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Abstract: In this paper, we proposed a new architecture of multiplier-and-accumulator (MAC) for high-speed arithmetic. By
combining multiplication with accumulation and devising a hybrid type of carry save adder (CSA), the performance was improved. Since 
the accumulator that has the largest delay in MAC was merged into CSA, the overall performance was elevated. The proposed CSA tree 
uses 1’s-complement-based radix-2 modified Booth’s algorithm (MBA) and has the modified array for the sign extension in order to
increase the bit density of the operands. The CSA propagates the carries to the least significant bits of the partial products and generates 
the least significant bits in advance to decrease the number of the input bits of the final adder. Also, the proposed MAC accumulates the 
intermediate results in the type of sum and carry bits instead of the output of the final adder, which made it possible to optimize the 
pipeline scheme to improve the performance. The proposed architecture was synthesized with 250, 180 and 130 m, and 90 nm standard 
CMOS library. Based on the theoretical and experimental estimation, we analyzed the results such as the amount of hardware resources, 
delay, and pipelining scheme. We used Sakurai’s alpha power law for the delay modeling. The proposed MAC showed the superior 
properties to the standard design in many ways and performance twice as much as the previous research in the similar clock frequency. 
We expect that the proposed MAC can be adapted to various fields requiring high performance such as the signal processing areas.
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1. Introduction  

With the recent rapid advances in multimedia and 
communication systems, real-time signal processings like 
audio signal processing, video/image processing, or large-
capacity data processing are increasingly being demanded. 
The multiplier and multiplier-and accumulator (MAC) [1] 
are the essential elements of the digital signal processing 
such as filtering, convolution, and inner products. Most 
digital signal processing methods use nonlinear functions 
such as discrete cosine transform (DCT) [2] or discrete 
wavelet transform (DWT) [3]. Because they are basically 
accomplished by repetitive application of multiplication and 
addition, the speed of the multiplication and addition 
arithmetic’s determines the execution speed proceedings. 
and performance of the entire calculation. Because the 
multiplier requires the longest delay among the basic 
operational blocks in digital system, the critical path is
determined by the multiplier, in general. For high-speed 
multiplication, the modified radix-4 Booth’s algorithm
(MBA) [4] is commonly used. However, this cannot 
completely solve the problem due to the long critical path 
for multiplication [5] In general, a multiplier uses Booth’s
algorithm [3] and array of full adders (FAs), or Wallace tree 
[5] instead of the array of FAs., i.e., this multiplier mainly 
consists of the three parts: Booth encoder, a tree to compress 
the partial products such as Wallace tree, and final adder [2], 
[4]. Because Wallace tree is to add the partial products from 
encoder as parallel as possible, its operation time is
proportional to where is the number of inputs. It uses the fact 
that counting the number of 1’samong the inputs reduces the 
number of outputs into. In real implementation, many (3:2) 
or (7:3) counters are used to reduce the number of outputs in
each pipeline step. The mos effective way to increase the
speed of a multiplier is to reduce the number of the partial 
products because multiplication proceeds a series of
additions for the partial products. To reduce the number of
calculation steps for the partial products, MBA algorithm 
has been applied mostly where Wallace tree has taken the 
role of increasing the speed to add the partial products. To

increase the speed of the MBA algorithm, many parallel 
multiplication architectures have been researched [11]– [13]. 
Among them, the architectures based on the Baugh–Wooley 
algorithm (BWA) have been developed. 

VlSI Architecture 

In 19791 anticipated scaling of VLSI technology favored the
development of regular machines that exploited concurrency 
and locality and that were programmable. As shown in
columns 2 and 3 of Table 1, twenty years was expected to
bring more than a thousand fold increase in the number of
grids2 , and hence the number of devices that could be
economically fabricated on a chip. Clearly concurrency 
(parallelism) would need to be exploited to convert this 
increase in device count to performance. Locality was 
required because the wire bandwidth at the periphery of a 
module was scaling only as the square root of the device 
count, much slower than the 2/3 power required by Rent’s
rule [LanRus71]. Also, even in 1979 it was apparent that 
wires, not gates, limited the area, performance, and power of
many modules. The issue of design complexity motivated 
regularity and programmability. Designing an array of
identical, simple processing nodes is an easier task than 
designing a complex multi-million transistor processor. A 
programmable design was called for so that the mounting 
design costs could beamortized over large numbers of
application. In the twenty years since the first conference 
many of the hard problems of parallel machine design have 
been solved. We now understand how to design fast, 
efficient networks to connect arrays of processors together 
[Dally92, DYN97]3 . Mechanisms that allow processors to
quickly communicate and synchronize over these networks 
have been developed [LDK+98]. We understand how to
implement efficient, coherent shared memory systems 
[ASHH88]. Several meth-ods of programming parallel 
machines have been demonstrated. Research machines were 
constructed to demonstrate the technology, provide a 
platform for parallel software research, and solve the 
engineering problems associated with its realization 
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[Seitz85, NWD93, SBSS93]. The results of this research 
resulted in numerous commercial machines [Scott96] that 
form the core of the high-end computer industry today4. Just 
as important, we learned what didn’t work: MIMD machines 
are preferable to SIMD machines even for data-parallel 
applications. Similarly, general-purpose MIMD machines 
are preferable to systolic arrays, even for regular 
computations with local communication. Bit-serial 
processors loose more in efficiency than they gain in
density5. A good general-purpose network (like a 3-D torus) 
usually outperforms a network with a topology matched to
the problem of interest (like a tree for divide and conquer 
problems). It is better to provide a general-purpose set of
mechanisms than to specialize a machine for a single model 
of computation. While successful at the high end, parallel 
VLSI architectures have had little impact on the mainstream 
computer industry. Most desktop machines are 
uniprocessors and even departmental servers contain at most 
a few 10s of processors. Today’s mainstream 
microprocessor chips are dense enough to hold 1000 of the 
8086s or 68000s of 1979, yet we use all of this area to
implement a single processor. What went wrong? Why isn’t
the average PC a fine-grain parallel machine with 10s of
processors on integrated processor-DRAM chips in the spirit 
of Mosaic or the J-Machine? By many objective measures 
this would clearly be a more efficient architecture. There are 
three main reasons for this course of events:  
1) There was considerable opportunity to apply additional 

grids to improve the performance of sequential 
processors.  

2) Software compatibility favored sequential machines.  
3) High-overhead mechanisms used in early parallel 

machines motivated a coarse granularity of both 
hardware and software.  

In 1979 there was more than a factor of 100 difference in
performance between the best microprocessors (0.5MIPS, 
0.001MFLOPS) and a high-end CPU such as used in the
Cray 1 (70MIPS, 250MFLOPS [Russel78]) or IBM 370. 
Only a small part of this difference, about a factor of 3, was 
due to the difference in gate delay between bipolar and MOS
technology. Most of the difference was due to increased gate 
count that was used to aggressively pipeline execution and 
to exploit parallelism. Between 1979 and 1999 
microprocessors closed this gap by incorporating most of the 
advanced features pioneered in mainframes and 
supercomputers in the 1960s and 70s as well as a few new 
tricks. On-chip caches, on-chip memory management units, 
pipelined multipliers and floating-point units, multiple 
instruction issue, and even out-of-order instruction issue 
were added to processors during this period. The addition of
these features, along with quadrupling the word width from 
16-bits to 64-bits created a sufficient appetite for grids 
without resorting to explicit parallelism. During the past 20
years, the performance of a high-end microprocessor 
increased from 0.5MIPS to 500MIPS, about a factor of
1000. From the data in Table 1, we see that clock frequency 
increased by a factor of 80: a factor of 20 is due to gate 
delay and a factor of 4 is due to reducing the number of
gates per clock. The remaining factor of 12.5 reflects a 
reduction in clocks per instruction (CPI) from about 10 for
the unpipelined microprocessors of 1979 to just under 1 for 
today’s 3- and 4-way multiple-issue superscalar processors. 

Software evolved considerably during the last 20 years: from 
text-based applications running on proprietary operating 
systems (like VMS and MVS) to graphics-based 
applications running on third-party operating systems (like 
Windows and Unix). What remained constant, however, was 
the sequential nature of this software. Manufacturers 
wanting to sell machines that would run existing software 
needed to build fast sequential machines. Commercial 
parallel machines shut themselves out of the mainstream by
taking a path that emphasized capability (running very large 
problems) rather than economy (solving the most problems 
per dollar ´ second). These machines were coarse-grained 
both in the amount of memory per node and in the size of
individually scheduled tasks. Early machines were forced by
high-overhead mechanisms to run programs with large tasks 
sizes. To ensure software compatibility, later machines were 
forced to follow this same route, often because of macro 
packages (like PVM and MPI) that hid the improved 
mechanisms behind high-overhead software. A coarse-grain 
parallel computer node is largely indistinguishable from a 
conventional workstation or PC with one exception: it is
considerably more expensive. While one can equalize the 
expense by constructing coarse-grain parallel computers 
from networks of workstations [ACP95], achieving an
economy that is better than serial machines requires fine-
grain nodes [FKD+95]. In summary, for most of the 80s and 
90s software compatibility motivated building sequential 
machines; there was little economic advantage to coarse-
grain parallel machines; and there were many obvious ways 
to use more grids to make a sequential CPU faster. Given 
this environment, it is no surprise that industry responded by
making sequential CPUs faster and only building coarse-
grain parallel machines. The next 20 years The next 20 years 
promise to be exciting ones in the area of VLSI architecture 
with a major revolution in the architecture of mainstream 
processors. Continued scaling of technology (columns 3 and 
4 of Table 16 ) will give us yet another thousandfold 
increase in chip density. As in 1979 it is natural to think of
developing architectures that are programmable and exploit 
concurrency and locality to exploit this increased density. 
Unlike 1979, however, there are three reasons why a 
revolution is likely now: First, sequential processors are out 
of steam. While clever architects will undoubtedly continue 
to develop new methods to squeak a few percentage points 
more performance from sequential processors, we are clearly 
well past the point of diminishing returns7 . Large amounts 
of chip area are spent on complex instruction issue logic and 
branch prediction hardware while yielding small 
improvements in performance. To continue improving 
performance geometrically each year, there is no alternative 
except to exploit explicit parallelism. 

2. MIMO System Model  

In MIMO communication systems, more than one antenna is
used at the transmitter to transmit symbols and more than 
one antenna is used at the receiver to receive them. In the
diagram of Figure 1, spatial multiplexing is used and M 
transmit antennas transmit M symbols simultaneously while 
each symbol is received by the N receive antennas. Each 
symbol transmitted is received by all the receiving antennas 
thus making multiple channel paths. These paths, if
combined, make a matrix of channel elements. Each symbol 
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makes N channel paths and is received by N receive 
antennas. Since there are M symbols transmitted 
simultaneously, the channel becomes a NxM matrix. 

Figure 1: MIMO System Model 

If s = (s1,s2,…….sM)T denotes the symbol vector 
transmitted and a vector r = (𝑟1,𝑟2,…….𝑟𝑀)𝑇for received 
signal, H denotes the NxM channel matrix between the
receive and transmit antenna array, and v denotes the 
AWGN independent and identically distributed noise vector, 
then the corresponding receive vector r at the input of the
MIMO receiver is given by: r = Hs + v (2)  

2.1 Square Root Algorithm for V-BLAST 

In VBLAST, successive nulling and cancellation is used to
detect the transmitted symbols. The channel matrix is first 
inverted and then reordered to detect that symbol first which 
has the highest post detection Signal to Noise ratio (SNR). 
This corresponds to the row of the inverted channel matrix 
having minimum Euclidean distance. The symbol after 
detection is subtracted from the received symbol vector. The 
corresponding column of the H matrix is zeroed down and 
the process is repeated with the deflated channel matrix until 
all the symbols are detected. In this research, MMSE is used 
for channel inversion. The pseudo inverse of a generic 
matrix H is given by 𝐻+=(𝐻∗𝐻)−1𝐻∗=𝑅−1𝑄∗ (3) The 
pseudo inverse can be computed using either singular value 
decomposition (SVD) or QR decomposition. The square root 
algorithm [3] is developed for MMSE-VBLAST and 
computes the QR decomposition of the augmented channel 
matrix. 𝐻𝑁𝑥𝑀 𝛼 𝐼𝑀𝑥𝑀 = QR = 𝑄𝑎𝑁𝑥𝑀𝑥 𝑅𝑀𝑥𝑀 (4) Here 
x denotes the entries that are not relevant. The algorithm 
first decomposes the channel matrix into QR 𝑎𝑟+𝑗𝑎1 and 
then computes 𝑃1/2=𝑅−1. Once 𝑄𝑎 and 𝑃1/2 are computed, 
the repeated pseudo inverse can be avoided. The algorithm is
described below:  

1) Compute 𝑄𝑎 and 𝑃1/2 using equation (5):  
B𝜀𝑖 = X (5) B = 1𝐻𝑖𝑃| 𝑖−11/20𝑀𝑥1𝑃| 𝑖−11/2−𝑒𝑖𝑁𝑥1𝐵𝑖−1 X
= 𝑥01𝑥𝑀𝑥𝑃| 𝑖−11/2𝑥𝐵𝑖 Here i represent iterations and i = 
1… N. B is the prearray matrix and has dimension of
(1+M+N) x (1+M) and 𝑃|01/2=1 𝛼𝐼,𝐵0= 0𝑁𝑥𝑀𝑒𝑖𝑁𝑥1 is the 
i-th unit vector of dimension N and 𝜃𝑖 is any unitary 
transformation (Jacobi rotation) that block lower 
triangularizes the pre-array denoted by M. After N iterations, 
𝑃01/2= 𝑃|𝑁1/2𝑎𝑛𝑑 𝑄𝑎= 𝐵𝑁 (6) Equations (5) and (6) are 
used in pseudo inverse computation. For the rest of the 
algorithm, the reader is referred to [3].  

2.2 CORDIC  

In hardware, an efficient way of accomplishing a Givens 
rotation is using a CORDIC. CORDIC implements the 
rotation equations: 𝑥′=cos𝜃 𝑥−𝑦tan𝜃 𝑦′=cos𝜃 𝑦+𝑥tan𝜃 (7) 
When angles are selected such that: tan𝜃=2−𝑖 (8) In this 
case, multiplication by simply becomes a right shift. When 
several of these CORDIC processing elements are used 
together, one can rotate by an arbitrary angle by rotating by
a combination of allowed angles: 𝜃=𝑡𝑎𝑛−12−𝑖 (9) For a 
rotation using a fixed number of iterations the terms turn out 
to be a constant. The constant scaling value can be seen in
[6] for up to 15 iterations. For our design we need the 
CORDIC to first rotate a vector to the nulling axis and then 
remember the angle rotated to following vectors can be
rotated to the same angle. These two modes of operation are 
known as vectoring and rotation, respectively. The design of
our CORDIC implemented the rotation equations (7) using 
the constraint on angles in (9) such that our final result 
nulls𝑦′. We also needed to design a CORDIC that operates 
in vectoring and rotation mode. In order to implement the
equations, we used shifters and adders to do the bulk of the 
work along with simple decision logic. Each processing 
element receives two input vectors and finds their sign. It
must now decide based on their signs whether to rotate up or
down 

Figure 2: VLSI architecture for Pseudo Inverse 

Figure 3: Conventional MAC Module The main design 

 platform used during this project was SIMULINK. It is a 
tool-flow that enables the use and creation of high level 
block diagrams which can be used for simulation, emulation, 
and hardware description. The blocks used in this design 
were from the Xilinx block set. Based on Xilinx block set 
the architecture of Pseudo Inverse is designed and can be
seen as follows Xilinx block set. Based on Xilinx block set 
the architecture of Pseudo Inverse is
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Figure 4: VLSI architecture for Pseudo Inverse designed by
Xilinx Blocksets 

3. Results  

Every block was tested extensively in simulation. Testing 
was done by performing the algorithm for that block in
MATLAB, Xilinx System Generator and Xilinx ISE to
obtain the expected values given certain data. The blocks 
were then given the same inputs as the algorithm was given 
in MATLAB, simulation was run, and the outputs of the 
blocks were reviewed. All of the blocks performed as
desired, given several known test inputs of a wide range. 
The total power consumed by Pseudo Inverse module is
obtained as 239mW. 

Figure 5: Power Analysis of PINV Module

Figure 6: Device family and package used for Pseudo 
inverse Module It is clear from Fig. 7 (b) that in Pseudo 
Inverse Module, CORDIC has used two third of the chip 
area. However area use by Flip-Flops, Look Up table etc. 
can be viewed by the figure provided below in

Figure 7: (a) Area utilization summary for Pseudo inverse 
Module (b) layout of Pseudo Inverse module 

4. Conclusion 

Instead of QR triangular array that employs large number 
processors, single processor based VLSI architecture is
proposed for V-BLAST detection. The quantization scheme 
of the square root algorithm for V-BLAST detection is
presented considering the tradeoff between the hardware 
complexity and the performance. The proposed architecture 
is implemented in SIMULINK used by special sets of
XILINX block sets. While the full Square Root algorithm 
was not designed, the major computationally complex parts 
were. Finding 𝑝1/2 enables one to easily perform SIC and 
subsequently decode information streams in V-BLAST 
architecture. The future work will be addressed to design 
and implement other module of square root algorithm like 
SORT and NULL for power analysis and area utilization. 
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