
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A New Parallel VLSI Architecture in Real Time by
using Microcontroller

K.V. Vinetha1, S. Thirumala Devi2

Abstract: In this paper, we proposed a new architecture of multiplier-and-accumulator (MAC) for high-speed arithmetic. By
combining multiplication with accumulation and devising a hybrid type of carry save adder (CSA), the performance was improved. Since
the accumulator that has the largest delay in MAC was merged into CSA, the overall performance was elevated. The proposed CSA tree
uses 1’s-complement-based radix-2 modified Booth’s algorithm (MBA) and has the modified array for the sign extension in order to
increase the bit density of the operands. The CSA propagates the carries to the least significant bits of the partial products and generates
the least significant bits in advance to decrease the number of the input bits of the final adder. Also, the proposed MAC accumulates the
intermediate results in the type of sum and carry bits instead of the output of the final adder, which made it possible to optimize the
pipeline scheme to improve the performance. The proposed architecture was synthesized with 250, 180 and 130 m, and 90 nm standard
CMOS library. Based on the theoretical and experimental estimation, we analyzed the results such as the amount of hardware resources,
delay, and pipelining scheme. We used Sakurai’s alpha power law for the delay modeling. The proposed MAC showed the superior
properties to the standard design in many ways and performance twice as much as the previous research in the similar clock frequency.
We expect that the proposed MAC can be adapted to various fields requiring high performance such as the signal processing areas.

Keywords: multiplier-and-accumulator (MAC), carry save adder (CSA), Booth’s algorithm (MBA)

1. Introduction

With the recent rapid advances in multimedia and
communication systems, real-time signal processings like
audio signal processing, video/image processing, or large-
capacity data processing are increasingly being demanded.
The multiplier and multiplier-and accumulator (MAC) [1]
are the essential elements of the digital signal processing
such as filtering, convolution, and inner products. Most
digital signal processing methods use nonlinear functions
such as discrete cosine transform (DCT) [2] or discrete
wavelet transform (DWT) [3]. Because they are basically
accomplished by repetitive application of multiplication and
addition, the speed of the multiplication and addition
arithmetic’s determines the execution speed proceedings.
and performance of the entire calculation. Because the
multiplier requires the longest delay among the basic
operational blocks in digital system, the critical path is
determined by the multiplier, in general. For high-speed
multiplication, the modified radix-4 Booth’s algorithm
(MBA) [4] is commonly used. However, this cannot
completely solve the problem due to the long critical path
for multiplication [5] In general, a multiplier uses Booth’s
algorithm [3] and array of full adders (FAs), or Wallace tree
[5] instead of the array of FAs., i.e., this multiplier mainly
consists of the three parts: Booth encoder, a tree to compress
the partial products such as Wallace tree, and final adder [2],
[4]. Because Wallace tree is to add the partial products from
encoder as parallel as possible, its operation time is
proportional to where is the number of inputs. It uses the fact
that counting the number of 1’samong the inputs reduces the
number of outputs into. In real implementation, many (3:2)
or (7:3) counters are used to reduce the number of outputs in
each pipeline step. The mos effective way to increase the
speed of a multiplier is to reduce the number of the partial
products because multiplication proceeds a series of
additions for the partial products. To reduce the number of
calculation steps for the partial products, MBA algorithm
has been applied mostly where Wallace tree has taken the
role of increasing the speed to add the partial products. To

increase the speed of the MBA algorithm, many parallel
multiplication architectures have been researched [11]– [13].
Among them, the architectures based on the Baugh–Wooley
algorithm (BWA) have been developed.

VlSI Architecture

In 19791 anticipated scaling of VLSI technology favored the
development of regular machines that exploited concurrency
and locality and that were programmable. As shown in
columns 2 and 3 of Table 1, twenty years was expected to
bring more than a thousand fold increase in the number of
grids2 , and hence the number of devices that could be
economically fabricated on a chip. Clearly concurrency
(parallelism) would need to be exploited to convert this
increase in device count to performance. Locality was
required because the wire bandwidth at the periphery of a
module was scaling only as the square root of the device
count, much slower than the 2/3 power required by Rent’s
rule [LanRus71]. Also, even in 1979 it was apparent that
wires, not gates, limited the area, performance, and power of
many modules. The issue of design complexity motivated
regularity and programmability. Designing an array of
identical, simple processing nodes is an easier task than
designing a complex multi-million transistor processor. A
programmable design was called for so that the mounting
design costs could beamortized over large numbers of
application. In the twenty years since the first conference
many of the hard problems of parallel machine design have
been solved. We now understand how to design fast,
efficient networks to connect arrays of processors together
[Dally92, DYN97]3 . Mechanisms that allow processors to
quickly communicate and synchronize over these networks
have been developed [LDK+98]. We understand how to
implement efficient, coherent shared memory systems
[ASHH88]. Several meth-ods of programming parallel
machines have been demonstrated. Research machines were
constructed to demonstrate the technology, provide a
platform for parallel software research, and solve the
engineering problems associated with its realization

Paper ID: 18021601 531

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[Seitz85, NWD93, SBSS93]. The results of this research
resulted in numerous commercial machines [Scott96] that
form the core of the high-end computer industry today4. Just
as important, we learned what didn’t work: MIMD machines
are preferable to SIMD machines even for data-parallel
applications. Similarly, general-purpose MIMD machines
are preferable to systolic arrays, even for regular
computations with local communication. Bit-serial
processors loose more in efficiency than they gain in
density5. A good general-purpose network (like a 3-D torus)
usually outperforms a network with a topology matched to
the problem of interest (like a tree for divide and conquer
problems). It is better to provide a general-purpose set of
mechanisms than to specialize a machine for a single model
of computation. While successful at the high end, parallel
VLSI architectures have had little impact on the mainstream
computer industry. Most desktop machines are
uniprocessors and even departmental servers contain at most
a few 10s of processors. Today’s mainstream
microprocessor chips are dense enough to hold 1000 of the
8086s or 68000s of 1979, yet we use all of this area to
implement a single processor. What went wrong? Why isn’t
the average PC a fine-grain parallel machine with 10s of
processors on integrated processor-DRAM chips in the spirit
of Mosaic or the J-Machine? By many objective measures
this would clearly be a more efficient architecture. There are
three main reasons for this course of events:
1) There was considerable opportunity to apply additional

grids to improve the performance of sequential
processors.

2) Software compatibility favored sequential machines.
3) High-overhead mechanisms used in early parallel

machines motivated a coarse granularity of both
hardware and software.

In 1979 there was more than a factor of 100 difference in
performance between the best microprocessors (0.5MIPS,
0.001MFLOPS) and a high-end CPU such as used in the
Cray 1 (70MIPS, 250MFLOPS [Russel78]) or IBM 370.
Only a small part of this difference, about a factor of 3, was
due to the difference in gate delay between bipolar and MOS
technology. Most of the difference was due to increased gate
count that was used to aggressively pipeline execution and
to exploit parallelism. Between 1979 and 1999
microprocessors closed this gap by incorporating most of the
advanced features pioneered in mainframes and
supercomputers in the 1960s and 70s as well as a few new
tricks. On-chip caches, on-chip memory management units,
pipelined multipliers and floating-point units, multiple
instruction issue, and even out-of-order instruction issue
were added to processors during this period. The addition of
these features, along with quadrupling the word width from
16-bits to 64-bits created a sufficient appetite for grids
without resorting to explicit parallelism. During the past 20
years, the performance of a high-end microprocessor
increased from 0.5MIPS to 500MIPS, about a factor of
1000. From the data in Table 1, we see that clock frequency
increased by a factor of 80: a factor of 20 is due to gate
delay and a factor of 4 is due to reducing the number of
gates per clock. The remaining factor of 12.5 reflects a
reduction in clocks per instruction (CPI) from about 10 for
the unpipelined microprocessors of 1979 to just under 1 for
today’s 3- and 4-way multiple-issue superscalar processors.

Software evolved considerably during the last 20 years: from
text-based applications running on proprietary operating
systems (like VMS and MVS) to graphics-based
applications running on third-party operating systems (like
Windows and Unix). What remained constant, however, was
the sequential nature of this software. Manufacturers
wanting to sell machines that would run existing software
needed to build fast sequential machines. Commercial
parallel machines shut themselves out of the mainstream by
taking a path that emphasized capability (running very large
problems) rather than economy (solving the most problems
per dollar ´ second). These machines were coarse-grained
both in the amount of memory per node and in the size of
individually scheduled tasks. Early machines were forced by
high-overhead mechanisms to run programs with large tasks
sizes. To ensure software compatibility, later machines were
forced to follow this same route, often because of macro
packages (like PVM and MPI) that hid the improved
mechanisms behind high-overhead software. A coarse-grain
parallel computer node is largely indistinguishable from a
conventional workstation or PC with one exception: it is
considerably more expensive. While one can equalize the
expense by constructing coarse-grain parallel computers
from networks of workstations [ACP95], achieving an
economy that is better than serial machines requires fine-
grain nodes [FKD+95]. In summary, for most of the 80s and
90s software compatibility motivated building sequential
machines; there was little economic advantage to coarse-
grain parallel machines; and there were many obvious ways
to use more grids to make a sequential CPU faster. Given
this environment, it is no surprise that industry responded by
making sequential CPUs faster and only building coarse-
grain parallel machines. The next 20 years The next 20 years
promise to be exciting ones in the area of VLSI architecture
with a major revolution in the architecture of mainstream
processors. Continued scaling of technology (columns 3 and
4 of Table 16) will give us yet another thousandfold
increase in chip density. As in 1979 it is natural to think of
developing architectures that are programmable and exploit
concurrency and locality to exploit this increased density.
Unlike 1979, however, there are three reasons why a
revolution is likely now: First, sequential processors are out
of steam. While clever architects will undoubtedly continue
to develop new methods to squeak a few percentage points
more performance from sequential processors, we are clearly
well past the point of diminishing returns7 . Large amounts
of chip area are spent on complex instruction issue logic and
branch prediction hardware while yielding small
improvements in performance. To continue improving
performance geometrically each year, there is no alternative
except to exploit explicit parallelism.

2. MIMO System Model

In MIMO communication systems, more than one antenna is
used at the transmitter to transmit symbols and more than
one antenna is used at the receiver to receive them. In the
diagram of Figure 1, spatial multiplexing is used and M
transmit antennas transmit M symbols simultaneously while
each symbol is received by the N receive antennas. Each
symbol transmitted is received by all the receiving antennas
thus making multiple channel paths. These paths, if
combined, make a matrix of channel elements. Each symbol

Paper ID: 18021601 532

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

makes N channel paths and is received by N receive
antennas. Since there are M symbols transmitted
simultaneously, the channel becomes a NxM matrix.

Figure 1: MIMO System Model

If s = (s1,s2,…….sM)T denotes the symbol vector
transmitted and a vector r = (𝑟1,𝑟2,…….𝑟𝑀)𝑇for received
signal, H denotes the NxM channel matrix between the
receive and transmit antenna array, and v denotes the
AWGN independent and identically distributed noise vector,
then the corresponding receive vector r at the input of the
MIMO receiver is given by: r = Hs + v (2)

2.1 Square Root Algorithm for V-BLAST

In VBLAST, successive nulling and cancellation is used to
detect the transmitted symbols. The channel matrix is first
inverted and then reordered to detect that symbol first which
has the highest post detection Signal to Noise ratio (SNR).
This corresponds to the row of the inverted channel matrix
having minimum Euclidean distance. The symbol after
detection is subtracted from the received symbol vector. The
corresponding column of the H matrix is zeroed down and
the process is repeated with the deflated channel matrix until
all the symbols are detected. In this research, MMSE is used
for channel inversion. The pseudo inverse of a generic
matrix H is given by 𝐻+=(𝐻∗𝐻)−1𝐻∗=𝑅−1𝑄∗ (3) The
pseudo inverse can be computed using either singular value
decomposition (SVD) or QR decomposition. The square root
algorithm [3] is developed for MMSE-VBLAST and
computes the QR decomposition of the augmented channel
matrix. 𝐻𝑁𝑥𝑀 𝛼 𝐼𝑀𝑥𝑀 = QR = 𝑄𝑎𝑁𝑥𝑀𝑥 𝑅𝑀𝑥𝑀 (4) Here
x denotes the entries that are not relevant. The algorithm
first decomposes the channel matrix into QR 𝑎𝑟+𝑗𝑎1 and
then computes 𝑃1/2=𝑅−1. Once 𝑄𝑎 and 𝑃1/2 are computed,
the repeated pseudo inverse can be avoided. The algorithm is
described below:

1) Compute 𝑄𝑎 and 𝑃1/2 using equation (5):
B𝜀𝑖 = X (5) B = 1𝐻𝑖𝑃| 𝑖−11/20𝑀𝑥1𝑃| 𝑖−11/2−𝑒𝑖𝑁𝑥1𝐵𝑖−1 X
= 𝑥01𝑥𝑀𝑥𝑃| 𝑖−11/2𝑥𝐵𝑖 Here i represent iterations and i =
1… N. B is the prearray matrix and has dimension of
(1+M+N) x (1+M) and 𝑃|01/2=1 𝛼𝐼,𝐵0= 0𝑁𝑥𝑀𝑒𝑖𝑁𝑥1 is the
i-th unit vector of dimension N and 𝜃𝑖 is any unitary
transformation (Jacobi rotation) that block lower
triangularizes the pre-array denoted by M. After N iterations,
𝑃01/2= 𝑃|𝑁1/2𝑎𝑛𝑑 𝑄𝑎= 𝐵𝑁 (6) Equations (5) and (6) are
used in pseudo inverse computation. For the rest of the
algorithm, the reader is referred to [3].

2.2 CORDIC

In hardware, an efficient way of accomplishing a Givens
rotation is using a CORDIC. CORDIC implements the
rotation equations: 𝑥′=cos𝜃 𝑥−𝑦tan𝜃 𝑦′=cos𝜃 𝑦+𝑥tan𝜃 (7)
When angles are selected such that: tan𝜃=2−𝑖 (8) In this
case, multiplication by simply becomes a right shift. When
several of these CORDIC processing elements are used
together, one can rotate by an arbitrary angle by rotating by
a combination of allowed angles: 𝜃=𝑡𝑎𝑛−12−𝑖 (9) For a
rotation using a fixed number of iterations the terms turn out
to be a constant. The constant scaling value can be seen in
[6] for up to 15 iterations. For our design we need the
CORDIC to first rotate a vector to the nulling axis and then
remember the angle rotated to following vectors can be
rotated to the same angle. These two modes of operation are
known as vectoring and rotation, respectively. The design of
our CORDIC implemented the rotation equations (7) using
the constraint on angles in (9) such that our final result
nulls𝑦′. We also needed to design a CORDIC that operates
in vectoring and rotation mode. In order to implement the
equations, we used shifters and adders to do the bulk of the
work along with simple decision logic. Each processing
element receives two input vectors and finds their sign. It
must now decide based on their signs whether to rotate up or
down

Figure 2: VLSI architecture for Pseudo Inverse

Figure 3: Conventional MAC Module The main design

 platform used during this project was SIMULINK. It is a
tool-flow that enables the use and creation of high level
block diagrams which can be used for simulation, emulation,
and hardware description. The blocks used in this design
were from the Xilinx block set. Based on Xilinx block set
the architecture of Pseudo Inverse is designed and can be
seen as follows Xilinx block set. Based on Xilinx block set
the architecture of Pseudo Inverse is

Paper ID: 18021601 533

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 4: VLSI architecture for Pseudo Inverse designed by
Xilinx Blocksets

3. Results

Every block was tested extensively in simulation. Testing
was done by performing the algorithm for that block in
MATLAB, Xilinx System Generator and Xilinx ISE to
obtain the expected values given certain data. The blocks
were then given the same inputs as the algorithm was given
in MATLAB, simulation was run, and the outputs of the
blocks were reviewed. All of the blocks performed as
desired, given several known test inputs of a wide range.
The total power consumed by Pseudo Inverse module is
obtained as 239mW.

Figure 5: Power Analysis of PINV Module

Figure 6: Device family and package used for Pseudo
inverse Module It is clear from Fig. 7 (b) that in Pseudo
Inverse Module, CORDIC has used two third of the chip
area. However area use by Flip-Flops, Look Up table etc.
can be viewed by the figure provided below in

Figure 7: (a) Area utilization summary for Pseudo inverse
Module (b) layout of Pseudo Inverse module

4. Conclusion

Instead of QR triangular array that employs large number
processors, single processor based VLSI architecture is
proposed for V-BLAST detection. The quantization scheme
of the square root algorithm for V-BLAST detection is
presented considering the tradeoff between the hardware
complexity and the performance. The proposed architecture
is implemented in SIMULINK used by special sets of
XILINX block sets. While the full Square Root algorithm
was not designed, the major computationally complex parts
were. Finding 𝑝1/2 enables one to easily perform SIC and
subsequently decode information streams in V-BLAST
architecture. The future work will be addressed to design
and implement other module of square root algorithm like
SORT and NULL for power analysis and area utilization.

References

Proceedings Papers
[1] G. J. Foshini: Layered space-time architecture for

wireless communication in a fading environment when
using multi-element antennas. Bell Labs technical
Journal, pages 41-57, Autumn 1996

[2] R.Andraka: A Survey of CORDIC algorithm for FPGAs,
FPGA’98. Proceeding of the 1998 ACM/SIGDA sixth
international symposium on Field programmable gate
arrays, Feb. 22-24, 1998, Monterey, CA. pp191-2000

[3] Babak Hassibi: An Efficient Square-Root Algorithm for
BLAST”, http://mars.bell-labs.com/

[4] Z.Guo and P. Nilson: A VLSI implementation of MIMO
detection for future wireless communications, in Proc.
IEEE PIMRC’03, vol. 3, 2003, pp. 2852-2856

[5]M.Pedram,”Power Minimisation in IC Design: Principles
and Applications”, ACM Transactions on Design
Automation of Electronic Systems, vol. 1, no. 1, pp. 3-
56, January 1996.

[6] X. Wu, M. Pedram, L. Wang, “Multi code state
assignment for low power design”, Circuits, Devices and

Paper ID: 18021601 534

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 4, April 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Systems, IEEE Proceedings vol. 147, Issue 5, Oct. 2000
Page(s):271 - 275

[7] Area & Power Efficient VLSI Architecture for
Computing Pseudo Inverse of Channel Matrix in a
MIMO Wireless System, Zahid Khan, Tughrul Arslan,
John S. Thompson, Ahmet T. Erdogan, Proceedings of
the 19th International Conference on VLSI Design

Author Profile

Ms. K.V. Vinetha was born on 14th March 1989 in
Andhrapradesh, India. She completed her Btech in
ECE from khader memorial college of Engineering
and technology, nalgonda district (JNTUH) in the year

2010. She received her MTech in Embedded systems from
Gudlavalleru Engineering College, gudlavalleru (JNTUK) in the
year 2013. She is working as an Asst. professor in the department
of ECE in KKR & KSR Institute of Technology and Science
affiliated to JNTUK. She is having 3.5 years of experience.

Mrs. S. Thirumala Devi was born on 30 Aug 1987.
She received her B.Tech degree in Electronics and
Communication Engineering from Sri vishnu
Engineering College for women bhimavaram
(JNTUH) in 2008, and M.Tech in VLSI design from

Sri vishnu Engineering College for women (JNTUK) in 2013. She
is working as an Asst professor in the department of ECE in
KKR&KSR Institute of Technology and Sciences .she is having 6
years of experience

Paper ID: 18021601 535

