
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 3, March 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

ARM Based Customizing an Operating System for
the Single Board System (Cubie-Truck)

S. Karthik1, T. S. Murunya2

1PG Scholar, Prist University – Kumbakonam, India

2Assistant Professor, CSE, Prist University – Kumbakonam, India

Abstract: In this paper the author going to present , The design and implementation of a CubieBoard Operating System (CBOS) on
ARM (Advanced RISC Machine) platform in technical details, including boot loader design - UBOOT, building the Kernel - uImage,
design of root file system and init process. The Single Board Computer Operating System (SBC OS) is developed on Linux platform with
GNU tool chain. The system is mainly designed for the purpose of technical research and curriculum based teaching and students to
learn, study and more readable, of which the source codes can be provided to students, guiding them to design tiny operating system on
ARM platform from scratch.

Keywords: Single board computer, UBOOT, ARM, UImage, Cubieboard, Monolithic Kernel, Init Process

1. Introduction

In our current electronic market there is many single board
system computer are available, but in the other side,
developing Operating System for that single board system is
playing the major role in the electronic market. The author
of this paper is going to design the Operating System to the
single board computer system (Cubieboard). In the
following subsection, we are going to discuss the
introduction about the single board computer
(CUBIETRUCK), Monolithic kernel structure, advantages,
scope, and purpose of the project.

A. Introduction about Cubietruck and Monolithic kernel
structure
Cubieboard is a single-board computer, made in china. The
Cubieboard team managed to run an Apache Hadoop
Computer cluster using the Lubuntu GNU/Linux
distribution. It's a new PCB model adopted with Allwinner
A20 main chip, just like Cubieboard2. But it is enhanced
with some features, such as 2GB memory, VGA display
interface on-board, 1000M nic, WIFI+BT on-board, support
Li-battery and RTC,SPDIF audio interface [4]. The
Cubietruck representation is given in the Figure-1 which is
shown below [5].

Figure 1: Cubietruck graphical representation

The components of monolithic operating system are
organized haphazardly and any module can call any other

module without any reservation. Similar to the other
operating systems, applications in monolithic OS are

Paper ID: NOV162043 1184

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 3, March 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

separated from the operating system itself. That is, the
operating system code runs in a privileged processor mode
(referred to as kernel mode), with access to system data and
to the hard-ware; applications run in a non-privileged
processor mode (called the user mode), with a limited set of
interfaces available and with limited access to system data.
The monolithic operating system structure with separate user
and kernel processor mode is shown in Figure – 2

When a user-mode program calls a system service, the
processor traps the call and then switches the calling thread
to kernel mode. Completion of system service switches the
thread back to the user mode, by the operating system and
allows the caller to continue. The monolithic structure does
not enforce data hiding in the operating system. It delivers
better application performance, but extending such a system
can be difficult work because modifying a procedure can
introduce bugs in seemingly unrelated parts of the system.

Figure 2: Monolithic kernel operating sysem structure
representation

B. Advantage of CBOS
In this paper, author using the Monolithic Kernel structure
for developing the cubie board Operating System (CBOS).
So the essential OS services are passes from user space to
the Kernel space and also increases the modularity and
Structure.

2. Structure of Cubie Board Operating System
(CBOS)

At the top of our SBC OS contains the user or application
space where the user applications are executed. Below the
user space is the Kernel space where the SBC OS Kernel
exists. Figure 3 represents the architecture of the SBC OS.

Our SBC OS also contains a GNU C Library (glibc) which
provides the system call interface that connects to the SBC
OS Kernel and provides the mechanism to transition
between the user or application space and the SBC OS
Kernel.

Figure 3: Structure of Cubie board Operating System
(CBOS)

This is important because the Kernel and user application
occupy different protected address spaces while each user or
application space process occupies its own virtual address
space, SBC OS Kernel occupies a single address space.

The SBC OS Kernel can be further divided into three gross
levels. At the top is the system call interface, which
implements the basic functions such as read and write.
Below the system call interface is the SBC OS Kernel code,
which can be more accurately defined as the architecture-
independent Kernel code.

This code is common to all of the processor architectures
supported by SBC OS. Below this is the architecture-
dependent code, which forms what is more commonly,
called a BSP (Board Support Package). This code serves as
the processor and platform-specific code for the given
architecture.

3. Modules Description

A. Design of Boot Loader (UBOOT):
The boot loader loads a kernel image from user space to the
kernel space, at the time of the programmer power on the
system. In the personal computer (BIOS) Basic Input Output
System performs the system initialization tasks after the boot
loader execution. But in the single board systems the boot
loader performs the major role, because the single board
system doesn’t have the BIOS. So the boot loader has the
three important functions which are given below.
1) Providing boot parameter to the Operating System.
2) Hardware initialization.
3) Starts up the Operating System.
The command to compilation and building the boot loader
(UBOOT) for the single board system cubie board is given
below,

$make clean && make cubietruck
CROSS_Compile_arm_linux_gnueabihf

B. Building the Kernel
The Kernel is the important part of the Operating System. In
the Kernel space, the entire Device Driver for the Hardware
of the system, Process management package, File
management package, Memory management package,
Network management package are available. The graphical

Paper ID: NOV162043 1185

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 3, March 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

representation of the CBOS Kernel is shown below in the
Figure 4.

Figure 4: Structure of Kernel

The Command to compilation and building the kernel image
for the sing le board system Cubie board is given below,

For Configuration:
$make ARCH=arm CROSS_COMPILE=arm-linuxgnueabi-
menuconfig

For Compilation:
1. Kernel image: $make ARCH=arm
CROSS_COMPILE=arm-linux-gnueabiuimage
2. Modules: $make ARCH=arm CROSS_COMPILE=arm-
linux-gnueabimodules

For Installation:
1. Modules: $make ARCH=arm CROSS_COMPILE=arm-
linux-gnueabimodules_ install
2. Kernel image: $make ARCH=arm
CROSS_COMPILE=arm-linux-guueabiinstall

C. Root File System
Root file system contains the system files and very critical
files.That is, the kernel code, Operating System supportable
files are stored in the root file system. Once the root file
systems get corrupted the Operating System becomes
unbootable. To store the various Operating System
supportable files, hardware configurable files, software
routines (Kernel) in the created directory (partitions), need
to mount the file system. So need to download the basic file
systems from the web.
Using the below command, download the basic file systems
and mount the needed file system. After the mounting the
files can store in the partitions.

$debootstrap –no –check –gig –arch=armhf –
foreignwheezy

D. Init Process
The init process is a program just like any other on the Linux
system. The main purpose of the init process is to start and
stop other programs in a particular sequence [14]. The
processes or services are running on the system based on the
time or state. This time or state is known as the Runlevel.
This runlevel are represented using the numbers from 0 to 6.

4. Conclusion

The author of this paper is mainly designed this Operating
System (CBOS) for the purpose of technical research and
curriculum based teaching and students to learn, study and
more readable, of which the source codes can be provided to
students, guiding them to design tiny operating system.

References

[1] Reconos: “An Operating System Approach For
Reconfigurable Computing”, Published by the IEEE
computer society 0272-732/14/$31.00_c 2014 IEEE.

[2] Bo Qu and Zhaozhi Wu, “Design of Mini Multi-Process
Micro-Kernel Embedded OS on ARM”, Proceedings of
the 2nd International Symposium on Computer,
Communication, Control and Automation, 2013, pp.
0295.

[3] Operating Systems & Boot loaders for ARM Single
Board Computers, “Solutions for ARM,”
http://www.embeddedarm.com/software/solutions-
arm.php, 2012.

[4] Samuel Ram rajkar, Mehul Shah, Nishant Parekh,
“SINGLE BOARD COMPUTER FOR APPLICATION
MULTITASKING,” International Journal of
Engineering and Innovative Technology (IJEIT)
Volume 2, Issue 6, December 2012.

[5] http://cubieboard.org/model/
[6] http://docs.cubieboard.org/products/start#a20-

cubietruck
[7] http://www.igorpecovnik.com/2013/12/24/cubietruck-

de bianwheezy- sd-card-image
[8] http://www.github.com/cubieboard
[9] Brain Ward, How Linux Works What Every super-user

should know, 2004.
[10] William stallings, Operating Systems: Internals and

Design Principles, 6E, Prentice Hall, inc., 2009.
[11] A.S. Tanenbaum and A.S Wookhull, Operating

Systems: Design and Implementation, 3e, Prentice Hall,
Inc., 2008.

Paper ID: NOV162043 1186

http://cubieboard.org/model/
http://docs.cubieboard.org/products/start#a20-cubietruck
http://docs.cubieboard.org/products/start#a20-cubietruck
http://www.github.com/cubieboard

