f, (w, v), (u, v) € PQ > 5}
Define:
{P(t) =up + (ug —uz)e™™, (t 2 0) (2.5)
p(t) = vy + (vy —vp)e™™, (t = 0) .

where € > 0 is a constant to be chosen. Then (p, g) lies on I';

for all t and satisfies property (1) choose & < min{§|u; —

u2-1, Svl—v2—-1. Then

p () =—ew —uy)e ™ = —5; q (t) = —e(v; —vy)e ™
<é.

It follows from (2.4) that property (2) holds. Next consider

I, as an arbitrary smooth curve PQ with length S. Then I,

may be represented by the parametric equation.

p=p1(5),q=q,(5),0<s<S.
With

(p(o)' CI(O)) = (ullvl)! (p(s)' CI(S)) = (uZ! UZ)'

Define:
{p(t) =p(SA—e™)),(t=0)

2.
a(0) = a1 (S(L = e=)), (£ = 0) (26)

For some € > 0. Then (p, q) lies on I, and satisfies property
(1). Since I; is smooth there exists a constant k such that:

p () =p1(S(1 — e™))See™ < —€kS

q@®) =q (S(1 —e~#t))See < €kS.

It follows by choosing £ < (kS)™'§ that property (2) from
(2.4) this proves the lemma.

Theorem 2.1.
Suppose that % > }% holds then for uy (x) > 0,
uy (x) # 0and vy (x) > 0,75 (x) # 0,x € Q
tlim (u(x, t), v(x, t)) = (u*,v").

Proof: Let Ly, L, be the straight lines in the (u,v) — plane
given by (2.2) — @ (2.3) we choose a point P = (u;,v;) in
Ry with u; > uy(x),v; > vo(x) and a point P = (uq,v4) in

R, with u; < uy(x), v, < vy(x) for any given € > 0 then
we choose Q = (up, v,) in Ry and Q = (U, 7,) in R; such
that:

Uy >U —gv, >v —candu, <u” +&v, <v +e

That i.e u; < ug(x) < up;v; < vox) < ;.
Let I} and I, be the respective line in Ry, R, with the end
points P,Q and ,Q . Then by the Lemma(l) there exists a
functions  (p(£), q(0)), B, F(®) with (p(0),4(0)) =
(u1,v1), (0(0),q(0)) = (uy,v1)
such that (p, q) satisfies the inequalities

p(t) <p(aB—Dbp + ¢q),q(t) <q(d + epB - fq)
and (p, q) satisfies the inequalities
p(@©=plal—bp + cq),q'(t) = q(d + ep + fq)
Since
p(0) < up(x) <p(0),q(0) <wy(x) <q(0) and p(t) <
u(t,x) < p(t),q) < v(t,x) <q(b).
But by property (1) of the lemma(1)

pt) D uy > u —¢q(t) > v, > v-—eandp(t)

Su, < u'+egqt) v,
< v't+east - oo,
We conclude by letting t —» o in p(t) < u(t,x) <
p(t),q(t) < v(t,x) < q(t) and the arbitrariness of &
that:
u(t,x) » u*,v(t,x) » v-ast — oo then
}Lrg(u(t,x),v(t,x)) = (u*,v").

3. Estimates for Periodic Solutions of Periodic
System

Optimal upper and lower bounds for multiplitic of
coexistence states and conditions for existence of
coexistence states we consider the system

Uy = Uy, +ulalt,x) — b, x)u + c(t,x)v], (3.1)
U = Uy +0[d(t,x) + e(t, x)u — f(t,x)v], (3.2)

where it is only assume that the functions a, b, c,d, e and f
are positive continuous, and T-periodic on X R under
certain conditions on a,...,f we shall obtain upper and
lower bounds for the components of coexistence states with
more regularity assumptions on @, ..., f we shall show in a
following that these also imply the existence of coexistence
states.

Lemma 2 Assume that g and k are continuous and T —
periodic on 2 X R, 30 is of class C*,w € C>*1(2 x R) N
(02 x R),k(t,x) > 0,w(t; x) > 0on 2 X

R,w is a solution of:

W _ raw +

onXR,wlxt +T)
= w(t,x) and w satisfies the boundary condition

ow
(3.4)

vlgg x[0,T]=0

(3.3)

=0

Then there exist points (t1,x1) and (t;,x3) in (2
X R such that
w(ty,x1) = w, g(t,x) <0
w(ty, x2) = Wp, g(t2,%2) 20

(3.5)
(3.6
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where w; = mingyorw(t, x); Wy
= maxgxo,r) w(t, x)
Proof: Suppose that there exists (t1,x;) € 2 X R such that
w(ty, x1) = w; then w,(t;,x;) = 0 and Aw(t;,x;) = 0.
Therefore from (3.3) we see that g(ty, x;)w; < 0 and hence
g(t1,x1) < 0. If w does not assume the value w;, any where
on open set 2 X R then there exists (t1,x;) in 82 X R such
that w(ty,x;) = wy if it were the case that g(t;,x;) > Othen
there would exist an open ball D centered at t;,x; such that
g(t1,x1) >0 on DN (N XR) since w(t,x) > w(ty,x;) for
(t,x) EDN (N XR),02 is smooth and kAw B — w, =
—Bgw < 0 at points in DN (N2 X R) that Z—V:(tl,xl) <
Owhich contradicts (3.4) this contradiction shows that
g(t1,x1) < 0 if there exists a point (t5,x;) in 2 X R such
that w(ty, x,) = w,, then it follows from (3.3) and the same
reasoning as used above that g(t;, x,) = 0 If there exists
(tz,x2) in 002 X 2 such that w(t,x) < w(ty, x,) for all
(t,x) in 2 X R and if it were the case that g(t;,x;) < 0 we
would have kAw B — w, > 0 for points in 2 X R near
ty,x, in this case the maximum principle would imply that

Z—V:(tz,xz) > 0 contradicting (3.4) show that g(t;,x;) = 0
Theorem 3.1

Assume that b; > e'"fi (3.7)
1

And 00 is of class C2.1f u,v € C*1 (2 xR) N

Ct0(02 x R), (w,v) is a solution of (3.1) — (3.2) on
(2 xR),u(t,x)and

v(t, x) are periodic solution and are T —
periodicint,u(t,x) > 0andv(t,x) > 0 for (x,t) €
(2 x R),uand v satisfy the boundary conditions:

6u| _ 6v| =0 3.8)
vlgaxpr  9vlaaxpr '
Then for (x,t) € (2 X R):

+d +c,,d
alfm 1€l < u(t, X) < flam Cm m‘ (39)
bmfm — e blfl —€mCn
ae; +bmdl enam +bldm
Tl <y x) < T (3.10)
bmfm — e blfl —€mCnm

Proof: Suppose that u and v are as in the statement of the
theorem from lemma (2) and the equation (3.1) we suppose
the existence of (t1,x;) in (2 X R) such that
u(ty, x) =w = teR’;"E%u(tl,xl)
And
a(ty, x))B — b(ty, x)u(ty, %) + c(ty,x)v(ty,x) < 0
a, — bmul + v <0 (311)
similarly from lemma (2) and equation (3.2) we suppose the
existence of (t,,x,) in (2 X R) that
v(ty,x2) = v = teR_ZZnﬁu(tz:xz)
And
d(tz,22)8 + e(ty, x2)ulty, x2) — f(t2, x2)v(t2,x2) < 0
dl + eu; — fmvl <0 (312)
we multiply (3.11) by e; and (3.12) by b,, then we obtain
ae — bmelul + cev; <0
dlbm + bmelul — bmfmvl <0
Then
ae; + dlbm + (Clel - bmfm)vl <0

(b fm — 1€V = i€ + diby,
- e q + bmdl (3 13)
L= bmfm — € .
and multiply (3.11) by f;,, and (3.12) by ¢; then we obtain

alfm - bmfmul + lemvl <0
dlCl + ceu — lemvl <0
Then

aifm + dic; + (cre; = by fi)u; < 0

(b o — Clez)ude Qi fm +dic

a; +d;c

w > fma 1€ (3.14)
bmfm —€q

from lemma (2) and the equation (3.1)we suppose the
existence of (t3,x3) in (2 X R)such that

u(ts, x3) = Up, = teryentt(t, x)
and a(ts, x3) — b(t3, x3)um + c(t3, x3)v(t3,x3) = 0

a,, — bu, + c,v, =0(3.15)

similarly from lemma (2) and equation (3.2) we suppose
the existence of (t4,x4) in (£ X R) such that

V(ts, X4) = U = terrea?(t,X)
and d(tq, x4) + €(ty, x.)u(ts, x4) — f (L4, X4)V(t4,%4) 2 0
dneniy — fiVym = 0(3.16)
we multiply (3.15) by e,, and (3.16) by b, then we obtain
emm — embiuy, + e, cpvy, =0
bd,, + be,uy — b fivy, =0
then
emm + dyub + (e — bif)v, =0
emQm +dnb; = (bifi—encn)vy,

enm + dy by

> 1
blfl ~—€mCnm = Um (3 7)

we multiply (3.15) by f;and (3.16) by c,, then we obtain

flam - blflum +flcmvm =0

Cmlm + CnemUy — fiCmVy =0
and then

fity, + cpdy + (Cpem — b f)u, =0

flam + C‘mdm 2 (blfl - Cmem)um

a, +cnpd
i ¥ > u, (3.18)
blfl —Cm€nm
Since u; <u(t,x)<u, and v, <v(tx)<v, from
inequalities (3.13), (3.14), (3.17) and (3.18) we obtain:

fma, + ¢ d;

a, +c,d
< (t, )<fl m m“m
bm}m ce

- blfl —Cm€n
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this proves theorem (3.1)

4. Asymptotic Behavior of Periodic System

Theorem 4.1

If b, > C"}jm (4.1)

Then there exist pairs (&, ) and (&*, U*) with components in
C?r 1+ () x R) such that the components of both pairs are
strictly positive and T-periodic in t each pair is a solution of
(1.1)and satisfies the boundary conditions (1.2).
Moreover

it x) <0 (t,x); 0(t,x) < 0*(t,x) on N2 X R
and if (u,v) is a solution of the initial boundary value
problem given by (1.1)—-08(1.2) with u(0,x) =
®(x); v(0,x) = W(x) such that d, ¥ € C1**(Q)

P(x) =20, Y(x) 20, d(x) £ 0, ¥(x) £ 0

and:
acl>|
61/ )

Q

o

v
B 6v|
then forany e > 0:
at,x )8 —e< u(t,x) < 4" + ¢
D, —e< v(t,x) < D" + ¢
for x in £ and all sufficiently large t. If a, b, c,d, e and f are
function of t alone.

Then @i = 4*; ¥ = ¥” and I, ¥ are functions of t alone.
Proof: Choose constant kq, k, such that
Ay, — bk +cpnky <0,(4.2)

d, +enky — fiky <0, (4.3)

using (4.1), k; and k, exist, then choose 0 < §; < k,0 <
6, < k;, such that
a — bm61 + Cl62 > 0, (44)
d; +e6; — fn6, > 0,(4.4)
in fact if §; < ;—nll; 6, < %l; 81, 6, are suitable. It is obvious
that (kq,k;) and (8;,68,) are periodic upper and lower
solutions. There exist two pairs periodic solutions of original
periodic boundary value problem
(1.2)B - (2.1) (@, D), (a*, ¥*) and:
6 <U<U <k, (4.6)
6, < V<V <k, (47)
we consider following initial boundary value problem
(1.2)8 — (2.1) with:
u(x, ty) = 61; vix, ty) = 8,,(4.8)
u(x, ty) = ky; vix, ty) = ky,(4.9)

Denote: (uq,v;) and (u,, v,) are the corresponding solutions
of (1.2)A — (2.1),(4.8)and (1.2)B — (2.1),(4.9) then
lim,o(uy, 1) = (@, 0) and lim,_. (uy, vy) = (0% 0%).
Finally we consider initial boundary value problem for

Ug(x) = 0; vo(x) = 0 and uy(x) £ 0; vy(x) # 0 by
strong maximum principle

uo(to + 1,x) > O,Vo(to + 1,x) > 0(410)

we choose (61, 6,) and (kq, k;) such that
61 < uo(to + 1,x) < k]_, 62 < Uo(to + l,x) < k2 (411)

we obtain following comparison relation:

u(t—1,x) <ult,x) <u,(t—1,x),v,(t—1,%)
<v(t,x) <v(t—1,x),t
>ty+1(4.12)

Therefore we have
it x) < tlim infu(t, x), tlim sup u(t,x) <4*(t,x), (4.13)

and

U(t,x) < tlim infv(t, x),tlim supv(t,x) < 0*(t,x).(4.14)

For uniqueness:

T
f [a(t) — BOAE) + c(O)P(O)]dt
0
T
- f [a(t) — b(H*(t) + e (D]dE.
0

By means offT%dt =[' ﬁﬁ*f dt
T T
fo b()(@*(t) — da(t))dt = fo c(®)(D*(t) — D(t))dt
= 0(4.15)

If: (*(t) = 4(t) and (@*(t) £ ©(t) we have

b _ L ®©-®)

—< 16
[T (@ () - ae))dt )
similarly we have:
Tlonrn o
en _ INCAGERIG)LL: 17

fi 7 [f@ @ -aw)yde

it follows from (4.16) — (4.17)

b e
—L <™ (4.18)
m i
it is contradiction with (4.1), therefore the uniqueness holds.
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