
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 5 Issue 3, March 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Bifurcation of a Prey-predator System with Holling 
Type-III Functional Response Function 

 

Ji Zhang
1
, Xiaofei Zhang

2 

 

1Tianjin University of Technology and Education No.1310,Dagu South Road, Hexi District, Tianjin 300222, China 
 

2Vishay General Semiconductor Co., Ltd. NO.88 Sixth Street, Tianjin Economic and Technological Development Area, China  
 
 
Abstract: We consider a predator-prey system with generalized Holling type-III functional response. The results developed in this article 

reveal far richer dynamics compared to the model without Holling type-III functional response. The model have two equilibrium in the 

interior for some values of parameters. We perform a qualitative analysis of model which includes positivity of solutions local asymptotic 

stability and bifurcation of equilibrium and analyze the local stability properties of the equilibrium of the model through the standard 

linearization technique. The main purpose of the article is to offer a relatively complete mathematical analysis for the model.  
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1. Introduction 
 
The purpose of this section is to propose a prey-predator 
mode: 
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Let ( )x t and ( )y t denote densities of the prey and predators 
respectively at time t .The coefficients r and K represent 
intrinsic growth rate and environmental carrying capacity for 
the prey in the absence of predation. The growth rate of the 
predator under natural conditions by s ,while 2sc is the 
maximum value of the pre capita reduction rate of 
predators. 1c is the maximum value of the per capita reduction 

rate of prey, while 1m and 2m represent the extent to which 
the environment provides protection to the prey and predator, 
respectively. All the parameters are assumed to be positive 
due to biological considerations. 
 
System (1) has been studied by many scholars [1-8], A 
prey-predator model with (predator harvesting) Holling 
type-III is studied in this paper. Using the scaling we obtain 
the following system of differential equations [9]； 
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with the initial conditions 
0 0(0) 0, (0) 0x x y y                              (3) 

Here  
(1) (2)( , ) 1 , ( , ) (1 )y y

f x y x f x y y
m x m x
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We are only interested in the dynamics of system (2) in the 
first quadrant from the standpoint of biology. 

 2
0 0 ( , ) | 0, 0R R x y R x y                     (5) 

2. Positivity of solution 
 

Lemma 2.1 For all 0t  , all solution ( ( ), ( ))x t y t of (2) with 
initial condition (3) are positive. 
 

Proof. System (2) gives 
(1)

0
( ) (0)exp( ( ( ), ( )) ) 0,

t

x t x f x s y s ds   

and 
(2)

0
( ) (0)exp( ( ( ), ( )) ) 0,

t

y t y f x s y s ds   

With initial condition (3), hence all solution starting from an 
interior of first quadrant remain in it for all future time. 
 
3. Existence and stability of axial equilibrium 
 
In order to find t growth isoc he equilibrium of system (2), we 
consider the zero lines of the system, 

(1) (2)( , ) 0, ( , ) 0xf x y yf x y 
  

The equilibrium are now the point of intersection of these zero 
growth isoclines. The axial equilibrium of system (2) are 

0 (0,0)s  , 1 (1,0)s  2 (0, / ( ))s m m   . 
 
Lemma 3.1 (i) The origin 0 (0,0)s  is always a unstable 
point. 
(ii) The axial equilibrium 1 (1,0)s  is always a saddle point. 
(iii) The axial equilibrium 2 (0, / ( ))s m m   is a stable if 

m     and a saddle point if m    . 
 

Proof. The Jacobin matrix of system (2) is given by 
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The eigenvalues of 0J are 1 1  and 2   
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The eigenvalues of 1J  are 1 1   and 2   
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1 1 / ( )m      and 2    are the eigenvalues of 

2J .Therefore the result follows. 
 
4. Bifurcation of interior equilibrium

 
 

 
In this section, we study the bifurcation of co-existing 
equilibrium which are important form an ecological point 
view. 1* 1* 1*( , )S x y and 2* 2* 2*( , )S x y  are the interior 

equilibrium points, where 1*x and 2*x are the positive root 
of the quadratic equation:  
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together with 
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Case I: If m    , 2( ) 4 ( )m m            
then no interior equilibrium exists. 
 

Case II: if m    and 2( ) 4 ( )m m            
m    ,then the equation (6) has a multiple root, say 
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has an instantaneous interior eauilibrium ( , )S x y . 
 

Case III: if 2( ) 4 ( )m m           and m     

1* 1* 1*( , )S x y  and 2* 2* 2*( , )S x y as the two distinct interior 
equilibria. 
Let  
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(i) The equilibriu 1* 1* 1*( , )S x y is always a saddle point . 
(ii) The equilibriu 2* 2* 2*( , )S x y is always a stable point if 
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(iii) System (2) undergoes a Hopf-bifurcation around the 
equilibriu 2* 2* 2*( , )S x y  if 
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Theorem 4.2 1* 2*0 x x x M     and m     

(i) The equilibriu 2* 2* 2*( , )S x y is always a saddle point . 

(ii) The equilibriu 1* 1* 1*( , )S x y  is always a stable point if 
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(iii) System (2) undergoes a Hopf-bifurcation around the 
equilibriu 1* 1* 1*( , )S x y  if 
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Proof. According to the proof of the theorem 3.1, we have 
theorem 4.1and 4.2. 
 

Theorem 4.3 System(2) undergoes a saddle-node bifurcation 
around ( , )S x y with respect to bifurcation parameter   
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Proof. The Jacobian J at the equilibrium ( , )S x y is given 
by 
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We also see that 
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The eigenvalue of the Jacobin at the saddle-node equilibrium  
Must be zero and the other eigenvalue must have negative real 
part. Therefore we can use Sotomayor’s theorem. Let 
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Thus from Sotomayor’s theorem, system(2) undergoes a 
saddle-node bifurcation around ( , )S x y . 
 
5. Conclusion  
 
In this paper, we considered a biological prey -predator model 
with Holling type-III functional response. It is observed that 
the model have two equilibrium in the interior of the positive 
prey-predator plane. The stability of the equilibrium has been 
discussed. There are two kinds of interior equilibrium which 
is locally stable for certain parametric restrictions. Saddle 
node and Hopf-bifurcation are also exhibited in this paper. 
There results indicate that prey-predator with nonlinear 
functional response not only depend on bifurcation 
parameters but also are so sensitive to parameter perturbations 
that it is important for the control of infections diseases or 
biological species. Finally the analysis provides a certain 
method for understanding biological information and carrying 
on the related intelligent computation.  
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