
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 3, March 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Automatic Generation of Commit Messages using
Natural Language Processing

M Vishalakshi1, Dr. V. Krishnapriya2

1 Research Scholar (MPhil CS), Department of Computer Science, Sri Ramakrishna College of Arts and Science for Women, Coimbatore

2 Head of the Department, Dept. of Computer Science, Sri Ramakrishna College of Arts and Science for Women, Coimbatore

Abstract: Software development requires Version Control System to manage and manipulate the changes made to source code. When
a change is done in the file, related information is updated as commit message. Most of the time, commit messages are empty or very
short. Accurate and complete commit messages summarizing the software changes are important for tracking the development and
maintenance activities of a project. This paper presents an approach of Natural Language Processing for generating automatic commit
messages, based on code changes included in a changeset and simultaneously integrated to software usage library to read the document
files of the software. Commit messages are found useful, and to present an initial model of output for natural-language commit
messages using verb phrases and their associated direct objects.

Keywords: Version Control, Software, Revision History, Commit Message, changeset, Natural Language Processing..

1. Introduction

In earlier days, software application was developed in
various languages like Visual Basic, FORTRAN, COBOL,
Dotnet, Java, etc. Now, the trend is changed and many open
source projects became common. Generally, open source
projects are developed in many languages and we should
concentrate more to acquire quality of the software
application.

In market, there are various tools available for revision
maintenance, automatic commit messages and tracking
revision history of the source code. Metrics taken from
Version Control Systems like Subversion, Clearcase, GIT
collect and save the changes as revisions and maintain the
history of the files.

Despite developers are allowed to enter commit message
when a change is done, most of the time, it is not complete
and do not have all the relevant change notes. If the commit
messages have complete information, then it would help
other developers to understand and validate the changes.
There were approaches to create automatic Commit messages
for a change set using Visualization, Code Summarization,
Line based differencing, and multi document summarization
approaches.

In software development, team work and collaboration plays
vital role, as every team member will work on part of the
software application. Hence, it’s very important to have
awareness of what other team member has worked on. But,
it’s practically difficult to get that information, if it’s not
tracked or stored in a system. If the version control system
collects all these information properly and store it, then the
developer can work efficiently, this in turn saves time and
improve productivity of the entire team.

A successful software engineering company nowadays is
often spread over multiple locations or has an offshore
software production. The teams have to work across borders

as well as the differences of cultures and face the challenges
of distributed software development. In this situation
communication and collaboration are of utmost importance
[1-2]. The design of a well defined API, for example using
contracts as discussed in the paper by Nordio et al [3],
becomes essential. The effect of distribution on software
development has been researched from different angles [4-5].
Espinosa et al [4] looked at the impact of time zones on the
performance during software development. During the DOSE
[6-7] university course, Nordio et al [3] studied the effect of
time and cultural differences on the communication within
the teams. Possible tactical approaches to face global
software development are discussed by Carmel et al [2].

2. Version Control System

Version control systems (VCS) are used in almost any
software project with multiple team members. Teamwork
requires sharing of files. In Software Engineering, VCS are
the approved solution for managing text files and releases.
During the last few years distributed VCS like Git or
Mercurial became increasingly more popular. With the
ability to work independently of a server and a centralized
repository, the projects gain flexibility when branching and
merging. Whether you choose a centralized or a distributed
system, version control is a time-consuming, non-trivial
activity. The cycle of sharing content takes multiple
operations, commit, pull, push, merge and resolve. This
paper proposes a solution to reduce the time overhead
introduced by the standard version control systems. The
version control activities are simplified and automatized
while conflicts are avoided and resolved using change
awareness. However using the change awareness the
developers will be implicitly in the loop about the changes on
the other tasks.

Each VCS has its own terminology.
Some of the terms used in this report are adopted from the
distributed version control system Git [8]. Other notions are
specific to simplified version control.

Paper ID: NOV162047 1081

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 3, March 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Repository: A repository is the folder of the VCS containing
its Meta data and, if the repository is not bare, the working
directory. The Meta data consists of all needed version
control information like the different revisions, the branches
and the configuration.

Working directory: The working directory contains the
checked-out version of the files. The files can be modified
without using the VCS. They also will be influenced by
certain version control operations like a rollback.

Staged changes: The VCS is unaware of modifications made
in the working directory without its help. By staging the
changes, they are added to the index of the VCS and they will
be automatically included in the next revision.

Uncommitted changes: The modifications that differ from
the head revision of the working directory are denoted as
uncommitted. This equals the staged as well as the unstaged
changes.

Revision history: The commits leading to the head revision
make up the commit history. A revision may have more than
one parent if it’s a result of a merger of multiple revisions.
The revision history can therefore be more complex than a
linear list of revisions.

Head revision: The head revision is the last commit in the
revision history. Usually this will also be the most recent
commit, unless the head is moved by going to a different
revision.

Branch: A repository can have multiple branches. Each
branch has its own head revision. When the repository is
created, it already has one branch denoted as the default or
master branch.

Current branch: The current branch is the branch checked
out in the working directory.

Commit: By committing a new revision is created in the
repository with either all the modifications or only the staged
changes depending on the options used.

Share changes: Sharing refers to exchanging and merging
revisions with the main repository. Depending on the
circumstances, sharing changes includes a previous commit.
The term is represented by a chain of operations in Git and
can also be compared to the notion of “update” used by
centralized VCS like SVN.

3. Software Commit Messages

In version control systems, set of files and directories are
maintained in repository and the changes done to files in the
repository are updated with commit operation. Hence, the
change information is tracked with commit messages. This is
helpful to developer team and project manager for making
decisions and project maintenance.

Lets discuss about the importance of the commit message.
Main objective of the Commit messages is to provide
information about What and Why of the changes done. What
refers to the implementation of the change and Why refers the
context for the change. Line based differencing tools provide
details of the change, but not the context. A tool called
ChangeScribe is developed to address the issue above. This
tool generates an automatic message with the code changes
and their impact set.

A. Describing and augmenting the Context of code changes
 There are tools like Semantic Diff tool and Line based

Differencing tools for analyzing the source code version at
bytecode level. ChangeScribe is also line based
differencing tool, it augments the context of the changes
with a natural language description that includes the
commit stereotype, change description and change set. [2]

 DeltaDoc is another tool which used Symbolic execution
and summarization techniques to populate text message for
all the changes done.

 Visualizing tools are used to augment the code context of
the source code. This provides visualization of the changes
at different granularity levels.

B. Natural Language Descriptions of Software Artifacts
During Software maintenance, it’s very essential to have the
complete details of a changeset. Summarizing the changes
done in methods and classes using different information
retrieval techniques and natural language processing.
Summaries should contain all the salient features of the
source code change and the sentences are generated with
structural and natural language information. Some techniques
for Java source code have below 3 elements:
1) General description of the object in a class
2) Class stereotype information with responsibilities
3) Class behavior description

Other techniques already available are summarizing java
code fragments using machine learning technique and
summary of Java methods with local and contextual
information. ChangeScribe uses code summarization
techniques based on NLP[2]

Paper ID: NOV162047 1082

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 3, March 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

C. Empirical Studies on Characterizing Commit Messages
Various studies are conducted for characterizing commit
messages. Most of the time, the messages are descriptive to
small extent and contain few words (1 to 15 words). Some
other studies do not reveal the characteristics of commit
messages. But, they are used to categorize based on change
type.

4. Models of the File Content

The file content is modelled by three classes as shown in the
figure 6.1. The file specified by its path is represented by a
CombinedFileModel instance containing a map of lines. Each
line is a LineModel object with a randomly generated integer
as a unique identifier. Using this identifier the line points to
its predecessor and its successor. A line has multiple line
version arranged in a tree. Each line version represented by
the LineVersionModel class has a content and a list of tags
for which this content applies. The CombinedFileModel is, as
its name says, a combination of all versions of the file. It
assembles the file content of each repository and each branch
and differentiates between whether the content was
committed or not.

The model is persisted by saving the serialized object in the
project folder. The CombinedFileModel is initialized when
the file is first opened in the web-based IDE or if it is altered
in a commit from an external repository. The initialization is
based on the fact that when initialing the file contents are all
the same for all versions of the file. As the model is persisted
the challenge is no longer the initialization, but to keep it
synchronized to the content in the version-controlled
repositories.

ChangeScribe generates sentences for class signatures (a.k.a.,
class declaration) using the class stereotypes proposed ,
following template is used to generate sentences for class
signatures:

<change type> <class stereotype> <represented object>.
It allows: <methods description>

Table 4.1. EXAMPLE OF ChangeScribe’s COMMIT
MESSAGE LISTING IMPACT SET DETAILS (CLASSES
IMPACTED BY A METHOD ADDITION/DELETION)
BUG - FEATURE: <type-ID>

This is a small modifier commit that does not change the
system significantly. This change set is mainly composed of:
1. Changes to package org.springframework.social.oauth2:
1.1. Modifications to AccessGrant.java:
1.1.1. Add a constructor method
The added/removed methods triggered changes to
OAuth2ProviderSignInAccount class
2. Changes to package org. spring framework. social.
web.signin:
2.1. Modifications to OAuth2ProviderSignInAccount.java:
2.1.1. Modify arguments list when calling connect method at
connect (Serializable) method
These techniques are called Natural Language Program
Analysis (NLPA), and work by combining knowledge of the

structure of the English language with knowledge about the
structure of source code, in order to meaningfully extract
information from the code to aid in the process of software
maintenance

5. Experimental Analysis

As the first step of the analysis, one of the authors evaluated
the content adequacy of the commit messages created by the
participants in order to determine whether each respondent
understood the shown changes. It is worth noting that the
evaluator was quite familiar with each changeset included in
the study, and thus, he was competent to judge this property
of these commit messages. The result of this evaluation
showed that 10% of the commit messages generated by the
participants (12 commit messages out of the 119) did not
contain correct information, and therefore, indicated a poor
understanding of the changes done.

As mentioned above, the participants were asked to evaluate
both the commit messages generated by ChangeScribe and
the commit messages written by the original developers. The
properties evaluated were: content adequacy, conciseness,
and expressiveness. Content adequacy judges whether the
contains all important information about the changes done.
Conciseness assesses whether a commit message is clear and
succinct or, in other words, if it does not contain superfluous
and unneeded information. Expressiveness evaluates if a
commit message is easy to read and if the way it is presented
facilitates understanding of the changes done

A. Content Adequacy
Consider this property as the most important one since
commit messages that contain all essential information about
the changes done may ease a number of maintenance tasks.
The results show that only in 13% of the cases proposed
approach generated commit messages that missed essential
information. Conversely, the original commit messages miss
essential information in 40% of the cases (Table 4.1). In
general, this result indicates that the approach achieves a
significant improvement in terms of relevant information
needed to properly explain the changes done by the
committee, and thus, its use might substantially alleviate a
well-known maintenance issue.

Figure 5.1. Content adequacy evaluation of the original,
automatic commit messages by ChangeScribe and automatic
commit messages by Natural Language Processing with
Software Model (NLP-SM)

Paper ID: NOV162047 1083

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 3, March 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

On the other hand, the Figure 5.1 results show that proposed
Natural Language Processing with Software Model (NLP-
SM) approach is able to generate a commit message that
includes all essential information of the changes done in 75%
of the cases, while the messages written by the developers
only reach this degree of completeness in 35% of the cases.
From this point of view, the improvement achieved by
ChangeScribe is also significant. In terms of statistical
significance of the results, the difference is significant (p-
value = 1:543E-08) between the content adequacy rankings
of the original messages and the messages by ChangeScribe;
and the magnitude of the difference is large (d = -
0:9386784).

Table 5.1: Content adequacy evaluation of the original
automatic commit messages by ChangeScribe and automatic

commit messages by Natural Language Processing with
Software Model (NLP-SM)

Response

Original
commit

messages
(%

ratings)

Automatic commit messages
(% ratings)

Change
Scribe(CS)

Natural
Language

Processing with
Software Model

(NLP-SM)
Content adequacy (%)

Not missing any
information (NMAI) 25 68 75

Missing some
no essential

information (MSNEI)
36 28 25

Missing some essential
information (MSEI) 45 10 6

6. Conclusion

When making changes to software, developers spend more
time trying to understand code rather than implementing
changes. Critical to assisting developers in understanding
code is human-written documentation. Unfortunately, in
many contexts the documentation is not as good as it could
be. Therefore, if linguistic information can be extracted from
code and presented as documentation, it provides support for
developers when in cases where documentation is lacking.
This paper presents an approach Natural Language
Processing (NLP) for generating automatic commit messages

based on the code changes included in a change set and
simultaneously NLP is integrated to software usage library to
read the document files of the software. ChangeScribe
extracts and analyzes the differences between two versions of
the source code, and also, performs a commit
characterization based on the stereotypes of methods
modified, added and removed.

Practically, its difficult for a developer to concentrate on
changes done and update it in the commit message, due to
urgencies and making multiple changes at a time. Hence,
automatic generation of change information, during commit,
makes the developer comfortable and not worry about the
tracking of changes made by him. This in turn, improves
productivity and team collaboration. Also, the effectiveness
and conciseness will be measured in the future scope.

7. Acknowledgment

For all the efforts behind this paper work, I first & foremost
would like to express our sincere gratitude to the staff of
Department of Computer Science, for the extended help and
suggestions at every stage of this paper. It is with a great
sense of gratitude, that we acknowledge the support, on time
suggestion and highly indebted to our guide Head of the
Department Dr. V. Krishna Priya. Finally I pay sincere
thanks to all those who indirectly and directly helped us
towards the successful completion of this paper.

References

[1] M. Nordio, H.-C. Estler, B. Meyer, J. Tschannen, C.
Ghezzi, and E. D. Nitto. How do distribution and time
zones affect software development? Conference on
Global Software Engineering (ICGSE 2011). IEEE,
2011.

[2] E. Carmel and R. Agarwal. Tactical approaches for
alleviating distance in global software development.
IEEE Softw., 18:22–29, March 2001.

[3] M. Nordio, R. Mitin, B. Meyer, C. Ghezzi, E. D. Nitto,
and G. Tamburrelli. The role of contracts in distributed
development. In Proceedings of Software Engineering
Approaches for Offshore and Outsourced Development,
2009.

[4] J. A. Espinosa, N. Nan, and E. Carmel. Do gradations of
time zone separation make a difference in performance?
A first laboratory study. In Proceedings of the IEEE
International Conference on Global Software
Engineering (ICGSE 2007), pages 12–22. IEEE, Aug.
2007.

[5] H.-C. Estler, M. Nordio, C. A. Furia, B. Meyer, and J.
Schneider. Agile vs. structured distributed software
development: A case study. In Proceedings of the 7th
International Conference on Global Software
Engineering. IEEE, 2012.

[6] M. Nordio, C. Ghezzi, B. Meyer, E. D. Nitto, G.
Tamburrelli, J. Tschannen, N. Aguirre, and V. Kulkarni.
Teaching software engineering using globally distributed
projects: the DOSE course. In Collaborative Teaching of
Globally Distributed Software Development -

Paper ID: NOV162047 1084

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 3, March 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Community Building Workshop (CTGDSD), New York,
USA, 2011. ACM.

[7] M. Nordio, R. Mitin, and B. Meyer. Advanced hands-on
training for distributed and outsourced software
engineering. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering
(ICSE), pages 555–558. IEEE, 2010.

[8] Wikipedia - Git (Software).
http://en.wikipedia.org/wiki/Git_ (software), Sept. 2012.

[9] Cortes-Coy, L.F. ; Linares-Vasquez, M. ; Aponte, J. ;
Poshyvanyk, D. “On Automatically Generating Commit
Messages via Summarization of Source Code Changes “,
Source Code Analysis and Manipulation (SCAM), 2014
IEEE 14th International Working Conference on 2014 ,
Page(s): 275 – 284

[10] de Moura, M.H.D. ; do Nascimento, H.A.D. ; Rosa, T.C.
“Extracting New Metrics from Version Control System
for the Comparison of Software Developers” Software
Engineering (SBES), 2014 Brazilian Symposium, 2014 ,
Page(s): 41 – 50

[11] Pradeep Singh, K. D. Chaudhary, Shrish Verma, “An
Investigation of the Relationships between Software
Metrics and Defects” International Journal of Computer
Applications (0975 – 8887) Volume 28– No.8, August
2011

Author Profile

Vishalakshi Muthukumar received the MCA degree from Indira
Gandhi National Open University, New Delhi. She is a student of
MPhil, (Computer Science), Sri Ramakrishna College of Arts and
Science for Women, Coimbatore.

Paper ID: NOV162047 1085

