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Abstract: This paper presents a simple circuit for control of chaos in nonlinear oscillator circuit. Numerical and circuit simulation 
results are used to visualize and illustrate the effectiveness of chaos control. Duffing Holmes oscillator circuit is considered as a 
nonlinear circuit. 
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1. Introduction 

Over the past few decades, the complex and chaotic behavior 
of nonlinear dynamic system has attracted the attention of
many researchers, scientists and engineers in both the 
academic area and industry. Most of the electronic/ electrical 
devices are nonlinear in nature that shows chaotic behavior. 
There are some practical situations where one needs to
improve the performance of a dynamical system by avoiding 
/ controlling chaos.  

The deterministic chaos seems to explain many natural 
phenomena and there has been growing interest to use chaos 
profitably by synchronizing chaotic orbits [1] [2] due to its
potential application in communication [3][4][5][6][7]. 
However, in many situations chaos is undesirable 
phenomenon, which may lead to irregular operation in
physical systems. Thus from a practical point of view one 
would like to convert chaotic solutions into periodic or limit 
cycle solutions.  

The strategies for the control of chaos can be classified into 
two main classes, which involve either stabilizing or
suppressing chaos. The first category of methods includes 
the control of chaos by stabilizing the unstable periodic orbits 
embedded in a chaotic attractor such as OGY [8],
proportional feedback [9], occasional proportional feedback 
[10] [11], continuous feedback [12] [13], delayed continuous 
feedback [14][15][16], extended delayed continuous 
feedback [17] and pulsed proportional feedback [18]. The 
second category of methods includes the control of chaos by
converting chaotic behaviour into any one of the desired 
periodic behaviour exhibited by the system such as adaptive 
control algorithm [19] [20], parametric perturbation [21],
using second periodic force [22], weak feedback control 
[23], addition of noise [24] and constant feedback [25], etc. 
The algorithms used for control of chaos have also been 
classified into closed loop or feedback methods [26] [9] and 
open loop or non-feedback methods [21]. In a closed loop 
method the perturbation is based upon the prior knowledge of
the state of the system whereas in a open loop method the 
perturbation is independent of the knowledge of the state of
the system.  

Patidar et al [27] presented a simple method to control 
chaotic oscillations of systems described by second or third 
order nonlinear differential equations. Their method was a 
closed loop or feedback method and can be classified as a 
suppressing chaos algorithm, as it converts chaotic behavior 
into a desired periodic behavior. They do not require any 
prior knowledge of the system dynamics, such as location of
unstable periodic orbits, periodic orbits or stable fixed points. 
They only required a weak periodic oscillator of the same 
kind as the chaotic oscillator. They introduced a mutual 
coupling between the state variables of both chaotic and 
weak periodic oscillators. They have introduced a new 
parameter called coupling strength to control the mutual 
coupling between the chaotic and weak periodic oscillators.  
  
Based on the literature review it is observed that the feedback 
control method is one of the most effective methods of chaos 
control. The algorithm given by [27] is one of the effective 
methods for the chaos control. The work presented in this 
paper proposes a new circuit based on the algorithm 
introduced by [27] for control of chaos in Duffing Holmes 
oscillator circuit. The effectiveness of the proposed work is
illustrated through matlab simulation and PSpice circuit 
simulation. 

2. Duffing Holmes Oscillator Circuit [28] 

The Duffing-Holmes oscillator is given either by the second 
order nonautonomous differential equation [26][29][30][31]: 
  

(1) 

or by an equivalent set of two first order nonautonomous 
equations 

(2a) 
(2b)  

with . In (1) and (2) b, a, and ω are the 
damping coefficient, the amplitude and the frequency of the 
external driving force, respectively.  
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Figure 1: Duffing Holmes Oscillator Circuit 

Differential equations describing the circuit can be easily 
obtained using the Kirchhoff’s
laws: - 

, 

where, is the voltage across the capacitor C and is the 
current through the inductor L.

= - (Vc+kV*), for Vc<-V 
= (k-1) Vc, for -V≤Vc≤V*
= - (Vc-kV*), for Vc>V* 

where k = (R2/R1) + 1 is the gain of the amplifying stage and 
V* is the voltage drop across an opened diode (for silicon 
diode V* = 0.5V at 0.1mA). 

3. Chaos Control 

The schematic representation of an algorithm used for 
suppression of chaos is shown in Fig. 2. It is a two oscillator 
system in which one is a chaotic which is to be suppressed 
and another one is a weak periodic but of the same kind of
the chaotic oscillator. Here the mixing of signals is controlled 
by coupling strength parameter (c). In this algorithm the 
mixing of signals is bidirectional i.e. the percentage of
mixing depends upon the value of mutual coupling strength 
(i.e. if c =0.5 then the percentage of mixing will be only 
50%).  

Figure 2: Schematic representation of the algorithm for
suppression of chaos. 

We have constructed an analog circuit equivalent to the 
schematic representation of the algorithm for suppression of
chaos given in Fig. 2 with Duffing Holmes Oscillators as
chaotic oscillator and periodic oscillator by using 
conventional operational amplifiers and diodes, which is
shown in Fig. 3.
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Figure 3: Circuit Diagram for the control of chaos in
Duffing-Holmes oscillator 

The circuit is constructed using conventional operational 
amplifiers and diodes. The operational amplifiers used are 
op-amp µA741C and diodes used are D1N4148. The values 
of various resistors, inductors and capacitors used in the 
circuit are as given below: -  

4. Simulation Results 

We present the results of PSpice simulation study and their 
comparison with the numerical results in Fig. 4 – Fig. 8.
When c=0, the circuit of Fig. 3 behaves as normal Duffing 
Holmes Oscillators. In these figures we can see that for 
different forcing amplitudes it generates chaotic signals. 
These chaotic signals are suppressed by mixing (as per the 
algorithm) a very small periodic signal generated by another 
Duffing Holmes Oscillator with small forcing amplitude of
0.005V. The numerical results are obtained by using the 
damping coefficient and the frequency of the external driving 
force as  = 0.1 and  = 1.3 respectively for different values 
of forcing amplitude F, at which chaotic signals are 
generated.  

Figure 4:  Phase Plots ( vs  i.e. on Y-axis and on X-
axis): (a) and (c) are Numerical Simulation Result and (b) 

and (d) are PSpice Simulation Result. 

We can see in Fig. 4, the chaotic signal generated at forcing 
amplitude F = 0.2 ((a) and (b)) is suppressed by mixing of
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signals with 20% coupling strength parameter (c) as shown in
figures (c) and (d).  

Figure 5: Phase Plots ( vs  i.e. on Y-axis and on X-
axis): (a) and (c) are Numerical Simulation Result and (b) 

and (d) are PSpice Simulation Result. 

We can see in Fig. 5, the chaotic signal generated at forcing 
amplitude F = 0.22 ((a) and (b)) is suppressed by mixing of
signals with 25% coupling strength parameter (c) as shown in
figures (c) and (d). 
  

Figure 6: Phase Plots ( vs  i.e. on Y-axis and on X-
axis): (a) and (c) are Numerical Simulation Result and (b) 

and (d) are PSpice Simulation Result. 

We can see in Fig. 6, the chaotic signal generated at forcing 
amplitude F = 0.24 ((a) and (b)) is suppressed by mixing of
signals with 25% coupling strength parameter (c) as shown in
figures (c) and (d). 

Figure 7: Phase Plots ( vs  i.e. on Y-axis and on X-
axis): (a) and (c) are Numerical Simulation Result and (b) 

and (d) are PSpice Simulation Result. 

We can see in Fig. 7, the chaotic signal generated at forcing 
amplitude F = 0.35 ((a) and (b)) is suppressed by mixing of
signals with 38% coupling strength parameter (c) as shown in
figures (c) and (d). 

Figure 8: Phase Plots ( vs  i.e. on Y-axis and on X-
axis): (a) and (c) are Numerical Simulation Result and (b) 

and (d) are PSpice Simulation Result. 

We can see in Fig. 8, the chaotic signal generated at forcing 
amplitude F = 0.45 ((a) and (b)) is suppressed by mixing of
signals with 40% coupling strength parameter (c) as shown in
figures (c) and (d). 

5. Conclusion 

In this paper we propose a new circuit to control chaos in
nonlinear circuits. Using Duffing Holmes Oscillator as
nonlinear circuit, we have demonstrated in numerical and 
PSpice simulations that chaos can be controlled in nonlinear 
circuit. We have observed that by varying mutual coupling 
strength we can control chaos obtained at various external 
forcing amplitude. 
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