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1. Introduction 
 
In this paper, we consider the system of reaction diffusion 
equations [2, 3]. The equations is given by the following 
system: 
 

 
𝑢𝑡 = ∆𝑢 + 𝑢 𝑎 𝑡, 𝑥 − 𝑏 𝑡, 𝑥 𝑢 + 𝑐 𝑡, 𝑥 𝑣 ,

𝑣𝑡 = ∆𝑣 + 𝑣 𝑑 𝑡, 𝑥 + 𝑒 𝑡, 𝑥 𝑢 − 𝑓 𝑡, 𝑥 𝑣 .
           (1.1) 

 
here 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 and 𝑓 are sufficiently smooth functions 
defined on a cylinder Ω × [0, 𝑇], where Ω is a smooth 
bounded domain in ℝ𝑛 , ∆ denotes the Laplacian with respect 
to the variables 𝑥 =  𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝛺, 𝜕 𝜕𝜈  denotes 
derivative in the direction of the outer normal to ∂Ω at 
𝑥 ∈ 𝜕Ω and 𝑢 𝑡, 𝑥 , 𝑣(𝑡, 𝑥) is a solution of (1.1). 
We assume that 𝑎, … , 𝑓 are strictly positive and periodic in 
the time variable 𝑡 with period 𝑇 >  0. 
The boundary condition is supposed by 
 

 𝜕𝑢

𝜕𝜈
 
∂Ω×[0,T]

=  𝜕𝑣

𝜕𝜈
 
∂Ω×[0,T]

= 0                      (1.2) 

 
and the initial condition is given by 
 

 𝑢(𝑥, 𝑡) 𝑡=0  =  𝑢0 𝑥 ,  𝑣(𝑥, 𝑡) 𝑡=0  =  𝑣0 𝑥 .             (1.3) 
 

2. The Existence of Steady State Solutions 
 
Consider the following steady state problem: 
 

 
𝑢𝑡 = ∆𝑢 + 𝑢 𝑎 − 𝑏𝑢 + 𝑐𝑣 ,

𝑣𝑡 = ∆𝑣 + 𝑣 𝑑 + 𝑒𝑢 − 𝑓𝑣 .
                            (2.1) 

 
here 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 and 𝑓 are positive constants and 
𝑢 𝑡, 𝑥 , 𝑣(𝑡, 𝑥) is a solution of (2.1). 
 
Steady state solution satisfies the following equations: 
Email address: mohamed.ah.abd@hotmail.com (Mohamed 
Ahmed Abdallah ) 
Preprint submitted to April 7, 2016 

𝑓1(𝑢, 𝑣)  =  𝑢(𝑎 − 􀀀 𝑏𝑢 +  𝑐𝑣)  =  0, 
𝑓2(𝑢, 𝑣)  =  𝑣(𝑑 +  𝑒𝑢 􀀀− 𝑓𝑣)  =  0 

and then we compute the Jacobian 
 

𝐴 =  
 𝑎 − 𝑏𝑢 + 𝑐𝑣 − 𝑏𝑢 𝑐𝑢

𝑒𝑣  𝑑 + 𝑒𝑢 − 𝑓𝑣 − 𝑓𝑣
  

 
Now we find intersection points:  

 𝐿1  =  𝑎 􀀀−  𝑏𝑢 +  𝑐𝑣 =  0,                            (2,2) 
 𝐿2  =  𝑑 +  𝑒𝑢 − 􀀀 𝑓𝑣 =  0.                            2,3   

 
from Eq (2.2) in 𝑢 axis the point is (𝑎

𝑏
, 0), from Eq (2.3) in 

𝑣 axis the point is (0, 𝑑

𝑓
) now we solving the simultaneous 

equations  2.2 􀀀−  (2.3) and then we find  𝑢⋆, 𝑣⋆ =

 
𝑎𝑓+𝑐𝑑

𝑏𝑓−𝑐𝑒
,
𝑎𝑒+𝑏𝑑

𝑏𝑓−𝑐𝑒
  as 𝑏

𝑒
>

𝑐

𝑓
 there are four equilibriums points 

(0, 0),  𝑎

𝑏
, 0 ,  0, 𝑑

𝑓
  and  𝑢⋆, 𝑣⋆  now we are discuss the 

stability for these points: 
(𝑖) 𝑑𝑒𝑡 𝐴 − 𝐼𝜆 (0,0) = 𝑑𝑒𝑡  

𝑎 − 𝜆 0
0 𝑑 − 𝜆

 = 0 then 
𝜆1, 𝜆2 > 0 then this point is unstable. 

(𝑖𝑖) 𝑑𝑒𝑡 𝐴 − 𝐼𝜆 (
𝑎
𝑏

,0) = 𝑑𝑒𝑡  
𝑎 − 2𝑏. 𝑎

𝑏
− 𝜆

𝑐𝑎

𝑏

0 𝑑 +
𝑒𝑎

𝑏
− 𝜆

 =

0 then 𝜆1 < 0, 𝜆2 > 0 the point is unstable. 

(𝑖𝑖𝑖) 𝑑𝑒𝑡 𝐴 − 𝐼𝜆 
(0,

𝑑
𝑓

)
= 𝑑𝑒𝑡  

𝑎 +
𝑐𝑑

𝑓
− 𝜆 0

𝑒𝑑

𝑓
−𝑑 − 𝜆

 =

0 then 𝜆1 > 0, 𝜆2 < 0  
the point is unstable. 

(𝑖𝑣) 𝑑𝑒𝑡 𝐴 − 𝐼𝜆  𝑢⋆,𝑣⋆ = 𝑑𝑒𝑡  
−𝑏𝑢⋆ − 𝜆 𝑐𝑢⋆

𝑒𝑣⋆ −𝑓𝑣⋆ − 𝜆
 = 0 

 =  −𝑏𝑢⋆ − 𝜆  −𝑓𝑣⋆ − 𝜆 − 𝑐𝑒𝑢⋆𝑣⋆ = 0 
 = 𝜆2 +  𝑏𝑢⋆ + 𝑓𝑣⋆ 𝜆 +  𝑏𝑓 − 𝑐𝑒 𝑢⋆𝑣⋆ = 0  

𝜆1,2 =
−(𝑏𝑢⋆ + 𝑓𝑣⋆) ±   𝑏𝑢⋆ + 𝑓𝑣⋆ 2 − 4 𝑏𝑓 − 𝑐𝑒 𝑢⋆𝑣⋆

2
 

𝑅𝑒𝜆1,2 < 0 if 𝑏
𝑐

>
𝑒

𝑓
 under this condition the point (𝑢⋆, 𝑣⋆) is 

stable. 
 

Lemma 1 Let 𝑃 =   𝑢1, 𝑣1 , 𝑄 =   𝑢2, 𝑣2  be any two 
distinct points in 𝑅𝑖  and let Γ𝑖  be any smooth curve lying in 
𝑅𝑖  with end points 𝑃, 𝑄 where 𝑅𝑖  is any one of the four 
regions as following: 
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𝑅1 ∶  𝑓1 𝑝, 𝑞 <  0, 𝑓2(𝑝, 𝑞)  <  0, 𝑅2 ∶  𝑓1(𝑝, 𝑞)  
<  0, 𝑓2(𝑝, 𝑞)  >  0 

𝑅3 ∶  𝑓1 𝑝, 𝑞 >  0, 𝑓2(𝑝, 𝑞)  <  0, 𝑅4 ∶  𝑓1(𝑝, 𝑞)  
>  0, 𝑓2(𝑝, 𝑞)  >  0 

 
These four regions are closely related to the following 
corresponding differential Inequalities. 

Γ1 ∶  𝑝′ ≥ 𝑓1 𝑝, 𝑞 , 𝑞′ ≥ 𝑓2(𝑝, 𝑞) , Γ2 ∶  𝑝′

≥ 𝑓1(𝑝, 𝑞) , 𝑞′ ≤ 𝑓2(𝑝, 𝑞)  
Γ3 ∶  𝑝′ ≤ 𝑓1 𝑝, 𝑞 , 𝑞′ ≥ 𝑓2(𝑝, 𝑞) , Γ4 ∶  𝑝′

≤ 𝑓1(𝑝, 𝑞) , 𝑞′ ≤ 𝑓2(𝑝, 𝑞) 
 

then there exists a pair of smooth functions (𝑝 𝑡 , 𝑞(𝑡)) with 
values on Γ𝑖  for all 𝑡 ≥  0 such that: 
(1) (𝑝 0 , 𝑞(0)) = (𝑢1, 𝑣1); lim𝑡⟼∞(𝑝 𝑡 , 𝑞(𝑡)) = (𝑢2, 𝑣2) 
(2) (𝑝, 𝑞) satisfies the corresponding differential inequalities 
in Γ𝑖  
 

Proof: we show the lemma for Γ2𝑖  in R2 since it is 
representative and is more relevant to later applications. 
Consider the case where Γ2 is the straight line PQ. Since 𝑃, 𝑄 
are in 𝑅2 there exists  
δ > 0 such that: 

 
max 𝑓1 𝑢, 𝑣 ,  𝑢, 𝑣 ∈ PQ ≤ −𝛿 ,

min 𝑓2 𝑢, 𝑣 ,  𝑢, 𝑣 ∈ PQ ≥ 𝛿 
                        (2.4) 

Define: 

 
𝑝 𝑡 = 𝑢2 +  𝑢1 − 𝑢2 𝑒

−𝜀𝑡 , (𝑡 ≥ 0)

𝑝 𝑡 = 𝑣2 +  𝑣1 − 𝑣2 𝑒
−𝜀𝑡 , (𝑡 ≥ 0)

                       (2.5) 

where 𝜀 > 0 is a constant to be chosen. Then (𝑝, 𝑞) lies on Γ2 
for all 𝑡 and satisfies property (1) choose 𝜀 ≤ min 𝛿 𝑢1 −
𝑢2−1, 𝛿𝑣1−𝑣2−1. Then 
𝑝′ 𝑡 = −𝜀 𝑢1 − 𝑢2 𝑒

−𝜀𝑡 ≥ −𝛿;  𝑞′ 𝑡 = −𝜀 𝑣1 − 𝑣2 𝑒
−𝜀𝑡

≤ 𝛿. 
It follows from (2.4) that property (2) holds. Next consider 
Γ2 as an arbitrary smooth curve 𝑃𝑄 with length 𝑆. Then Γ2 
may be represented by the parametric equation. 

𝑝 = 𝑝1 𝑠 , 𝑞 = 𝑞1 𝑠 , 0 ≤ 𝑠 ≤ 𝑆. 
With 

 𝑝 0 , 𝑞 0  =  𝑢1, 𝑣1 ,  𝑝 𝑆 , 𝑞 𝑆  =  𝑢2, 𝑣2 . 
Define: 

 
𝑝 𝑡 = 𝑝1 𝑆 1 − 𝑒−𝜀𝑡   ,  𝑡 ≥ 0 

𝑞 𝑡 = 𝑞1 𝑆 1 − 𝑒−𝜀𝑡   ,  𝑡 ≥ 0 
                        (2.6) 

 
For some 𝜀 > 0. Then (𝑝, 𝑞) lies on Γ2 and satisfies property 
(1). Since Γ2 is smooth there exists a constant 𝑘 such that: 

𝑝′(𝑡) = 𝑝1
′  𝑆 1 − 𝑒−𝜀𝑡   𝑆𝜀𝑒−𝜀𝑡 ≤ −𝜖𝑘𝑆 

𝑞′ 𝑡 = 𝑞1
′  𝑆 1 − 𝑒−𝜀𝑡   𝑆𝜀𝑒−𝜀𝑡 ≤ 𝜖𝑘𝑆. 

 
It follows by choosing 𝜀 <  (𝑘𝑆)−1𝛿 that property (2) from 
(2.4) this proves the lemma. 
 

Theorem 2.1. 

𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑡𝑕𝑎𝑡 
𝑏

𝑐
>  

𝑒

𝑓
 𝑕𝑜𝑙𝑑𝑠 𝑡𝑕𝑒𝑛 𝑓𝑜𝑟 𝑢0  𝑥 >  0, 

 𝑢0  𝑥 ≢  0 𝑎𝑛𝑑 𝑣0  𝑥 >  0, 𝑣0  𝑥 ≢  0, 𝑥 ∈ Ω  
lim
𝑡⟶∞

 𝑢 𝑥, 𝑡 , 𝑣 𝑥, 𝑡  = (𝑢⋆, 𝑣⋆). 
 

Proof: Let 𝐿1, 𝐿2 be the straight lines in the (𝑢, 𝑣) − 𝑝𝑙𝑎𝑛𝑒 
given by  2.2 − 􀀀 (2.3) we choose a point 𝑃 = (𝑢1, 𝑣1) in 
𝑅1 with 𝑢1 > 𝑢0 𝑥 , 𝑣1 > 𝑣0(𝑥) and a point 𝑃 =  (𝑢1, 𝑣1) in 

𝑅4 with 𝑢1 < 𝑢0(𝑥), 𝑣1 < 𝑣0(𝑥) for any given 𝜀 > 0 then 
we choose 𝑄 = (𝑢2, 𝑣2) in 𝑅4 and 𝑄 = (𝑢2, 𝑣2) in 𝑅1 such 
that: 
𝑢2 > 𝑢⋆ − 𝜀; 𝑣2 > 𝑣⋆ − 𝜀 and 𝑢2 < 𝑢⋆ + 𝜀; 𝑣2 < 𝑣⋆ + 𝜀. 
 
That 𝑖. 𝑒 𝑢1 ≤ 𝑢0 𝑥 ≤ 𝑢1; 𝑣1 ≤ 𝑣0 𝑥 ≤ 𝑣1. 
Let Γ1 and Γ4 be the respective line in 𝑅1, 𝑅4 with the end 
points 𝑃, 𝑄 and , 𝑄 . Then by the Lemma(1) there exists a 
functions  𝑝 𝑡 , 𝑞 𝑡  , (𝑝 𝑡 , 𝑞(𝑡)) with  𝑝 0 , 𝑞 0  =

  𝑢1, 𝑣1 , (𝑝 0 , 𝑞(0))  = (𝑢1, 𝑣1) 
such that (𝑝, 𝑞) satisfies the inequalities  

𝑝 𝑡 ≤ 𝑝 𝑎 􀀀− 𝑏𝑝 +  𝑐𝑞 , 𝑞(𝑡)  ≤ 𝑞(𝑑 +  𝑒𝑝 􀀀− 𝑓𝑞) 
and (𝑝, 𝑞) satisfies the inequalities 
 𝑝′

 𝑡 ≥  𝑝 𝑎 􀀀− 𝑏𝑝  +  𝑐𝑞 , 𝑞′(𝑡)  ≥  𝑞(𝑑 +  𝑒𝑝  +  𝑓𝑞) 
Since 
 𝑝 0 ≤ 𝑢0 𝑥 ≤ 𝑝 0 , 𝑞(0)  ≤ 𝑣0(𝑥)  ≤ 𝑞(0) and 𝑝 𝑡 ≤
𝑢 𝑡, 𝑥 ≤  𝑝 𝑡 , 𝑞 𝑡 ≤ 𝑣 𝑡, 𝑥 ≤ 𝑞 𝑡 . 
But by property (1) of the lemma(1) 

𝑝 𝑡 → 𝑢2  >  𝑢⋆ − 𝜀; 𝑞 𝑡 → 𝑣2  >  𝑣⋆ − 𝜀 𝑎𝑛𝑑 𝑝 𝑡 
→ 𝑢2  <  𝑢⋆ + 𝜀;  𝑞 𝑡 → 𝑣2  
<  𝑣⋆ + 𝜀 𝑎𝑠 𝑡 → ∞. 

We conclude by letting 𝑡 →  ∞ in 𝑝 𝑡 ≤ 𝑢 𝑡, 𝑥 ≤
 𝑝 𝑡 , 𝑞(𝑡)  ≤  𝑣(𝑡, 𝑥)  ≤  𝑞(𝑡) and the arbitrariness of 𝜀 
that: 
𝑢 𝑡, 𝑥 →  𝑢⋆, 𝑣(𝑡, 𝑥)  →  𝑣⋆ 𝑎𝑠 𝑡 → ∞ then 

lim
𝑡→∞

(𝑢 𝑡, 𝑥 , 𝑣(𝑡, 𝑥)) =   𝑢⋆, 𝑣⋆ . 
 

3. Estimates for Periodic Solutions of Periodic 

System 
 
Optimal upper and lower bounds for multiplitic of 
coexistence states and conditions for existence of 
coexistence states we consider the system 

 
𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢 𝑎 𝑡, 𝑥 − 𝑏 𝑡, 𝑥 𝑢 + 𝑐 𝑡, 𝑥 𝑣 ,   (3.1) 
𝑣𝑡 = 𝑣𝑥𝑥 + 𝑣 𝑑 𝑡, 𝑥 + 𝑒 𝑡, 𝑥 𝑢 − 𝑓 𝑡, 𝑥 𝑣 , (3.2) 

 
where it is only assume that the functions 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 𝑎𝑛𝑑 𝑓 
are positive continuous, and T-periodic on Ω × ℝ under 
certain conditions on 𝑎, … , 𝑓 we shall obtain upper and 
lower bounds for the components of coexistence states with 
more regularity assumptions on 𝑎, … , 𝑓 we shall show in a 
following that these also imply the existence of coexistence 
states. 
 

Lemma 2 𝐴𝑠𝑠𝑢𝑚𝑒 𝑡𝑕𝑎𝑡 𝑔 𝑎𝑛𝑑 𝑘 𝑎𝑟𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑛𝑑 𝑇 −
𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑜𝑛 𝛺 × ℝ, 𝜕𝛺 𝑖𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝐶2, 𝑤 ∈ 𝐶2.1 𝛺 × ℝ ∩

𝐶1.0  𝛺 × ℝ , 𝑘 𝑡, 𝑥 >  0, 𝑤 𝑡;  𝑥 >  0 𝑜𝑛 𝛺 ×

ℝ, 𝑤 𝑖𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓: 
𝜕𝑤

𝜕𝑡
=  𝑘∆𝑤 +  𝑔𝑤                                 (3.3) 

𝑜𝑛 𝛺 × ℝ , 𝑤(𝑥, 𝑡 +  𝑇)  
≡ 𝑤(𝑡, 𝑥) 𝑎𝑛𝑑 𝑤 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑡𝑕𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 

 𝜕𝑤

𝜕𝜈
 
𝜕𝛺× 0,𝑇 =0

=  0                                  (3.4) 

 
𝑇𝑕𝑒𝑛 𝑡𝑕𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 (𝑡1, 𝑥1) 𝑎𝑛𝑑 (𝑡2, 𝑥2) 𝑖𝑛 𝛺

× ℝ 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡 
𝑤 𝑡1, 𝑥1 =  𝑤𝑙 , 𝑔(𝑡1, 𝑥1)  ≤ 0          (3.5) 
𝑤 𝑡2, 𝑥2 =  𝑤𝑚 , 𝑔(𝑡2, 𝑥2)  ≥ 0        (3.6) 
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𝑤𝑕𝑒𝑟𝑒 𝑤𝑙  =  𝑚𝑖𝑛𝛺×[0,𝑇 ] 𝑤 𝑡, 𝑥 ;  𝑤𝑚  

=  𝑚𝑎𝑥𝛺×[0,𝑇 ] 𝑤 𝑡, 𝑥  

Proof: Suppose that there exists (𝑡1, 𝑥1) ∈ 𝛺 × ℝ such that 
𝑤 𝑡1, 𝑥1 =  𝑤𝑙  then 𝑤𝑡 𝑡1, 𝑥1 =  0 and ∆𝑤(𝑡1, 𝑥1)  ≥  0. 
Therefore from (3.3) we see that 𝑔(𝑡1, 𝑥1)𝑤𝑙 ≤ 0 and hence 
𝑔(𝑡1, 𝑥1) ≤ 0. If 𝑤 does not assume the value 𝑤𝑙  any where 
on open set 𝛺 × ℝ then there exists  𝑡1, 𝑥1  𝑖𝑛 𝜕𝛺 × ℝ such 
that 𝑤 𝑡1, 𝑥1 =  𝑤𝑙  if it were the case that 𝑔 𝑡1, 𝑥1 > 0then 
there would exist an open ball D centered at 𝑡1, 𝑥1 such that 
𝑔 𝑡1, 𝑥1 > 0 on 𝐷 ∩ ( 𝛺 × ℝ) since 𝑤(𝑡, 𝑥) > 𝑤 𝑡1, 𝑥1  for 
(𝑡, 𝑥) ∈ 𝐷 ∩   𝛺 × ℝ , 𝜕𝛺 is smooth and 𝑘∆𝑤 􀀀−  𝑤𝑡  =

− 􀀀𝑔𝑤 <  0 at points in 𝐷 ∩   𝛺 × ℝ  that 𝜕𝑤

𝜕𝜈
(𝑡1, 𝑥1) <

0which contradicts (3.4) this contradiction shows that 
𝑔 𝑡1, 𝑥1 ≤ 0 if there exists a point (𝑡2, 𝑥2) in 𝛺 × ℝ such 
that 𝑤 𝑡2,𝑥2 = 𝑤𝑚  then it follows from (3.3) and the same 
reasoning as used above that 𝑔(𝑡2, 𝑥2) ≥ 0 If there exists 
(𝑡2, 𝑥2) in 𝜕𝛺 × 𝛺 such that 𝑤(𝑡, 𝑥)  <  𝑤(𝑡2, 𝑥2) for all 
(𝑡, 𝑥) in 𝛺 × ℝ and if it were the case that 𝑔(𝑡2, 𝑥2)  <  0 we 
would have 𝑘∆𝑤 􀀀−  𝑤𝑡  >  0 for points in 𝛺 × ℝ near 
𝑡2, 𝑥2 in this case the maximum principle would imply that 
𝜕𝑤

𝜕𝜈
 𝑡2, 𝑥2 > 0 contradicting (3.4) show that 𝑔(𝑡2, 𝑥2)  ≥  0 

 

Theorem 3.1 

 

 𝐴𝑠𝑠𝑢𝑚𝑒 𝑡𝑕𝑎𝑡 𝑏𝑙 >
𝑒𝑚 𝑐𝑚

𝑓𝑙
 (3.7) 

𝐴𝑛𝑑 𝜕𝛺 𝑖𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝐶2. 𝐼𝑓 𝑢, 𝑣 ∈ 𝐶2.1 𝛺 × ℝ ∩

𝐶1.0  𝛺 × ℝ , (𝑢, 𝑣) 𝑖𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 (3.1) − (3.2) on 
( 𝛺 × ℝ ), 𝑢(𝑡, 𝑥) and 
𝑣(𝑡, 𝑥) 𝑎𝑟𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑎𝑟𝑒 𝑇 −
𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑖𝑛 𝑡, 𝑢(𝑡, 𝑥)  >  0 𝑎𝑛𝑑 𝑣(𝑡, 𝑥)  >  0 𝑓𝑜𝑟 (𝑥, 𝑡) ∈
( 𝛺 × ℝ ), 𝑢 and 𝑣 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑡𝑕𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 

 𝜕𝑢

𝜕𝜈
 
𝜕𝛺× 0,𝑇 

=   
𝜕𝑣

𝜕𝜈
 
𝜕𝛺× 0,𝑇 

 = 0                      (3.8) 

𝑇𝑕𝑒𝑛 𝑓𝑜𝑟  𝑥, 𝑡 ∈   𝛺 × ℝ  : 
 

𝑎𝑙𝑓𝑚 + 𝑑𝑙𝑐𝑙
𝑏𝑚𝑓𝑚 − 𝑐𝑙𝑒𝑙

≤ 𝑢(𝑡, 𝑥) ≤
𝑓𝑙𝑎𝑚 + 𝑐𝑚𝑑𝑚

𝑏𝑙𝑓𝑙 − 𝑒𝑚𝑐𝑚
,              (3.9) 

 
𝑎𝑙𝑒𝑙 + 𝑏𝑚𝑑𝑙

𝑏𝑚𝑓𝑚 − 𝑐𝑙𝑒𝑙
≤ 𝑣(𝑡, 𝑥) ≤

𝑒𝑚𝑎𝑚 + 𝑏𝑙𝑑𝑚

𝑏𝑙𝑓𝑙 − 𝑒𝑚𝑐𝑚
,           (3.10) 

 
Proof: Suppose that 𝑢 and 𝑣 are as in the statement of the 
theorem from 𝑙𝑒𝑚𝑚𝑎 (2) and the equation (3.1) we suppose 
the existence of  𝑡1, 𝑥1  𝑖𝑛   𝛺 × ℝ  such that 

𝑢 𝑡1, 𝑥1 = 𝑢𝑙 = 𝑢(𝑡1, 𝑥1)
𝑡∈ℝ,𝑥∈Ω

𝑚𝑖𝑛  
And  
𝑎 𝑡1, 𝑥1 􀀀−  𝑏(𝑡1, 𝑥1)𝑢(𝑡1, 𝑥1)  +  𝑐(𝑡1, 𝑥1)𝑣(𝑡1, 𝑥1)  ≤  0 

𝑎𝑙 − 𝑏𝑚𝑢𝑙 + 𝑐𝑙𝑣𝑙 ≤ 0 (3.11) 
similarly from 𝑙𝑒𝑚𝑚𝑎 (2) and equation (3.2) we suppose the 
existence of  𝑡2, 𝑥2  𝑖𝑛   𝛺 × ℝ  that 

𝑣 𝑡2, 𝑥2 = 𝑣𝑙 = 𝑢(𝑡2, 𝑥2)
𝑡∈ℝ,𝑥∈Ω

𝑚𝑖𝑛  
And  

𝑑 𝑡2, 𝑥2 􀀀+ 𝑒 𝑡2, 𝑥2 𝑢 𝑡2, 𝑥2 − 𝑓(𝑡2, 𝑥2)𝑣(𝑡2, 𝑥2)  ≤  0 
𝑑𝑙 + 𝑒𝑙𝑢𝑙 −  𝑓𝑚𝑣𝑙 ≤ 0 (3.12) 

we multiply (3.11) by 𝑒𝑙  and (3.12) by 𝑏𝑚  then we obtain 
𝑎𝑙𝑒𝑙 − 𝑏𝑚𝑒𝑙𝑢𝑙 + 𝑐𝑙𝑒𝑙𝑣𝑙 ≤ 0 

𝑑𝑙𝑏𝑚 + 𝑏𝑚𝑒𝑙𝑢𝑙 − 𝑏𝑚𝑓𝑚𝑣𝑙 ≤ 0 
Then  

𝑎𝑙𝑒𝑙 + 𝑑𝑙𝑏𝑚 + (𝑐𝑙𝑒𝑙 − 𝑏𝑚𝑓𝑚)𝑣𝑙 ≤ 0 

 𝑏𝑚𝑓𝑚 − 𝑐𝑙𝑒𝑙 𝑣𝑙 ≥ 𝑎𝑙𝑒𝑙 + 𝑑𝑙𝑏𝑚  

𝑣𝑙 ≥
𝑒𝑙𝑎𝑙 + 𝑏𝑚𝑑𝑙

𝑏𝑚𝑓𝑚 − 𝑒𝑙𝑐𝑙
 (3.13) 

 
and multiply (3.11) by 𝑓𝑚  and (3.12) by 𝑐𝑙  then we obtain 

𝑎𝑙𝑓𝑚 − 𝑏𝑚𝑓𝑚𝑢𝑙 + 𝑐𝑙𝑓𝑚𝑣𝑙 ≤ 0 
𝑑𝑙𝑐𝑙 + 𝑐𝑙𝑒𝑙𝑢𝑙 − 𝑐𝑙𝑓𝑚𝑣𝑙 ≤ 0 

Then  
𝑎𝑙𝑓𝑚 + 𝑑𝑙𝑐𝑙 + (𝑐𝑙𝑒𝑙 − 𝑏𝑚𝑓𝑚)𝑢𝑙 ≤ 0 

 𝑏𝑚𝑓𝑚 − 𝑐𝑙𝑒𝑙 𝑢𝑙 ≥ 𝑎𝑙𝑓𝑚 + 𝑑𝑙𝑐𝑙  

𝑢𝑙 ≥
𝑓𝑚𝑎𝑙 + 𝑑𝑙𝑐𝑙
𝑏𝑚𝑓𝑚 − 𝑒𝑙𝑐𝑙

 (3.14) 

 
from 𝑙𝑒𝑚𝑚𝑎 (2) and the equation (3.1)we suppose the 
existence of  𝑡3, 𝑥3  𝑖𝑛   𝛺 × ℝ such that  
 
 

𝑢(𝑡3, 𝑥3) = 𝑢𝑚 = 𝑢(𝑡, 𝑥)𝑡∈ℝ,𝑥∈Ω
𝑚𝑎𝑥  

and 𝑎(𝑡3, 𝑥3) − 𝑏(𝑡3, 𝑥3)𝑢𝑚 + 𝑐(𝑡3, 𝑥3)𝑣(𝑡3, 𝑥3) ≥ 0 
 

𝑎𝑚 − 𝑏𝑙𝑢𝑚 + 𝑐𝑚𝑣𝑚 ≥ 0 (3.15) 
 
similarly from 𝑙𝑒𝑚𝑚𝑎 (2) and equation (3.2) we suppose 
the existence of (𝑡4, 𝑥4) 𝑖𝑛   𝛺 × ℝ  such that 

𝑣(𝑡4, 𝑥4) = 𝑣𝑚 = 𝑣(𝑡, 𝑥)𝑡∈ℝ,𝑥∈Ω
𝑚𝑎𝑥  

 
and 𝑑(𝑡4, 𝑥4) + 𝑒(𝑡4, 𝑥4)𝑢(𝑡4, 𝑥4) − 𝑓(𝑡4, 𝑥4)𝑣(𝑡4, 𝑥4) ≥ 0 
 

𝑑𝑚𝑒𝑚𝑢𝑚 − 𝑓𝑙𝑣𝑚 ≥ 0 (3.16) 
 
we multiply (3.15) by 𝑒𝑚  and (3.16) by 𝑏𝑙  then we obtain 
 

𝑒𝑚𝑎𝑚 − 𝑒𝑚𝑏𝑙𝑢𝑚 + 𝑒𝑚𝑐𝑚𝑣𝑚 ≥ 0 
𝑏𝑙𝑑𝑚 + 𝑏𝑙𝑒𝑚𝑢𝑚 − 𝑏𝑙𝑓𝑙𝑣𝑚 ≥ 0 

then  
 

𝑒𝑚𝑎𝑚 + 𝑑𝑚𝑏𝑙 + (𝑒𝑚𝑐𝑚 − 𝑏𝑙𝑓𝑙)𝑣𝑚 ≥ 0 
 

𝑒𝑚𝑎𝑚 + 𝑑𝑚𝑏𝑙 ≥ (𝑏𝑙𝑓𝑙−𝑒𝑚𝑐𝑚)𝑣𝑚  
 

𝑒𝑚𝑎𝑚 + 𝑑𝑚𝑏𝑙

𝑏𝑙𝑓𝑙 − 𝑒𝑚𝑐𝑚
≥ 𝑣𝑚  (3.17) 

 
we multiply (3.15) by 𝑓𝑙and (3.16) by 𝑐𝑚  then we obtain 
 

𝑓𝑙𝑎𝑚 − 𝑏𝑙𝑓𝑙𝑢𝑚 + 𝑓𝑙𝑐𝑚𝑣𝑚 ≥ 0 
 

𝑐𝑚𝑑𝑚 + 𝑐𝑚𝑒𝑚𝑢𝑚 − 𝑓𝑙𝑐𝑚𝑣𝑚 ≥ 0 
and then  
 

𝑓𝑙𝑎𝑚 + 𝑐𝑚𝑑𝑚 +  𝑐𝑚𝑒𝑚 − 𝑏𝑙𝑓𝑙 𝑢𝑚 ≥ 0 
 

𝑓𝑙𝑎𝑚 + 𝑐𝑚𝑑𝑚 ≥ (𝑏𝑙𝑓𝑙 − 𝑐𝑚𝑒𝑚)𝑢𝑚  
 

𝑓𝑙𝑎𝑚 + 𝑐𝑚𝑑𝑚

𝑏𝑙𝑓𝑙 − 𝑐𝑚𝑒𝑚
≥ 𝑢𝑚  (3.18) 

Since 𝑢𝑙 ≤ 𝑢(𝑡, 𝑥) ≤ 𝑢𝑚  and 𝑣𝑙 ≤ 𝑣(𝑡, 𝑥) ≤ 𝑣𝑚  from 
inequalities (3.13), (3.14), (3.17) 𝑎𝑛𝑑  3.18  we obtain: 
  

𝑓𝑚𝑎𝑙 + 𝑐𝑙𝑑𝑙

𝑏𝑚𝑓𝑚 − 𝑐𝑙𝑒𝑙
≤ 𝑢(𝑡, 𝑥) ≤

𝑓𝑙𝑎𝑚 + 𝑐𝑚𝑑𝑚

𝑏𝑙𝑓𝑙 − 𝑐𝑚𝑒𝑚
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𝑒𝑙𝑎𝑙 + 𝑏𝑚𝑑𝑙

𝑏𝑚𝑓𝑚 − 𝑐𝑙𝑒𝑙
≤ 𝑣(𝑡, 𝑥) ≤

𝑒𝑚𝑎𝑚 + 𝑏𝑙𝑑𝑚

𝑏𝑙𝑓𝑙 − 𝑐𝑚𝑒𝑚
 

 
this proves theorem (3.1) 
 
4. Asymptotic Behavior of Periodic System 
 

Theorem 4.1 

 

If 𝑏𝑙 >
𝑐𝑚 𝑒𝑚

𝑓𝑙
 (4.1) 

Then there exist pairs (𝑢, 𝑣 ) and (𝑢 ∗, 𝑣 ∗) with components in 
𝐶2+∞ ,1+∞(𝛺 × ℝ) such that the components of both pairs are 
strictly positive and T-periodic in 𝑡 each pair is a solution of 
(1.1)and satisfies the boundary conditions (1.2). 
Moreover 

𝑢  𝑡, 𝑥 ≤ 𝑢 ∗ 𝑡, 𝑥 ; 𝑣  𝑡, 𝑥 ≤ 𝑣 ∗ 𝑡, 𝑥  𝑜𝑛 𝛺 × ℝ  
 and if (𝑢, 𝑣) is a solution of the initial boundary value 
problem given by  1.1 − 􀀀 (1.2) with 𝑢(0, 𝑥)  =
 Φ(𝑥);  𝑣(0, 𝑥)  =  Ψ(𝑥) such that Φ, Ψ ∈ 𝐶1+∞(𝛺) 

Φ(𝑥)  ≥ 0;  Ψ(𝑥)  ≥ 0;  Φ(𝑥)  ≢  0;  Ψ(𝑥)  ≢  0 
and: 

 𝜕Φ

𝜕𝜈
 
𝜕Ω

 =  𝜕Ψ

𝜕𝜈
 
𝜕Ω

=  0 

then for any 𝜀 >  0 : 
𝑢  𝑡, 𝑥 􀀀− 𝜀 <  𝑢(𝑡, 𝑥)  <  𝑢 ∗  +  𝜀 
𝑣  𝑡, 𝑥 􀀀− 𝜀 <  𝑣(𝑡, 𝑥)  <  𝑣 ∗  +  𝜀 

for 𝑥 in 𝛺 and all sufficiently large 𝑡. If 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 and 𝑓 are 
function of 𝑡 alone. 
 
Then 𝑢 ≡ 𝑢 ∗;  𝑣 ≡ 𝑣 ∗ and 𝑢 , 𝑣  are functions of 𝑡 alone. 
 

Proof: Choose constant 𝑘1, 𝑘2 such that 
𝑎𝑚 − 𝑏𝑙𝑘1 + 𝑐𝑚𝑘2 < 0, (4.2) 

 
𝑑𝑚 + 𝑒𝑚𝑘1 − 𝑓𝑙𝑘2 < 0, (4.3) 

 
using (4.1), 𝑘1 and 𝑘2 exist, then choose 0 <  𝛿1 <  𝑘1 , 0 <
 𝛿2  <  𝑘2 such that 

𝑎𝑙 − 𝑏𝑚𝛿1 + 𝑐𝑙𝛿2 > 0,  4.4  
𝑑𝑙 + 𝑒𝑙𝛿1 − 𝑓𝑚𝛿2 > 0, (4.4) 

 
in fact if 𝛿1 <

𝑎𝑙

𝑏𝑚
;  𝛿2  <  

𝑑𝑙

𝑓𝑚
;  𝛿1, 𝛿2 are suitable. It is obvious 

that (𝑘1, 𝑘2) and (𝛿1, 𝛿2) are periodic upper and lower 
solutions. There exist two pairs periodic solutions of original 
periodic boundary value problem 
 1.2 􀀀−  (2.1)  𝑢 , 𝑣  , (𝑢 ∗, 𝑣 ∗) and: 

𝛿1 ≤ 𝑢 ≤ 𝑢 ∗ ≤ 𝑘1, (4.6) 
𝛿2 ≤ 𝑣 ≤ 𝑣 ∗ ≤ 𝑘2, (4.7) 

we consider following initial boundary value problem 
 1.2 􀀀−  (2.1) with: 

𝑢 𝑥, 𝑡0 =  𝛿1;  𝑣 𝑥, 𝑡0 = 𝛿2 , (4.8) 
𝑢 𝑥, 𝑡0 =  𝑘1;  𝑣 𝑥, 𝑡0 = 𝑘2 , (4.9) 

 
Denote: (𝑢1, 𝑣1) and (𝑢2, 𝑣2) are the corresponding solutions 
of  1.2 􀀀− (2.1) , (4.8) and  1.2 􀀀− (2.1) , (4.9) then 
lim𝑡→∞(𝑢1 , 𝑣1) =  𝑢 , 𝑣   and lim𝑡→∞(𝑢2, 𝑣2) = (𝑢 ∗, 𝑣 ∗). 
Finally we consider initial boundary value problem for 
𝑢0(𝑥) ≥  0; 𝑣0(𝑥)  ≥  0 and 𝑢0(𝑥) ≢  0;  𝑣0(𝑥)  ≢  0 by 
strong maximum principle 
 

𝑢0(𝑡0  +  1, 𝑥)  >  0, 𝑣0(𝑡0  +  1, 𝑥)  >  0 (4.10) 
 

we choose (𝛿1, 𝛿2) and (𝑘1, 𝑘2) such that 
𝛿1 ≤ 𝑢0 𝑡0  +  1, 𝑥 ≤ 𝑘1;  𝛿2 ≤ 𝑣0 𝑡0  +  1, 𝑥 ≤ 𝑘2 (4.11) 
 
we obtain following comparison relation: 
𝑢1 𝑡 − 1, 𝑥 ≤ 𝑢 𝑡, 𝑥 ≤ 𝑢2 𝑡 − 1, 𝑥 , 𝑣1 𝑡 − 1, 𝑥 

≤ 𝑣 𝑡, 𝑥 ≤ 𝑣2 𝑡 − 1, 𝑥 , 𝑡
≥ 𝑡0 + 1 (4.12) 

 
Therefore we have 
𝑢  𝑡, 𝑥 ≤ lim

𝑡→∞
inf 𝑢 𝑡, 𝑥 , lim

𝑡→∞
sup 𝑢 𝑡, 𝑥 ≤𝑢 ∗ 𝑡, 𝑥 , (4.13) 

and  
 
𝑣  𝑡, 𝑥 ≤ lim

𝑡→∞
inf 𝑣 𝑡, 𝑥 , lim

𝑡→∞
sup 𝑣 𝑡, 𝑥 ≤𝑣 ∗ 𝑡, 𝑥 . (4.14) 

 
For uniqueness: 

 [𝑎 𝑡 − 𝑏 𝑡 𝑢  𝑡 + 𝑐 𝑡 𝑣 (𝑡)
𝑇

0

]𝑑𝑡

=  [𝑎 𝑡 − 𝑏 𝑡 𝑢 ∗ 𝑡 + 𝑐 𝑡 𝑣 ∗(𝑡)
𝑇

0

]𝑑𝑡. 

By means of  𝑢 𝑡

𝑢 
𝑑𝑡 =  

𝑢 ∗
𝑡

𝑢 ∗ 𝑑𝑡
𝑇

0

𝑇

0
 

 𝑏 𝑡 (𝑢 ∗ 𝑡 − 𝑢 (𝑡)
𝑇

0

)𝑑𝑡 =  𝑐 𝑡 (𝑣 ∗ 𝑡 − 𝑣 (𝑡)
𝑇

0

)𝑑𝑡

=  0 (4.15) 
If: (𝑢 ∗ 𝑡 ≥ 𝑢 (𝑡) and (𝑢 ∗ 𝑡 ≢  𝑢 (𝑡) we have 
 

𝑏𝑙

𝑐𝑚
≤

  𝑣 ∗ 𝑡 − 𝑣  𝑡  𝑑𝑡
𝑇

0

 (𝑢 ∗ 𝑡 − 𝑢 (𝑡)
𝑇

0
)𝑑𝑡

 (4.16) 

 
similarly we have: 
 

𝑒𝑚

𝑓𝑙
≤

  𝑣 ∗ 𝑡 − 𝑣  𝑡  𝑑𝑡
𝑇

0

 (𝑢 ∗ 𝑡 − 𝑢 (𝑡)
𝑇

0
)𝑑𝑡

 (4.17) 

 
it follows from (4.16) − (4.17) 
 

𝑏𝑙

𝑐𝑚
≤

𝑒𝑚

𝑓𝑙
 (4.18) 

it is contradiction with (4.1), therefore the uniqueness holds. 
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