On Quasi-Normal and Quasi-Regular Spaces in Hereditary Generalized Topological Spaces

M.Vigneshwaran¹, K. Baby²

¹Assistant Professor, Department of Mathematics, Kongunadu arts and Science College, Coimbatore-29, Tamilnadu, India

² Ph.D Research scholar, Department of Mathematics, Kongunadu arts and Science College, Coimbatore-29, Tamilnadu, India.

Abstract: The concept of generalized open sets in generalized topologies was investigated by Csaszar [2]. In this paper we introduce spaces namely Quasi μ -H -regular spaces, Almost μ -H -Normal spaces and Quasi ultra μ -H-Normal spaces with a fixed set of parameters and obtain some properties in the light of these notion. We also introduce Quasi μ_{β} -H-regular spaces and Quasi μ_{β} -H-reg

normal spaces and investigate some properties of these new notions by using some basic properties of (μ, λ) -continuity in generalized topological spaces introduced by M.Rajamani, V.Inthumathi and R.Ramesh [5]. Moreover we obtain relations between Quasi μ - \mathcal{H} normal spaces and Almost μ - \mathcal{H} -normal spaces with respect to (μ, λ) -continuity and (μ, λ) -open map.

Keywords: Quasi μ - \mathcal{H} -normal spaces, Quasi μ - \mathcal{H} -regular spaces, Quasi ultra μ - \mathcal{H} -Normal space, Almost μ - \mathcal{H} -Normal spaces, (μ, λ) -continuity and (μ, λ) -open, (μ, λ) β -irresolute, (μ, λ) β -continuous, (μ, λ) R-irresolute, (μ, λ) R-pre-closed.

1. Introduction and Preliminaries

The idea of generalized topology and hereditary class was introduced and studied by Csaszar[2]. A subfamily μ of P(X) is called a generalized topology if $\phi \in \mu$ and union of elements of μ belongs to μ . The space X together with the generalized topology μ is said to be generalized topological space and denoted by (X, μ) . $i_{\mu}(A)$ and $c_{\mu}(A)$ denotes the interior and closure of A in (X, μ) . The elements of μ are called open and is denoted by μ -open. The complement of μ open is μ -closed. We say a hereditary class \mathcal{H} on (X, μ) is a non-empty collection of subset of X such that $A \subseteq B$, $B \in \mathcal{H}$ implies

 $A \in \mathcal{H}$. With respect to the generalized topology μ and a hereditary class \mathcal{H} , for a subset A of X we define $A_{\mu}^{*}(\mathcal{H})$ or simply $A_{\mu}^{*} = \{x \in X : M \cap A \notin \mathcal{H} \text{ for every } M \in \mu$ such that $x \in M$. The closure $c_{\mu}^{*}(A) = A \cup A_{\mu}^{*}(\mathcal{H})$. The space (X, μ) with the hereditary class \mathcal{H} is called hereditary generalized topological space and denoted by (X, μ, \mathcal{H}) . A subset A of (X, μ) is $\mu\alpha$ -open [2] (resp. μ -semi open [2], μ -pre open [2], $\mu\beta$ -open[2]), if $A \subseteq$ $i_{\mu}(c_{\mu}(i_{\mu}(A)))$ (resp. $A \subseteq c_{\mu}(i_{\mu}(A)), A \subseteq i_{\mu}(c_{\mu}(A)),$ $A \subseteq c_{\mu}(i_{\mu}(c_{\mu}(A)))$. We denote the family of all $\mu \alpha$ -open sets, μ -semi open sets, μ -pre open sets and $\mu\beta$ -open sets by α (μ), $\sigma(\mu)$, $\pi(\mu)$ and β (μ) respectively. On generalized topology, $\mu \subseteq \alpha(\mu) \subseteq \pi(\mu) \subseteq \beta$ (μ).

In GTS $c_{\mu\alpha}(A)$ and $c_{\mu\beta}(A)$ denotes α -closure of A and β closure of A in (X, μ) respectively. A subset A of (X, μ) is said to be μ - regular open[4] if $A = i_{\mu}(c_{\mu}(A))$ and the complement is μ -regular closed. The finite union of μ -regular open sets is called $\mu\pi$ -open sets and its complement is $\mu\pi$ -closed set. A set A is said to be μ g-closed [2] if, $c_{\mu}(A) \subseteq A$ whenever $A \subseteq U$ and U is μ -open and its complement is μ g-open.

Definition 1.1: For a subset A of hereditary generalized topological space (X, μ, \mathcal{H})

i) $A_{\mu_{\alpha}}^{*}(\mathcal{H}) = \{ x \in X : M \cap A \notin \mathcal{H} \text{ for every } M \in \alpha (\mu)$ such that $x \in M \}$ [2].

ii) $A_{\mu\beta}^{*}(\mathcal{H}) = \{ x \in X : M \cap A \notin \mathcal{H} \text{ for every } M \in \beta (\mu)$ such that $x \in M \} [2].$

Definition 1.2: A subset A of a hereditary generalized topological space (X, μ, \mathcal{H}) is said to be μ^* -closed [3] if $A_{\mu^*}(\mathcal{H}) \subseteq A$ and μ_{β^*} -closed [3] if $A_{\mu^*_{\beta}}(\mathcal{H}) \subseteq A$. Then $c_{\mu^*_{\beta}}(A) = A \cup A_{\mu^*_{\beta}}(\mathcal{H})$.

Definition 1.3: Let (X, μ) and (Y, λ) be generalized topologies. A function $f: (X, \mu) \to (Y, \lambda)$ is said to be i) (μ, λ) -continuous if for every closed set V in (Y, λ) (denoted by λ -closed set), $f^{-1}(V)$ is μ -closed,

ii) (μ, λ) -open if for every μ -open set U, f(U) is open in (Y, λ) (denoted by λ -open).

2. Quasi μ-H -regular spaces, Almost μ-H -Normal spaces and Quasi ultra μ- H-Normal space

Definition 2.1: A hereditary generalized topological space (X, μ, \mathcal{H}) is said to be Quasi μ - \mathcal{H} -regular space if for every $\mu\pi$ -closed set A and a point $x \notin A$, there exist μ -open sets U and V such that $A - U \in \mathcal{H}, x \in V$ and $U \cap V \in \mathcal{H}$.

Definition 2.2: Let (X, μ, \mathcal{H}) be a hereditary generalized topological spaces. A space (X, μ, \mathcal{H}) is said to be quasi μ - \mathcal{H} - normal if for every pair of $\mu \pi$ -closed sets A and B of X, there exist μ -open sets U and V such that $A - U \in \mathcal{H}$, $B - V \in \mathcal{H}$, and $U \cap V \in \mathcal{H}$.

Theorem 2.3: Let (X, μ, \mathcal{H}) be a Hereditary generalized topological space.

Then the followings are equivalent:

(a) X is a quasi μ - \mathcal{H} -regular space. (b) for each point $x \in X$ and for each $\mu\pi$ -open neighbourhood F of x, there exists a μ -open set V of X

such that $c_{\mu}^{*}(V) - F \in \mathcal{H}$.

(c) For each point $x \in X$ and for each $\mu \pi$ -closed set A not containing, there exists a μ -open set V of X such that $c_{\mu}^{*}(V) \cap A \in \mathcal{H}$.

Proof:

(a) \Rightarrow (b) Let F be $\mu\pi$ -open neighbourhood of x. Then there exist a $\mu \pi$ -open subset G of X such that $x \in G \subseteq F$. Since G^c is $\mu\pi$ -closed and $x \in G$ by hypothesis, there exist disjoint μ -open sets U and V such that $G^c - U \in \mathcal{H}, x \in V$ and $U \cap V \in \mathcal{H}$ and so $V - U^c \in \mathcal{H}$. Since U^c is μ -closed, $c_{\mu}^{*}(V) - U^c \in \mathcal{H}$ implies $U^c - G \in \mathcal{H}$. Hence $c_{\mu}^{*}(V) - F \in \mathcal{H}$.

(b) \Rightarrow (a): Let F^{c} be any $\mu\pi$ -closed set and $x \notin F^{c}$. Then $x \in F$ and F is $\mu\pi$ -open

neighbourhood of x. By hypothesis, there exist a μ -open set V of x such that $x \in V$ and $c_{\mu}^{*}(V) - F \in \mathcal{H}$, which implies $F^{c} - c_{\mu}^{*}(V) \in \mathcal{H}$. Then $(c_{\mu}^{*}(V))^{c}$ is μ -open set containing F^{c} and $V \cap (c_{\mu}^{*}(V))^{c} \in \mathcal{H}$. Therefore is X quasi μ - \mathcal{H} -regular space.

(b) \Rightarrow (c): Let $x \in X$ and A be $\mu\pi$ -closed set such that $x \notin A$. Since A^c is $\mu\pi$ -open neighbourhood of x and by hypothesis, there exist a μ -open set V of X such that

 $c_{\mu}^{*}(V) - A^{c} \in \mathcal{H} \text{ and } c_{\mu}^{*}(V) \cap A \in \mathcal{H}.$ $(c) \Rightarrow (a): \text{Let } x \in X \text{ and } A \text{ be a } \mu\pi\text{-closed set such that}$ $x \notin A$. By hypothesis, there exists $\mu\text{-open set } U$ such that $c_{\mu}^{*}(V) \cap A \in \mathcal{H}. \text{ Let } V = X - c_{\mu}^{*}(U). \text{ Since } V \text{ is } \mu\text{-open set and } U \cap V \in \mathcal{H}, X \text{ is quasi } \mu\text{-}\mathcal{H} \text{-regular space.}$

Definition 2.4: Let (X, μ) and (Y, λ) be generalized topologies. A function $f: (X, \mu) \to (Y, \lambda)$ is said to be

i) Completely (μ, λ) -irresolute if for every π -closed set V in (Y, λ) (denoted by $\lambda\pi$ - closed set), $f^{-1}(V)$ is π -closed in (X, μ) (denoted by $\mu\pi$ -closed).

ii) Completely (μ, λ) -continuous if for every λ -closed set V, $f^{-1}(V)$ is $\mu\pi$ -closed.

iii) Almost (μ, λ) -open if for every π -open set V in (X, μ) (denoted by $\mu\pi$ -open set), f(V) is π -open in (Y, λ) (denoted by $\lambda\pi$ -open).

iv) Almost (μ, λ) -closed if for every $\mu\pi$ -closed set F, f(F) is $\lambda\pi$ -closed.

v) Perfectly (μ , λ)-continuous if for every open set F in (Y,

λ) (denoted by λ-open set), $f^{-1}(F)$ is μ-open and μ-closed.

vi) (μ , λ)-R-irresolute if for every regular-closed set V in (Y,

λ) (denoted by λ-regular-closed), $f^{-1}(V)$ is μ-regular closed.

vii) (μ, λ) β -irresolute if for every β -closed set V in (Y, λ) (denoted by $\lambda\beta$ -closed set), $f^{-1}(V)$ is β -closed in (X, μ) (denoted by $\mu\beta$ -closed set).

viii) (μ, λ) β -continuous if for every λ -closed set $V, f^{-1}(V)$ is $\mu\beta$ -closed in (X, μ) .

ix) (μ , λ)R-pre-closed if for every μ -regular-closed set U, f(U) is λ -regular-closed.

Lemma 2.5 [3]: If $\mathcal{H} \neq \phi$ is a hereditary class on (X, μ) and $f: (X, \mu) \rightarrow (Y, \lambda)$ is a function, then $f(\mathcal{H}) = \{ f(H) : H \in \mathcal{H} \}$ is a hereditary class on (Y, λ) .

Theorem 2.6: Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and (Y, λ) be a generalized topology. A function $f: (X, \mu) \to (Y, \lambda)$ is bijective, completely (μ, λ) irresolute and (μ, λ) -open. If X is quasi μ - \mathcal{H} -regular space, then Y is quasi λ - $f(\mathcal{H})$ -regular space.

Proof: Let $y \in Y$ and A be any $\lambda \pi$ -closed set. Since f is completely (μ, λ) -irresolute, $f^{-1}(A)$ is $\mu \pi$ -closed subset of X. Since f is a bijection, f(x) = y, then $y \neq f^{-1}(x)$ for every $x \in X$. Since (X, μ, \mathcal{H}) is quasi μ - \mathcal{H} -regular space, there exists μ -open sets U and V such that $x \in U$,

 $f^{-1}(A) - V \in \mathcal{H}$ and $U \cap V \in \mathcal{H}$. Since f is (μ, λ) open, f(U) and f(V) are μ -open sets in Y. Also $y \in f(U)$, and $A - f(V) \in f(\mathcal{H})$ and $f(U) \cap f(V) = f(U \cap V) \in f(\mathcal{H})$. Hence by using
lemma(2.5) Y is quasi λ - $f(\mathcal{H})$ -regular space.

Lemma 2.7 [3]: If $\mathcal{H} \neq \phi$ is a hereditary class on (Y, λ) and $f: (X, \mu) \to (Y, \lambda)$, then $f^{-1}(\mathcal{H}) = \{f^{-1}(\mathcal{H}): \mathcal{H} \in \mathcal{H}\}$ is a hereditary class on (X, μ) .

Theorem 2.8: Let (X, μ) be a generalized topological space and $(Y, \lambda, \mathcal{H})$ be hereditary generalized topology. A function $f: (X, \mu) \to (Y, \lambda)$ is injective, Almost (μ, λ) closed and (μ, λ) -continuous. If Y is quasi λ - \mathcal{H} -regular space, then X is quasi μ - $f^{-1}(\mathcal{H})$ -regular space.

Proof: Let $x \in X$ and A be any $\mu \pi$ -closed subset of X. Since f is Almost (μ, λ) -closed, f(A) is $\lambda \pi$ -closed subset of Y. Since $(Y, \lambda, \mathcal{H})$ is quasi λ - \mathcal{H} -regular space, there exists λ -open sets U and V such that $f(x) \in U$, $f(A) - V \in \mathcal{H}$ and $U \cap V \in \mathcal{H}$. Since f is (μ, λ) continuous and injective, $f^{-1}(U)$ and $f^{-1}(V)$ are μ -open $x \in f^{-1}(U)$ Х, such that sets in $A - f^{-1}(V) \in f^{-1}(\mathcal{H})$ $f^{-1}(U) \cap$ and $f^{-1}(V) = f^{-1}(U \cap V) \in f^{-1}(\mathcal{H})$. Hence by using lemma (2.7) X is quasi $\mu - f^{-1}(\mathcal{H})$ -regular space.

Lemma 2.9 [3]: If $\mathcal{H} \neq \phi$ is a hereditary class on (Y, λ) and Y is a subset of X. Then $\mathcal{H}_Y = \{Y \cap H : H \in \mathcal{H}\}$ is a hereditary class on Y.

Theorem 2.10: Let (X, μ, \mathcal{H}) be a generalized topological space. If X is quasi μ - \mathcal{H} -regular space and $Y \subset X$ is $\mu \pi$ - closed set, then Y is quasi μ - \mathcal{H}_Y –regular space.

Proof: Let $y \in Y$ and A be $\mu \pi$ -closed subset of Y and $y \notin A$. Since Y is $\mu \pi$ -closed set and $Y \subset X$, A is $\mu \pi$ - closed subset of X. Since X is quasi μ - \mathcal{H} -regular space, there exist μ - open sets U and V such that $A - U \in \mathcal{H}$, $x \in V$ and $U \cap V \in \mathcal{H}$. If $A - U = H \in \mathcal{H}$, then $A \subset (U \cup H)$. Since $A \subset F$, $A \subset (F \cap (U \cup H))$ and so $A \subset (F \cap U) \cup (F \cap H)$. Therefore,

 $A - (F \cap U) \subset (F \cap H) \in \mathcal{H}_Y, y \in (V \cap F)$. Hence $(F \cap U)$ and $(F \cap V)$ are μ -open sets in Y such that $A - (F \cap U) \in \mathcal{H}_Y, y \in V$ and $(F \cap U) \cap (F \cap V) \in \mathcal{H}_Y$. Hence Y is quasi μ - \mathcal{H}_Y – regular space.

Definition 2.11: A generalized topological space (X, μ) with the hereditary class \mathcal{H} is said to be Almost μ - \mathcal{H} - normal space if for every pair of disjoint μ -regular closed sets A and B there exist μ -open sets F and G such that $A - F \in \mathcal{H}$, $A - G \in \mathcal{H}$ and $F \cap G \in \mathcal{H}$.

Theorem 2.12: Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and (Y, λ) be a generalized topological space. Also let $f: (X, \mu) \to (Y, \lambda)$ is (μ, λ) R-pre-closed and (μ, λ) -continuous injective function. If Y is Almost λ - \mathcal{H} - normal space, then X is Almost μ - $f^{-1}(\mathcal{H})$ -normal space.

Proof: Let A and B be disjoint μ -regular-closed subsets of X. Since f is (μ, λ) R-pre-closed, f(A) and f(B) are disjoint λ -regular-closed. Since Y is Almost λ - \mathcal{H} -normal space, there exist λ -open sets U and V in Y such that $f(A) - U \in \mathcal{H}, f(B) - V \in \mathcal{H}, U \cap V \in \mathcal{H}$. Then $f^{-1}(f(A)) - f^{-1}(U) \in f^{-1}(\mathcal{H})$ and $f^{-1}(f(B)) - f^{-1}(V) \in f^{-1}(\mathcal{H})$ which implies $A - f^{-1}(U) \in f^{-1}(\mathcal{H}), B - f^{-1}(V) \in f^{-1}(\mathcal{H})$ and $f^{-1}(U) \cap f^{-1}(V) \in f^{-1}(\mathcal{H})$. Since f is (μ, λ) -continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are μ -open subsets of X. Hence (X, μ) is Almost μ - $f^{-1}(\mathcal{H})$ -normal space.

Definition 2.13: A generalized topological space (X, μ) with the hereditary class \mathcal{H} is said to be quasi ultra μ - \mathcal{H} normal space if for every pair of disjoint $\mu\pi$ -closed sets A and Bthere exist μ -clopen sets F and G such that $A - F \in \mathcal{H}$, $A - G \in \mathcal{H}$ and $F \cap G \in \mathcal{H}$.

Theorem 2.14: Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and (Y, λ) be a generalized topological space. Also let $f: (X, \mu) \to (Y, \lambda)$ is Almost $(\mu, \lambda)\pi$ -closed and perfectly (μ, λ) -continuous injective function. If Y is Quasi λ - \mathcal{H} -normal space, then X is Quasi ultra μ - $f^{-1}(\mathcal{H})$ - normal space.

Proof: Let F and G be disjoint $\mu\pi$ -closed subsets of X. Since f is Almost (μ, λ) π -closed, f(F) and f(G) are disjoint $\lambda\pi$ -closed subsets of Y. Since Y is quasi λ - \mathcal{H} -normal space, there exist λ -open sets U and V in Y such that $f(F) - U \in \mathcal{H}, f(G) - V \in \mathcal{H}$ and $U \cap V \in \mathcal{H}$. Then $F - f^{-1}(U) \in f^{-1}(\mathcal{H}),$ $G - f^{-1}(V) \in f^{-1}(\mathcal{H})$ and

Volume 5 Issue 4, April 2016 www.ijsr.net Licensed Under Creative Commons Attribution CC BY $f^{-1}(U) \cap f^{-1}(V) \in f^{-1}(\mathcal{H})$. Since f is perfectly (μ, λ) -continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are μ -open and μ - closed subsets of (X, μ) . Hence X is quasi ultra μ - $f^{-1}(\mathcal{H})$ - normal space.

Remark 2.15: Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and (Y, λ) be a generalized topological space. Also let $f: (X, \mu) \to (Y, \lambda)$ is $(\mu, \lambda) \pi$ -pre-closed and (μ, λ) -continuous injective function. If Y is Quasi $\lambda - \mathcal{H}$ -normal space, then X is Almost $\mu - f^{-1}(\mathcal{H})$ -normal space.

Proof: Let F and G be disjoint μ -regular-closed subsets of Xand hence $\mu\pi$ -open. Since f is Almost $(\mu, \lambda)\pi$ -closed, f(F)and f(G) are disjoint $\lambda\pi$ -closed. Since Y is quasi λ - \mathcal{H} normal space, there exist λ -open sets U and V in Y such that $f(F) - U \in \mathcal{H}, f(G) - V \in \mathcal{H}$ and $U \cap V \in \mathcal{H}$. Then $F - f^{-1}(U) \in f^{-1}(\mathcal{H}),$ $G - f^{-1}(V) \in f^{-1}(\mathcal{H})$ and $f^{-1}(U) \cap f^{-1}(V) \in f^{-1}(\mathcal{H})$. Since f is (μ, λ) continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are μ -open subsets of (X, μ) . Hence X is Almost $\mu - f^{-1}(\mathcal{H})$ -normal space.

Theorem 2.16: Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and (Y, λ) be a generalized topological space. Also let $f: (X, \mu) \to (Y, \lambda)$ be a bijection (μ, λ) -Rirresolute and (μ, λ) -open function. If X is Almost μ - \mathcal{H} normal space, then Y is Almost λ - $f(\mathcal{H})$ -normal space. **Proof**: Proof is similar to the proof of (2.6).

3. Quasi μ_{β} - \mathcal{H} -regular spaces and Quasi μ_{β} - \mathcal{H} -normal spaces

Definition 3.1: A hereditary generalized topological space (X, μ, \mathcal{H}) is said to be Quasi μ_{β} - \mathcal{H} -regular space if for every $\mu \pi$ -closed set A and $x \notin A$, there exist $\mu \beta$ -open sets U and V such that $A - U \in \mathcal{H}, x \in V$ and $U \cap V \in \mathcal{H}$.

Definition 3.2: Let (X, μ, \mathcal{H}) be a hereditary generalized topological spaces. A space (X, μ, \mathcal{H}) is said to be quasi μ_{β} - \mathcal{H} - normal if for every pair of $\mu \pi$ -closed sets A and B of X, there exist $\mu \beta$ -open sets U and V such that $A - U \in \mathcal{H}, B - V \in \mathcal{H}$, and $U \cap V \in \mathcal{H}$.

Theorem 3.3: Let (X, μ, \mathcal{H}) be a hereditary generalized topological spaces. Then the followings are equivalent: (a) X is a quasi μ_{β} - \mathcal{H} -normal space. (b) for every $\mu\pi$ -closed set F and $\mu\pi$ -open set G containing F, there exists a $\mu\beta$ -open set V such that $F - U \in \mathcal{H}$ and $c_{\mu\beta}^{*}(V) - G \in \mathcal{H}$.

c) For each pair of disjoint $\mu\pi$ -closed sets A and B, there exists an $\mu\beta$ -open set U such that $A - U \in \mathcal{H}$ and $c_{\mu\beta}^{*}(U) \cap B \in \mathcal{H}$.

Proof:

(a) \Rightarrow (b) Let *F* be $\mu\pi$ -closed set and *G* be a $\mu\pi$ -open subset of X. Since X - G is $\mu \pi$ -closed and $F \subset G$, $F \cap (X - G) = \phi$. Since X is quasi μ_{B} - \mathcal{H} -normal space, there exist disjoint $\mu \beta$ -open sets U and V such that F – $(X - G) - V \in \mathcal{H}.$ $V \in$ ${\mathcal H}$ and Then $c_{\mu\beta}^{*}(V) \subset (X - U)$ and $(X-G) \cap c_{\mu_R}^{*}(V) \subset (X-G) \cap (X-U)$. Hence $c_{\mu_R}^*(V) - G \in \mathcal{H}.$ (b) \Rightarrow (c) It is obvious. (c) \Rightarrow (a) Let **A** and **B** be $\mu\pi$ -closed sets. By (c) there exists a $\mu\beta$ -open U such that $A - U \in \mathcal{H}$ and

 $c_{\mu\beta}^{*}(U) \cap B \in \mathcal{H}$. Let $V = X - c_{\mu\beta}^{*}(U)$. Since V is $\mu\beta$ -open and $V = X - c_{\mu\beta}^{*}(U)$. $U \cap V \in \mathcal{H}$ Hence X is quasi- $U \in \mathcal{H}_{2}$.

 $V = X - c_{\mu\beta}^{*}(U), U \cap V \in \mathcal{H}$ Hence X is quasi μ_{β} - \mathcal{H} -normal space.

Theorem 3.4: Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and (Y, λ) be a generalized topological space. space . Also let $f: (X, \mu) \to (Y, \lambda)$ is a bijective function, completely (μ, λ) - continuous and $(\mu, \lambda) \beta$ - open. If X is quasi μ_{β} - \mathcal{H} - normal space, then Y is quasi λ_{β} - $f(\mathcal{H})$ - normal space.

Proof: Let A and B be $\lambda\pi$ -closed subsets of Y. Since f is completely (μ, λ) -continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are $\mu\pi$ -closed subsets of X. Since X is quasi μ_{β} - \mathcal{H} -normal space, there exist $\mu\beta$ -open sets U and V in X such that $f^{-1}(A) - U \in \mathcal{H}, f^{-1}(B) - V \in \mathcal{H}$ and $U \cap V \in \mathcal{H}$. Since f is bijective, $f(f^{-1}(A)) - f(U) \in f(\mathcal{H})$, $f(f^{-1}(B)) - f(V) \in f(\mathcal{H})$ and $f(U) \cap f(V) \in f$ (\mathcal{H}) and hence $A - f(U) \in f(\mathcal{H}), B - f(V) \in f(\mathcal{H})$. Since f is $(\mu, \lambda)\beta$ - open, f(U) and f(V) are $\mu\beta$ -open sets in Y. Hence it follows that Y is quasi $\lambda_{\beta} - f(\mathcal{H})$ normal space. **Theorem 3.5**: Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and (Y, λ) be a generalized topological space. Also let $f: (X, \mu) \to (Y, \lambda)$ is an injective function, and Almost (μ, λ) -closed and $(\mu, \lambda)\beta$ -irresolute. If Y is quasi λ_{β} - \mathcal{H} -normal space, then X is quasi μ_{β} - $f^{-1}(\mathcal{H})$ -normal space.

Proof: Let A and B be $\mu\pi$ -closed subsets of X. Since f is Almost (μ, λ) -closed, f(A) and f(B) are disjoint $\lambda\pi$ closed. Since Y is quasi λ_{β} - \mathcal{H} -normal space, there exist $\mu\beta$ -open sets U and V in Y such that $f(A) - U \in \mathcal{H}$ and $f(B) - V \in \mathcal{H}$ and $U \cap V \in \mathcal{H}$. Then $f^{-1}(f(A)) - f^{-1}(U) \in f^{-1}(\mathcal{H})$ and

$$f^{-1}(f(B)) - f^{-1}(V) \in f^{-1}(\mathcal{H})$$
 and

 $f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V) \in f^{-1}(\mathcal{H}) \text{ which}$ implies $A - f^{-1}(U) \in f^{-1}(\mathcal{H})$ and $B - f^{-1}(V) \in f^{-1}(\mathcal{H})$. Since f is $(\mu, \lambda)\beta$ -irresolute, $f^{-1}(U)$ and $f^{-1}(V)$ are $\mu\beta$ -open subsets of X. Hence it follows that X is quasi $\mu_{\beta} \cdot f^{-1}(\mathcal{H})$ -normal space.

Theorem 3.6: Let (X, μ, \mathcal{H}) be a generalized topological space. If X is quasi μ_{β} - \mathcal{H} -normal space, and $Y \subset X$ is $\mu\pi$ - closed set, then Y is quasi μ_{β} - \mathcal{H}_Y -normal space.

Proof: Let **A** and **B** be disjoint $\mu\pi$ -closed subsets of **Y**. Since Y is $\mu\pi$ -closed set and $Y \subset X$, A and B are $\mu\pi$ -closed subsets of X. Since X is quasi μ_{β} - H-normal space, there exist $\mu \beta$ -open sets U and V such that $A - U \in \mathcal{H}$, $B - V \in \mathcal{H}_{and} \ U \cap V \in \mathcal{H}$. If $A - U = H \in \mathcal{H}$, $B - V = G \in \mathcal{H}$. then $A \subset (U \cup H)$ and $B \subset (V \cup G)$. Since $A \subset Y$, $A \subset Y \cap (U \cup H)$ and so $A \subset (Y \cap U) \cup (Y \cap H).$ Therefore $A - (Y \cap U) \subset (Y \cap H) \in \mathcal{H}_{v}.$ Similarly $B - (Y \cap V) \subset (Y \cap G) \in \mathcal{H}_{V}$. Hence $Y \cap U$ and $Y \cap V$ are $\mu \beta$ -open sets in Y such that $A - (Y \cap U) \in \mathcal{H}_{Y}$ and $B - (Y \cap V) \in \mathcal{H}_{Y}$. Hence Y is quasi μ_{β} - \mathcal{H}_{γ} -normal space.

4. Conclusion

In this paper we introduced new classes of spaces namely quasi μ - \mathcal{H} - regular space ,quasi μ_{β} - \mathcal{H} -regular space, quasi μ_{β} - \mathcal{H} - normal space, Almost μ - \mathcal{H} -Normal spaces, Quasi ultra μ - \mathcal{H} -Normal space in hereditary generalized topological spaces and derived some properties by using

some basic properties of (μ, λ) -continuity in generalized topological spaces.

References

- [1] Bishwambhar Roy, On a type of generalised open sets, Applied general topology, Universidad Politecnica de Valencia.Volume 12, no. 2, pp.163-173, **2011**.
- [2] A.Csaszar, generalized open sets in generalized topologies., Acta Mathematica Hungaria. 106, pp.53-66, 2005.
- [3] A.Csaszar, Modifications in Generalized topologies via hereditary., Acta Mathematica Hungaria. 115, pp. 29-36, 2007.
- [4] R.Jamunarani and P. Jeyanthi, Regular sets in generalized topological spaces., Acta Mathematica Hungaria, 135, pp. 342-349, 2012.
- [5] K.Karuppayi, A note on RH-open sets in GTS with hereditary classes., International Journal of Mathematical Archive-5(1), pp:312-316, **2014.**
- [6] M.Rajamani, V.Inthumathi and R.Ramesh, A decomposition of (μ, λ) -continuity in generalized topological spaces, Jordan J.Math.Stat.6(1),pp.15-27, **2013**.
- [7] J.Tong, Expansion of open sets and decomposition of continuous mappings, Rend. Circ.Mat.Polermo 43(2), 303-308, 1994.