
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 4, April 2016 
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Clustering Algorithm Based on Local Random 
Walkwith Distance Measure 

Gang Dai, Baomin Xu

School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044 China 

Abstract: Cluster analysis is widely used in the field of data mining. However, the K-means algorithm which is widely used has a 
strong sensitivity for the initial values. Namely, the parameters such as clustering coefficient and centroid should be determined when 
the cluster is initialized. In the paper, we propose a K-means algorithm that based on link information and regard KL divergence 
distance as the objective function. This method not only introduces the way of the local random walk with the shortest path, but also 
uses the link information to convert the distance space. In other word, we utilize the local random walk with the shortest path to convert 
the distance between data into the transition probability of the random walk. Then, we use the random walk realize the conversion of the 
distance space. The core concept is the distance of converting node pair that refers to the node to the whole network node distance. The 
experimental results show that the proposed algorithm can improve the cluster result efficiently. 
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1. Introduction 

The goal of clustering is to find the natural classification of 
the data set. Finding some kind of way to partition the data 
set makes the similarity of data in the same cluster higher 
than the different one. Because clustering is an unsupervised 
method, it can find pattern from data set. This makes 
clustering be widely used in many fields, such as 
information retrieval, Biocomputing, web analysis and so on. 
Clustering has been extensively used in the fields of pattern 
recognition, statistics and machine learning. Typically, the 
most common algorithms are hierarchical clustering 
algorithm [1-3] and K-means algorithm [4]. Meanwhile, the 
clustering algorithm based on probability model [5, 6] is 
becoming more and more widely applied. 

In the data set which has link relations, there are many 
definitions for the cluster element object. We can not only 
cluster for single entity, but also for the set of the entity, 
even for the subgraph of original data set. The key to this 
kind of problem is how to define the similarity of two 
entities or two subgraphs via potential network structure. 
There is not too much research work for the clustering using 
subgraph, and the reference [7] offer the earlier research 
work. 

The clustering based on link isalso widelyused, such as 
finding hub nodes via web set clustering to recognize the 
mirror site, finding the authors who always publish together 
via publishing field clustering or finding a new research 
field via the cluster which has the same invention and 
discovery. For example, clustering in the epidemic field can 
help to find the diseases which have the same contact people 
or the same propagation mode[8]. 

The concept of K-means appeared in 1967 [9]. However, its 
idea can be traced back to 1957[10]. K-means is an easy and 
fast classics clustering algorithm and it is fit to combine 
with other algorithm to resolve the practical problem. In the 
scientific research, K-means can be used to develop new 

algorithm and reduce complexity, therefore it is beneficial 
for researcher to focus on the effect of the new algorithm. 
This is also the reason of using K-means algorithm while 
using the random walk to cluster analysis. The major defect 
of K-means is the strong sensitivity to the initial value. So 
we must determine the clustering coefficient and centroid 
when initiate the cluster. Now, there are many researchers 
work at improving the defect of K-means, such as clustering 
analysis based on random walk [16]. 

This paper proposes a new K-means algorithm using 
shortest path and random walk. The new K-means 
clustering algorithm uses a different way from other 
algorithms based on K-means in using the link information 
of data points. This method converts the distance between 
data points into the transition probability of random walk, 
then, proceeds walking. In this way, it can realize the 
conversion of the distance space. Its essence is using the 
initial distance of data points to the other points on the 
whole network to compute the final distance. 

2. Preliminaries 

(1) The Model of Random walks based on shortest path 
Let G(V,E) be an acyclic undirected graph. Vis the set of 
vertices and E is the set of edges. In LRW[11], walker runs 
to an arbitrarily neighbor node with probability 1 K . kis the 
degree of the node. So we can get the adjacent matrix which 
is the one-step transition probability matrixP. P(i,j) is the 
probability of a random walker starting at node i  and 
moving to node j. If node I is directly connected to node j,
the value of P(i,j) is 1 𝑘𝑖 , otherwise, the value is 0. We 
also give a vector πi    t  which is the probability of a
random walker starting in node i to reach node j after t
steps. The initial transfer vector πi    0 means that walker’s 
initial probability is 1 at node i. The probability of transfer 
node is 
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LRW defines a similarity metric 

|E|is the number of edge. We assume the shortest path of 
nodes is the steps of random walks. So it is not necessary to 
use uniform optimal steps for the whole network. Then we 
assume fij

(n)=Pr(Ti=n)to be the probability that the walker 

arriving at node j from node i for the first time after n steps.
 fij

(n)∞
n=1 is the final probability of a random walker starting 

from node i to node j. dij is the shortest path between 
node i and node j. Obviously, when n<dij, the value of

( )n
ijf  is 0. So the first-time-passage probabilityof nodes is 

fij
dij. Using the fij

dij approximation  fij
(n)∞

n=1 , we can get  

Equation (3) represents the model which is called the local 
random walks based on the shortest path (LDRW) [12].
Using the shortest path in random walks is the most 
characteristic of this algorithm. At the same time, we 
introduce the concept of the first-time-passage probability 
based on the shortest path. 

(2) KL divergence 
Clustering is a group of points in Euclidean space Rn. The 
similarity of points within cluster is higher than the points 
outside cluster. In probability theory and information theory, 
the Kullback–Leibler divergence (KL divergence) is a 
non-symmetric measure of the difference between two 
probability distributions P and Q. P  represents the 
distribution of observation data, and Q  represents a 
theoretical model or a similarity distribution. The KL 
distance of the distribution Q from distributionPrepresents 
the extra needed information when the distribution Q
replaces the distribution P. Although KL divergence usually 
regarded as a kind of distance, it is not a real distance, 
because it is not symmetrical. The KL distance of the
distribution Q from distributionPis defined to be[13], 

( )( || ) ( )ln( )
( )KL

i

P iD P Q P i
Q i

 （4）

3. Clustering Algorithm based on LDRW 

(1) Construction of Stationary Markov chain  
Using the idea of LDRW algorithm, we construct a 
complete graph G=(E,V) using the data set 1X={x }N

n n . In

the Markov chain, the probability from point 𝑥𝑖 transferring 
to point 𝑥𝑗  at steptis ( ( 1)| ( ))j i ijP x t x t P  . The transition 

distribution of point𝑥𝑖after steptis 1 2( ) [ ( ), ( )..., ( )]i i i iNP t p t p t p t . 

Definition 1: The subset C of the state space E is called 

closed set. Forarbitrary i∈C and j∉C，we can get Pij=0.

Obviously, the whole state space is a closed set. The closed 
set C is irreducible, if the state of the closed set C is 
interconnected.

Definition 2: In the homogeneous Markov chain, for 
arbitrary state i∈E has a step set of random walks 

( ){ : 0, 1}n
iin p n  , and the period of the state i is the 

greatest common divisor of this set. The state i is aperiodic 
if the greatest common divisor is 1. Because we consider 
about the similarity,the similarity is highest when the data 
point moves to itself. The walker must return to itself with a 
probability, so the steps set of random walks contains value 
1. This can prove that the data point is aperiodic. 

Definition 3: First-time-passage probability: The probability
of the original state i  reaching the state j after a state 
sequence for the first time is, 

( )
0

0

( | )

( , , 1 1| )

n
ij ij

n k

f P T n X i

P X j X j k n X i

  

      
. 

While the probability of the state i finally reaching the 
state j after finite steps is, 

( )

1

n
ij ij

n
f f





 . 

The Tij is the first time passage, namely the time or steps 

from one state to another for the first time in Markov chain. 
We suppose the original state is i and the final state is j,
then the first time passage is

0min{ : , , 1}ij nT n X i X j n    . 

Definition 4: First-time-passage probability based on the 
shortest path: In the unweight graph, we determine the 
one-step transition probability matrix of the random walks
according to the situation of link. Ifpabis nonzero then nodea
andnodeb are linked. Supposedij is the shortest path between 
state i and state j, then the fij

(n)=0 when n<dij. So the final 

arrival probability of two nodes is, 

( ) ( )

1 ij

n n
ij ij ij

n n l
f f f

 

 

   . 

Definition 5: Suppose the probability of state i returning to 

itself after step nis ( )
1

n
ii iin

f f


 . The state i is recurrent 

if fii=1. Otherwise, the state i is non recurrent. In the state 

of recurrence, the average steps of walker returning to state 

i is represented by mathematical expectation ( )

1

n
i ii

n
nf





  .

It is called positive recurrent if the state is recurrent and μi

is a finite value. Otherwise, it is called null recurrent. The 
ergodic state is a positive recurrent and aperiodic state. 
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We can get the following two conclusions by the above 
definition.
1) The irreducible and finite Markov chain only has 

positive recurrent state. 
2) The irreducible and aperiodic Markov chain is positive 

recurrent if and only if it has a stationary distribution. 

Because the data points in the set of experimental data is 
finite, it forms a finite state set E . According to the 
Equation (4), if we regard all data points as a state space E,
obviously, the state space E is a closed set and a complete 
graph, the Markov chain formed by data set is irreducible. 
According to the conclusion (1), the Markov chain only has 
positive recurrent state. And according to the conclusion (2), 
the Markov process will enter into a stable state 

( ( ) | ( 1))KL i iD P t P t   finally, namely the transition 
distribution 𝑃𝑖(𝑡) is convergent. 

In this paper, the transition probability is a form of 
representation of similarity and the random walks is 
equivalently a map of metric space. Before random walking, 
all the data points and the similarity of points are in the 
same metric space. After random walking, the similarity 
distance between pointxi and pointxj will be changed. This 
change considers not only the original similarity of two 
points but also the similarity distance from other points to 
the pointxj, and then compute the new similarity according 
to all these similarities. Because the time of each point into 
the steady state is different, we can use the transfer
distribution of each point into the steady state be the final 
transfer distribution. 

First, we compute the distribution list Pi 1 ,Pi 2 ,⋯ of the 
point xiaccording to the one-step transfer probability. Then 
using the KL distance to describe the changing process of 
distribution list when the point xi in the process of random 
walks. The ratio of distribution distance, before and after 
one-step random walks, of the point xi
isDKL Pi t |Pi t+1  . We set a threshold value ε, when 
DKL Pi t |Pi t+1  <ε, the point xi comes to steady state. 
So we can get the final distribution Pi

ti of each point. 

(2) Clustering Analysis based on KL[15,17] 

We assume that we can get K cluster  Qk k=1

K  after 

clustering data set X. The parameters Qk is a centroid of a 

cluster. If there is a data point Pi
ti∈Qk, the amount in

formation loss of it
iP can be represented as ( || )it

i kD P Q . 

The objective function is the total loss of information when 
we use cluster centroid replaces the original data after 

clustering, denoted as
1

( , ) ( || )i

k

K
t

KL i k
k i I

J Q I D P Q
 

  . The 

goal of our algorithm is to ensure that the total loss of 
information is minimized. The method requires acontinuous 

calibration of each data partition. 

First, we should give an initial centroid which can represent 
the original data well and the distance between centroids 
should as far as possible. We choose the even distribution of 
all data as the first centroid distribution. The other centroid 
distributions are determined by the maxmin rule. 

Algorithm 1 Compute the initial centroid 
Input: The data distribution P1

t1,P2
t2,⋯,Pn

tn  after being 
processed by the model of local random walks based on 
shortest path and the cluster number K. 

Output: The initial centroid Q
Procedure: 

(1) 1
1

1
i

N
t

i
i

Q P
N 

 

(2)For k=2,3,…,K

1,2,..., 1arg max min ( || ),i zt t
i j k KL i j k zz D P Q Q P  

And then is the clustering process. We partition the original 
data via the initial centroid, then adjust centroid of each 
cluster, and computation the centroid again. Repeat the 
procedure until the objective function ( , )J Q I  does not 

decrease. 

Algorithm 2: 
Input: The data distribution P1

t1,P2
t2,⋯,Pn

tn  after being 
processed by the model of local random walks based on 
shortest path and the cluster number K. 

Output: The final result of clustering and the centroid 
distribution Q

Procedure: 
(1) For each data point, compute the similarity of each to the 

centroid and merge it into the most similar clusters. Then 
we get a new partition

' { : argmin ( || )}it
k k kl i kI i k D p Q  .

(2) Update each centroid of cluster. For k=1,2,…,K ,

'

'
'

1
| |

i

k

t
i

i Ik

Q p
I 

 

(3) If ' '( , ) ( , )J Q I J Q I , Q=Q', then go to the first step. 

Otherwise, loop end. 

In the above algorithm, we transfer the metric space of data 
point. So we make the distance of each two point reference 
other distance. We finally determine each distribution 
through the random walks, and utilize the total loss of 
information to be the objective function. 
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4. Result and Analysis 

(1) The experimental data and processing 
We use the UCI handwritten numeral lattice diagram data to 
verify our algorithm [14]. Every data in the data set is a 
32 32two-value matrix contained handwritten numeral 
which is from 0 to 9. Every matrix contains a correct label. 

Suppose 1X={x }N
n n  is the experiment data set, and N is the 

number of the data set. First we define similarity of 
two-value matrix as the proportion of the same number of 
elements in the two matrices of the same position. If we use 
set difference to define the similarity between points, points 
in the data set are some sets which contain 32×32 elements 
which are different between each other according to their 
positions. So the definition of the similarity is,

|| ||
( , ) 1

|| ||
i j

i j

x x
d x x

x


 

Because any number of a data element is a 32×32 matrix,
we define an uniform value 𝑥 . We can get the similarity 
matrixD(𝑑𝑖𝑗 )by computing the similarity of all data point 

pairs. We define the transition probability of from point 𝑥𝑖

to point 𝑥𝑗 as

1

ij
Nij

ij
i

dp
d






. We can find that the higher 

the similarity between two points, the higher the transition 
probability between them. 

(2) Analysis of Experimental Results 
For verifying the property of clustering algorithm proposed 
in this paper, the K-means algorithm which is used to be 
comparison do the same step with the original K-means 
algorithm and the improved K-means algorithm except 
finding final distribution without random walks. Every 
original data point contains a 32×32 handwritten numeral 
lattice diagram and a label. This label represents the real 
number of this graph. After clustering we get 10 clusters, 
and confirm their label according to the majority principle. 
For example, if the majority of the original labels of a 
cluster are 0, the label of this cluster is 0. Meanwhile the 
label of all the experiment data points in the cluster is 0. If 
the final classify of a data point is same as its original label, 
it is a correct classification. Counting all the data points 
which are correct classifications and comparing with all the 
data points can get the accuracy. The result indicates that the 
accuracy of using K-means algorithm directly is 73%, but 
the accuracy can be raised to 75% when we use random 
walks to determine the stable distribution of data point. As 
shown in Fig.1.

Figure 1: Comparison of the two algorithm
The general K-means algorithms are just need to save data 
points and centroids. If 𝑛 is the number of property, the 
storage space is (( ) )O m K n . If we suppose the number of 

clustering iterations isI, the time complexity is
( )O I K m n   . The clustering process of most data points 

have been completed in the first few times. If the threshold 
value is chosen well, we can get a balance between time 
complexity and the effect of algorithm. For the new 
K-means algorithm, we should add storage 2( )O m  for a 

one-step transition probability matrix. And the average time 
complexity degree of random walks is the average shortest 
path. 

5. Conclusion 

In this paper, we propose a clustering algorithm based on 
link data and random walks. It uses the directly linking 
between data points to form a network, and refers the link 
information between data point and other data points when 
we define the similarity. Then we use k-means algorithm to 
perform test. Experimental results show that it is benefit to 
find the real similarity of data points when we consider the 
network characteristic of data sufficiently. 
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