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Abstract: In this work Differential Transform Method (DTM) is used to study the buckling behavior of the single walled carbon
nanotube (SWCNT). The critical buckling load is being found out up to fourth degree accuracy for different boundary conditions, i.e.
Clamped-Clamped, Simply Supported at ends, Clamped Hinged, and Clamped Free. Effect of different nonlocal parameters, different
L/d ratio on critical buckling load is being discussed. The DTM is implemented for the nonlocal SWCNT analysis and this yields results
with high degree of accuracy. Further, present method can be applied to linear and nonlinear problems.
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1.Introduction 

Carbon nanotubes (CNTs) are allotropes of carbon with a
cylindrical nanostructure. Nanotubes have been constructed
with length-to-diameter ratio of up to 132,000,000:1[33]
significantly larger than any other material. These cylindrical
carbon molecules have novel properties[1],[4], and [5],
making them potentially useful in many applications in
nanotechnology, aerospace, electronics, optics, and other
fields of materials science, as well as potential uses in
architectural fields.The structure of an SWNT can be
conceptualized by wrapping a one-atom-thick layer of
graphite called graphene into a seamless cylinder[1] and[6]. 
Single-walled nanotubes are an important variety of carbon
nanotube because they exhibit electric properties that are not
shared by the multi-walled carbon nanotube (MWNT)
variants [4]. Single-walled nanotubes are the most likely
candidate for miniaturizing electronics beyond the micro-
electromechanical scale currently used in electronics [9].
The most basic building block of these systems is the electric
wire, and SWNTs can be excellent conductors. Carbon
nanotubes are the strongest and stiffest materials yet
discovered in terms of tensile strength and Elastic Modulus
respectively [2],[7], and [13]. This strength results from the
covalent sp2 bonds formed between the individual carbon
atoms. Since carbon nanotubes have a low density for a solid
of 1.3 to 1.4 g·cm−3, its specific strength of up to 48,000
KN·m·kg−1 is the best of known materials, compared to
high-carbon steel's 154 KN·m·kg−1 [25], and [30].

Table 1: Comparison of mechanical properties [34]

Material
Young’s 

Modulus(TPa)

Tensile 
Strength 

(GPa)
Elongation at 

break (%)
SWNT ~1 (from 1 to 5) 13–53 16

Armchair SWNT 0.94 126.2 23.1
Zigzag SWNT 0.94 94.5 15.6–17.5
Stainless Steel 0.186–0.214 0.38–1.55 15–50

2.Differential Transform Method 

The Differential Transform Method is a semi-analytical 
method based on the Taylor series expansion. In this 
method, certain transformation rules are applied and the 
governing differential equations and the boundary conditions 
of the system are transformed into a set of algebraic 
equations in terms of the differential transforms of the 
original functions. The solution of these algebraic equations 
gives the desired solution of the problem. The differential
transformation of the kth derivative of function u(x) is
defined as follows:
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And the differential inverse transformation of U(K) is
expressed as  
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In real application function, u(x) is expressed as finite series
and equation (2) can be written as:
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Now using certain transformation rules we can convert the 
governing differential equation and associated Boundary 
Conditions into some algebraic equations and after solving 
them we can get the desired results. We can use the 
following transformation table for this purpose.  

Table 2: Differential Transformations for Mathematical 
Equations 

 Original Function Transformed Function 
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3.Formulation 

A. Non-Local Formulation of SWCNT 
In this study, we considered the Euler-Bernoulli beam model 
using stress gradient approach for the buckling analysis of
SWCNT with nonlocal effect. The governing differential 
equation for the buckling [13] is

 
4 2 2

2
04 2 4( ) 0d w d d wEI P w e a

dx dx dx
 

   
 

(4) 

Where ),( txww  is the transverse beam deflection, tx,
are the spatial coordinate and the time; E is the Young 
modulus of elasticity; P is the buckling load, I is the 
moment of inertia of the beam cross-section, e0 is a constant 
appropriate to each material, a is an internal characteristic 
length. The parameter e0a is determined by matching the 
dispersion curves based on the atomic models [11]. 

B. DTM Formulation 
In order to derive DTM form of Eq. (4), we refer Table 2 
and the following expression can be written easily. 

Where, 
2
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The analytical solution [14] for the Eq. (4) given by
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Where 1m  for simply supported, 2m  for clamped-
clamped, and also 7.0/1m  for clamped-simply 
supported & m =1/2 for cantilever column are considered for 
the first mode of buckling load.  

C. Application of Boundary Conditions 

1) Clamped at Both Ends 
In this case, consider the column supported by clamped at
both the ends and the boundary conditions defined as

00,0,00,0 =(L)w'=w(L)=)(w'=)w(  (8) 

2) Simply Supported at Both Ends 
The boundary conditions for the case of simply supported 
SWCNT at both the ends are defined as

0''0,0,0''0,0 =(L)w=w(L)=)(w=)w(  (9) 
  
3) Clamped at One End Hinged At Another 
For the SWCNT supported by clamped at one end and 
Hinged at the other end, the boundary conditions are defined 
as

0''0,0,0'0,0 =(L)w=w(L)=)(w=)w(
(10) 

4) Clamped at One End Free at Another 
For the SWCNT supported by clamped at one end and free 
at the other end, the boundary conditions are defined as

00,0,0'0,0 =V(L)=M(L)=)(w=)w( (11)
2 4
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Here, 
NLM and 

NLV are the nonlocal moment and 
nonlocal shear force. 

4.Results 

a) Validation 
Now for the better understanding of DTM, we will take an
example of Euler-Bernoulli Beam Model and will try to find 
out the critical buckling load of it and will compare the 
results with the exact solution. Taking the diameter of
nanotube as 1nm. 

1) Clamped-Clamped Column

Table 3: Critical Buckling loads of Clamped-Clamped
Column at both the ends

Present 39.478

Exact 39.478

2) Simply Supported Column 

Table 4: Critical Buckling loads of Simply Supported 
Column at both the ends 

Present 9.8696

Exact 9.8696

3) clamped simply supported Column 

Table 5: Critical Buckling loads of column Clamped at one 
end and Hinged at another end 

Present 20.142

Exact 20.142

b)New Results 

4) Comparison with Analytical Solutions 
The effective properties of SWCNT are taken as those of
Reddy and Pang [35]. The Young's modulus E=1000 GPa, 
mass density ρ=2300 kg/m3, Poisson's ratio ν=0.19 are 
considered in the analysis. 

The symbolic computer software package tool of MATLAB 
has been used to solve recurrence relations of critical 
buckling load with associated boundary conditions. By using 
the differential transform method as the numerical method 
the critical buckling load for SWCNT has been computed. 
After comparing with the analytical method, this proposed 
technique is very close to the exact results. Unlike the other 
approximated numerical methods, the DTM and the exact 
buckling loads are identical for the case of clamped-
clamped, simply supported and clamped free SWCNT. Here 
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the solution is obtained up to four decimal places. In the case 
of Clamped Hinged SWCNT, there is slight variation with 
the analytical method. It has been observed that the nonlocal 
parameter affected the buckling load and this effect has 
captured clearly by the DTM. When the nonlocal parameter 

is zero, the solution obtained for the classical Euler-
Bernoulli beam model without nonlocal effect. 

When d (diameter of carbon nanotube) = 1nm

Figure 1: Critical buckling load (N) v/s non-local parameter for different L/d ratio for the Boundary Condition: Clamped at
both ends 

It is observed that critical buckling load is decreasing as nonlocal parameter increases, but for higher L/d ratio the rate of
decrement decreases. 

Figure 2: Critical buckling load (N) v/s non-local parameter for different L/d ratio 

Boundary Condition: Simply supported at both ends 

Again critical Buckling Load is decreasing as the nonlocal parameter increases but at higher L/d ratio the rate of decrement is
very low  
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Figure 3: Critical buckling load (N)v/s non-local parameter for different L/d ratio 

Boundary Condition: Clamped at one end and hinged at another 

Critical Buckling Load is decreasing as the nonlocal parameter increases but at higher L/d ratio the rate of decrement is very 
low. 

Figure 4: Critical buckling load (N) v/s non-local parameter for different L/d ratio 

Boundary Condition: Clamped at one end and free at another  
Critical Buckling is decreasing with the increasing nonlocal parameter but the rate of decreasing is very low. So we can say 
that nonlocal parameter is not affecting the critical buckling load. Even at higher L/d, critical buckling load becomes almost 
constant. 

When d (diameter of carbon nanotube) = 2nm 

Figure 5: Critical buckling load (N) v/s non-local parameter for different L/d ratio 
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Boundary Condition: Clamped at both ends 

In this case also, the critical buckling load is decreasing with the higher nonlocal parameter. And at higher L/d ratio the 
buckling load almost remains constant. But when we increase the diameter we can clearly see that buckling load increases.  

Figure 6: Critical buckling load (N) v/s non-local parameter for different L/d ratio 

Boundary Condition: Simply Supported at both ends 

In this case also, the critical buckling load is decreasing with the higher nonlocal parameter. And at higher L/d ratio the 
buckling load almost remains constant. But when we increase the diameter we can clearly see that buckling load increases. 

Figure 7: Critical buckling load (N) v/s non-local parameter for different L/d ratio

Boundary Condition: Clamped at one end and hinged at another
In this case also, the critical buckling load is decreasing with the higher nonlocal parameter. And at higher L/d ratio the
buckling load almost remains constant. But when we increase the diameter we can clearly see that buckling load increases.

Figure 8: Critical buckling load (N) v/s non-local parameter for different L/d ratio 
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Boundary Condition: Clamped at one end free at another 

In this case, we can clearly see that somehow for lower L/d 
ratios critical buckling load decreases as nonlocal parameter 
increases but at higher L/d ratio critical buckling load 
remains almost constant and as we increase the diameter 
critical buckling load decreases. 

5.Conclusion 

In this study, the buckling analysis of an SWCNT with a 
nonlocal theory for various boundary conditions like 
clamped-clamped, simply supported, clamped free and 
clamped hinged are studied by a semi-analytical numerical 
technique called the Differential Transform Method in a 
simple and accurate way. The simplicity of the solutions of
the algebraic equations is remarkable because equations can
be solved very quickly using the symbolic computational 
software, MATLAB. In this study, using DTM, the critical 
buckling loads have been calculated for various nonlocal 
parameter values. The calculated buckling load results are 
compared with analytical solutions and a very good close 
agreement is observed between the analytical and the present 
numerical method. From this analysis, it can be seen that the 
solutions obtained for a single-walled carbon nanotube can
be helpful in investigating more complicated nanotube 
structures with nonlocal effects. 
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