
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 5 Issue 3, March 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

On The Homogeneous Biquadratic Equation With 5 
Unknowns: x4

-y
4
=65 (z

2
-w

2
) R

2
  

 

Dr. P. Jayakumar
1
, R. Venkatraman

2
  

 
1Professor of Mathematics, Periyar Maniammai University, Vallam, Thanajvur-613 403,Tamil Nadu, India 

 
 2Ph.D. Scholar, Assistant Professor of Mathematics, SRM University Vadapalani Campus, Chennai -600026. Tamil Nadu, India 

 
 

Abstract: The Homogenous biquadratic equation with five unknowns given by x4-y4=65 (z2-w2) R2  is considered and analyzed for 
finding its non zero distinct integral solutions. Introducing the linear transformations x = u + v, y = u – v, z =2uv +1, w =2uv-1 and 
employing the method of factorization different patterns of non zero distinct integer solutions of the equation under the above equation 
are obtained. A few interesting relations between the integral solutions and the special numbers namely Polygonal numbers, Pyramidal 
numbers, Centered Polygonal numbers, Centered Pyramidal numbers, Thabit-ibn-Kurrah number, Star number, Carol number, woodall 
number, kynea number, pentatope number,stellaoctangul number,octahedral number, Mersenne number are exhibited.  
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Notations used: 

Tm,n - Polygonal number of rank n with size m 
m

nP
 - Pyramidal number of rank n with size m 

gn - Gnomonic number of rank n 

Prn - Pronic number of rank n 

Ct16,n- Centered hexadecagonal pyramidal number of rank n 

OHn - Octahedral number of rank n 

SOn - Stella octangular number of rank n 

\kyn - kynea number 
carln -carol number  
 

1. Introduction 
 
The theory of Diophantine equations offers a rich variety of 
fascinating problems. In particular biquadratic Diophantine 
equations, homogeneous and non-homogeneous have 
aroused the interest of numerous mathematicians since 
antiquity [1-12]. In this context one may refer [4-10] for 
various problems on the biquadratic Diophantine equations. 
However, often we come across non-homogeneous 
biquadratic equations and as such one may require its 
integral solution in its most general form. This paper 
concern with the homogeneous biquadratic equation with 
five unknowns x4–y4=65(z2–w2)R2 for determining its 
infinitely many non-zero integral solutions. Also a few 
interesting properties among the solutions are presented. 
  
2. Method of Analysis 

 

The biquadratic equation with five unknowns to be solved 
for its non-zero distinct integral solution is  

 
22244 )(65 Rwzyx                      (1) 

 
Consider the transformations  

x = u + v, y = u – v, z = 2uv + 1, w = 2uv – 1         (2) 
 
On substituting (2) in (1), we get  

u2 + v2 = 65R2                                                                      (3)  

2.1 Pattern: I 
 

Assume 65 = (8 + i) (8 – i)                               (4) 
and R= a2 + b2 = (a + i b) (a – i b)                        (5)  

Using (4) and (5) in (3) and employing the method of 
factorization we get.  
(u + i v) (u – iv) = (8 + i) (8 – i) (a + i b)2 (a – i b)2 
 
On equating the positive and negative factors, we have,  
(u + i v) = (8 + i) (a + i b)2  
(u + i v) = (8 – i) (a – i b)2 
 
On equating real and imaginary parts, we get  
u = u (a, b) = 8a2 – 8b2 – 2ab  
v = v (a, b) = a2 – b2 + 16ab  
 
On substituting u and v in (2) we get the values of x, y, z and 
w. The non-zero distinct integrals values of x, y, z, w and R 
satisfying (1) are given by  
x = x (a, b) = 9a2 – 9b2 + 14ab  
y = y (a, b) = 7a2 – 7b2 – 18ab  
z = z (a, b) = 2(8a4 + 8b4 – 48a2 b2 + 126a3b – 126ab3) +1 
w = w (a, b) = 2(8a4 +8b4 – 48a2 b2 + 126a3b –126ab3) –1 
R = R (a, b) = a2 + b2 
 

Properties:-  

 1. x (2, a) + y (2, a) + Ct16,a + 8t4,a – W4 = 0 
 2. R (a+1, a+1) – 2t4,A – G2a  0 (mod3) 
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 3. z (1,b) – W(1,b) – OH2   
 4. x [a(a+1),1] – 9y[a(a+1),1] – 260Pa = 0 
 5. 7x [a(2a2-1),1]-9y[a(2a2-1),1] – 260Sa = 0 
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2.2 Pattern: II  

 
Also 65 can be written in equation (3) as  

65 = (1 +8i) (1 – 8i)                                 (6) 
Using (5) and (6) in equation (3) it is written in factorizable 
form as  
(u + iv) (u – iv) = (1 +8i) (1 – 8i) (a + ib)2 (a – ib)2 
 
On equating the positive and negative factors, we get,  
(u + iv) = (1 +8i) (a + ib)2 

(u – iv) = (1 -8i) (a – ib)2  
 
On equating real and imaginary parts, we have  
u = u (a, b) = a2 – b2 – 16ab  
v = v (a, b) = 8a2 – 8b2 + 2ab  
 
Substituting the values of u and v in (2), the non-zero distinct 
values of x, y, z, w and R satisfying (1) are given by  
x = x (a, b) = 9a2 – 9b2 – 14ab  
y = y (a, b) = - 7a2 + 7b2 – 18ab  
z = z (a, b) = 2(8a4 + 8b4 – 48a2 b2 - 126a3b + 126ab3) +1  
w = w (a, b) = 2 (8a4 + 8b4 – 48a2 b2 - 126a3b +126ab3) – 1  
R = R (a, b) = a2 + b2 

 

Properties:- 

 
1.7x [(2a-1)2,1] + 9y [(2a-1)2,1] + 260 (Ga)2 = 0 

2. y (2a,1) + 7R (2a,1) + G9a – W1  0 (mod 2) 
3. R (2a, 2a) – 8t4,a= 0 
4. x (a,a+1) + y (a, a+1) + Ct 16,a + 24t4,a +G14a = 0 
5. x (a,1) + R (a,1) – 10T4,a + G7a + TK2 0 (mod 2) 
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2.3 Pattern: III 

 
Rewrite (3) as  

1 * u2 = 65R2 – v2                                                       (7) 
Assume u =65a2 –b2 = (            (8)  

Write 1 a 1 =              (9) 
Using (8) and (9) in (7) it is written in factorizable form as 
 (  a + b)2 (  a – b)2  
 = (  R +v) (  R –v)  
 

On equating the rational and irrational parts, we get  
(  + 8) (  a + b)2 = (  R + v) 
(   8) (  a  b)2 = (  R - v)  
 
On equating the real and imaginary parts, we get  
R = R (a, b) = 65a2 + b2 + 16ab  
v = v (a, b) = 520a2 + 8b2 + 130ab  
 
Substituting the values of u and v in (2), the non – zero 
distinct integral values of x, y, z, R and w satisfying (1) are 
given by  
x = x (a, b) = 585a2 + 7b2 + 130ab  
y = y (a, b) =  –455a2 – 9b2 – 130ab  
z = z (a, b) =2(33800a4 – 8b4 - 130ab3 + 8450a3b) + 1 
w = w (a, b) = 2(33800a4 – 8b4 - 130ab3+ 8450a3b) -1  
R = R (a, b) = 65a2 + b2 + 16ab  
 

Properties: 

 
1.x [A, A(2A2 -1)] + y [A,A(2A2-1)] –  

30T4,A+2(SOA)2 = 0 
2. R(A, 2A-1) – 101T4,A + G10A = 0 
3. R (2A, 2A ) – 328 T4,A = 0 
4. x [1, A(A+1)]-7R[1,A(A+1)] – 18 PA –PT6  0 (mod 4) 

5. y (A,1) + 9R(A,1) – 130 T4,A – G7A –PT1 = 0 
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2.4 Pattern: IV Rewrite (3) as  
 

1 * v2 = 65R2 – u2                                     (11) 

Write 1 as 1 =                           (12)  

Assume v = 65a2 – b2 = (  a - b) (  a + b)          (13) 
 
Using (12) and (13) in (11), it is written in factorizable form as 
 

 (  a – b)2 (  a + b)2  

 = (  R - u) (  R + u)                           (14) 
 
On equating the rational and irrational factors we get, 

 
Replacing „a‟ by 8A and „b‟ by 8B in the above equations (13) 
and (15), we get  
R =R (A, B) = 520A2 + 8B2 + 16AB  
u = u (A, B) = 520A2 + 8B2 + 1040AB  
v = v (A, B) = 4160A2 – 64B2  
 
On substituting the values of u and v in (2), the non –zero 
distinct integrals values of x, y, z, w and R satisfying (1) are 
given by  
x = x (A, B) = 4680A2 – 56B2 + 1040AB 
y = y (A, B) = – 3640A2 + 72B2 + 1040AB  
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z = z (A, B) = 2 (2163200A4 – 512B4 +  
 4326400A3B – 66560AB3) +1 
w = w (A, B) = 2(2163200A4 – 512B4 +  
 4326400A3B – 66560AB3) -1  
R =R (A, B) = 520A2 + 8B2 + 16AB  
 
Properties:- 

1. x (A+1, 1)–y (A+1, 1 – 8320 T4,– G8320A-S5  (mod 2) 

2. y (1A) – 9R (1,A) – G448A 0 (mod 3) 
3. R [A(2A2-1), 1] – 520 (SOA)2 + 16 (SOA) –W2

 =  
 Star number 
4. z (A, 1) – W(A,1) 0 (mod 2) 
5. x (1,B) + 7R (1,B) - P  - G516 B 0 (mod 2) 
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2.5 Pattern: V 

 
Write (3) as u2 - R2 = 64R2 - v2  

(u + R) (u – R) = (8R + v) (8R – v),                 (16) 
which is expressed in the form of ratio as  

 =  , B  0                         (17) 

 
This is equivalent to the following two equations  
- uA + R(8B +A) – VB = 0  
uB + R (B – 8A) – VA = 0  
 
On solving the above equations by the method of cross 
multiplication we get,  
u = u (A, B) = –A2 – B2 –16AB 
R = R (A, B) = – A2 – B2 
v = v (A, B) = 8A2 –8B2 – 2AB 
 
Substituting the values of u and v in (2), the non – zero distinct 
integral values of x, y, z, w and R satisfying (1) are given by,  
x = x (A, B) = 7A2 – 9B2 – 18AB 
y = y (A, B) = – 9A2 +7B2 –14AB  
z = z (A, B) = 2[– 8A4 + 8B4 +32A2 B2 –126 A3B  
 +126AB3] +1 
w = w (A, B) = 2[–8A4+8B4+32A2B2  
 126A3B+126AB3] – 1  
R = R (A, B) = - A2 - B2 

 

Properties :  

1.9x [1, A(A+1)] + 7y [1, A(A+1)] + 32(PA)2 –  
 260T4,A –G130A = woodall number 

2. R (A+1, 1) + T4,A + GA 0 (mod 3) 
3. y [ 1, A(2A2 -1)] + 7x [1,A(2A2 -1)] + 14 SOA +  
 W3-Ky1 = 0  
4. R (2A, 2A) + 8t4,A= 0 
5. x (1,1) + 7R (1,1) +P  = Nasty number 
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3. Conclusion 
 
It is worth to note that in (2), the transformations for z and w 
may be considered as z = 2u + v and w = 2u –v. For this 
case, the values of x, y and R are the same as above where as 
the values of z and w changes for every pattern. To conclude 
one may consider biquadratic equations with multivariables 
(>5) and search for their non-zero distinct integer solutions 
along with their corresponding properties.  
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