
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Hibernation of Private Processes
Rakhi Bhardwaj1, Delwin John2, Nikhil Shinde3, Mehak Daftari4, Vrushali Deshpande5

1Assistant Professor, Department of Computer Engineering, TCOER, SPPU, India

2, 3, 4, 5 Student, Department of Computer Engineering, TCOER, SPPU, India

Abstract: Sometimes when we are not going to be using our computers for few hours, we should put the computer to sleep, also
known as the standby mode. If we are not going to be using it for a few days, then it is best to power it off. However, there are few
Operating Systems that offer the “hibernate” mode. This hibernate mode crashes after implementation of incognito mode as a service
of the Linux OS. In this paper, we try to overcome this restriction that is imposed on the user.

Keywords: private processes, hibernation, partial hibernation, complete hibernation, swap space

1. Introduction

Hibernation is the process of powering down a computer and
continuing to keep a hold on its state. The contents or data is
saved on the RAM of computer during hibernation. When
exiting the hibernation state, the state of computer gets back
to its previous session before getting into hibernation. Thus
prevents loss of data with a very low risk. In situations where
our data might get lost, due to sudden powering off of
machine, hibernation saves the system’s state, to resume
when it is turned on again. Power consumption is turned off
completely in hibernate mode.

In our previous paper we wrote about whitelisting and
blacklisting of private process. In that we mentioned about
spawning applications in a private mode, ensuring safety and
privacy of data. Due to this, the hibernation mode of the
Linux OS crashes completely. In this paper, we mention ways
to overcome that side effect. For hibernation mode to work in
our project we need to create different method for
hibernating the system such that, we can enable the hibernate
mode without causing problems to swap partition and
securely killing the private process without leaving any traces
on our hard disk. It should securely delete all our history, log
files, data, running applications, processes. No one should be
able to recover the data when the system is resumed again.
Also, all other public processes, data, documents, running
applications will be saved on hard disk, which can be
resumed when system is turned on again.

2. Current System

In computing, nowadays software suspends is known as
hibernation in Linux operating system. There are basically
three methods to suspend -
Suspend to RAM
Suspend to disk
Hybrid

In suspend to RAM, the machine status can be reinstated by
cutting power off of most machine except RAM, which can
prove benefit for power saving , can be used laptop as run on
batteries and switch to that mode spontaneously. In suspend
to disk, it stores the machine state into swap space and fully
powered down the machine. The state of the machine is

resumed as soon as the machine is powered on. And lastly, in
hybrid, mode, it stores the machine’s state onto swap space
and doesn’t power down complete ly. As substitute it calls
suspend to RAM. So that, if battery is not drained or
consumed the system can get back to its previous session
from RAM. And if the battery is drained, system can be
rolled back from the disk. System rollback from disk is
considered to be very slow process as compared to RAM.
The advantage it provides is that machine state is not lost.

2.1 Hibernation

To use hibernation, one needs to create a file or swap
partition. This is unique type of partition where data is saved.
With the help of “resume” parameter we can point kernel to
swap/file. It is configure by boot loader. One also needs to
add resume hook to the config file of intramfs generator
mkinitcpio. It notifies the kernel to try rolling back from the
mentioned swap which was in userspace.

2.2 Swap Partition / File Size

If you have tiny swap partition than RAM, you still can
execute hibernation efficiently. The size of the image
generated by suspend to disk mechanism is controlled by the
command /sys/power/imagesize. For the image size non
negative integer is used as upper limit. The size of the image
doesn’t exceed with the help of suspend to disk method. Even
if there are difficulties during suspend it will still execute
with even a smallest image. The size of the suspended image
will be really small even when “0” is written to the file. One
can put minimum value of /sys/power/image_size so that the
size of suspend image will be small and also maximize the
value for speeding the hibernation process. We can use swap
file over swap partition that requires an add-on kernel
parameter i.e. resume_offset=swap_file_offset. When we run
the filefrag -v swap file command the value of
swap_file_offset is taken as an output. Then that output is put
into a table format and that value is found in the
physical_offset column.

3. Proposed System

The aim of this project is to modify the kernel such that the
storage writes are non-recoverable when application is

Paper ID: NOV162490 107

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

executed in incognito mode. Due to modification of the
kernel to allow private execution of an application, the
hibernation option of the system is not functional. Thus the
aim of our project is to enable the hibernation option of
Linux OS. The user after spawning an application in private
mode should be able to hibernate his/her system if he/she
wishes to do so. Since, during hibernation the data is copied
to the swap memory, the private data could get copied to the
memory and anybody who resumes the machine later on can
access the data. Hence, this should be implemented without
affecting the basic idea of protecting the user’s data. We
solve this problem by pausing each private process and
moving them completely into swap memory. For this, you
walk through each process running on the system and
checked is it's a private process. If it's a private process, you
fetched the memory map of the process and convert each
address into page structure. Then you swap it into memory.
We hibernate using the pm-hibernate in VMware Player.
There are two techniques to enable hibernation in a private
mode –
 Partial hibernation
 Complete hibernation

Partial hibernation, as the name suggests, is when a system
goes into locking down the state of the system. But only the
public processes are saved. For this, the private processes do
not work and need to be killed separately. In partial
hibernation, we search for all the private processes first and
then look for all their children. We then find the process ids
(pid) of these children and maintain them in a list. Once all
the pids have been found, we then sort this list in descending
order. Then we kill all these processes starting from the top.
After killing the processes we run pm-hibernate on the virtual
machine. Partial hibernation is more secure and safe in
protecting the private session as all the processes are killed
down. The only downfall is that the private session is
completely lost after hibernation.

Complete hibernation, as the name suggests, is when all data,
whether of public process or private, gets copied to the swap
memory and can be resumed when powered on again. For
complete hibernation the kernel maintains a linked list of all
processes running in the system. The linked list has init
process as the head. We walk through the entire linked list
and check every process’s flag. If it is a private process then
we walk through the process’s virtual memory area to
determine the virtual address that the process owns. We then
plan on converting the virtual address to page structures. The
pages are then paged out. Since they are private processes,
the paging out would save the pages in the process’s private
container. This is written as a kernel module that is loaded
and run just before hibernate. It then puts the computer
through the normal hibernation process. Complete
hibernation is better at saving the state of the system after
hibernation as all the private processes are stored in a private
container. The downfall of this method is the fact that it does
not ensure security of one’s data, as anybody can power on
the system and the last session will be restored. Thus making
our data vulnerable towards theft.

Figure 1: Hibernating private processes

4. Mathematical Model

S = {s, e, i, o, f, DD, N DD, success, failure}
• s: Start State = system waiting to go in hibernation
• e : End State = system ready for normal hibernation
• i : Input = no required input
• o : Output = private programs terminated
• f : Functions = {f1 , f2 , f3 , f4 }
• f1 : search_private_process_parents()
• f2 : generate_list_of_children()
• f3 : sort_pids()
• f4 : kill_processes()
• DD: Deterministic Data
• N DD: Non Deterministic Data
• Success: successful termination of all private processes
• f failure: failure in terminating all private processes

The time complexity and space complexity are
dependent on the number of private processes that are
currently running on the system (m)

The time and space required to generate list of all private
process parents is dependent on the number of private
processes running
T1 = O(m)
Space complexity = O(m)

The time and space required to generate list of all children of
private processes is dependent on the number of private
processes running
T2 = O(m)
Space complexity = O(m)

The time for sorting the list of pids is proportional to the
square of the entire list of pids. Since the number of pids is
directly proportional to the number of private processes

Paper ID: NOV162490 108

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

T3 = O(m2)
Space Complexity = O(m)

The time and space required to kill all private processes is
dependent on the number of pids which is directly dependent
on the number of private processes running
T4 = O(m)
Space Complexity = O(m)
T(n) = O(m + m + m2 + m) = O(m2)
Space complexity = O(m)

5. Expected Result

On the execution of the hibernate mode for private processes
the system will be powered off with its state being saved
securely and all the private processes will be safely deleted in
case of partial hibernation

6. Conclusion

Thus with the help of partial and complete hibernation we
can provide users with the option of hibernating the system
while using incognito mode. This allows the users with ease
to use the system whenever they want, without worrying
about the safety of their data

References

[1] http://www.freesoftwaremagazine.com/articles/hibernate_
linux (General Internet site)

[2] http://wiki.archlinux.org/idex.php/Power_management/Su
spend_and_hibernate

Paper ID: NOV162490 109

