FTIR Spectral Analysis & Physico-Chemical Studies on Some L. Arginine Salts in Non-Aqueous Solution at Various Temperatures

Kannagi .K¹, Jasmine Vasantharani .E²

¹PG Department of Physics - Cauvery College for Women, Trichy, Tamil Nadu, India

²PG & Research Department of Physics - SeethaLakshmi Ramasamy College, Trichy, Tamil Nadu, India

Abstract: The ultrasonic velocity measurement of liquid plays an important role in the study of molecular systems. The present work deals with the molecular interaction studies on some amino acids in non-aqueous solutions at various temperatures. From the measured parameters such as velocity, density, viscosity and some derived parameters like internal pressure, free volume, Rao's constant and Wada's constant are calculated. The structural changes occurring in the solution are envisaged through the FTIR study of L-Arginine derivatives in polar solvent. From the study the existence of interactions are confirmed and the diagnostic bonds observed at certain frequencies are assigned to the carbonyl stretch present is identified.

Keywords: Internal pressure, Free volume, Molecular interactions, FTIR Spectral analysis

1. Introduction

Ultrasonic velocity and its related properties have been extensively used to study physico-chemical behavior and molecular interaction occurring in the solutions. The internal pressure of a solution is a single factor which appears to vary due to all the internal interactions like solvation, ionsolvent interactions, quantum mechanical forces of dispersion and dielectric constant effect [1]. The present study involves the analysis of amino acid derivatives in nonaqueous medium, formamide. Acoustic, thermodynamic parameters have been studied from very low temperature to high temperature at different molalities. The ultrasonic velocity data combined with density and viscosity provide the standard means for determining the internal pressure, free volume, acoustical parameters such as Rao's constant, Wada's constant and van der Waal's constant. Arginine is found in a wide variety of food sources such as wholewheat, nuts, seeds, peanuts, brown rice, popcorn, soya, raisins, chocolate, almonds, and oatmeal [2].L-Arginine mono hydrochloride is commonly used in cell culture media and drug development [3].L-Arginine methyl ester di hydrochloride increases nitric oxide (NO) production and it also acts as a vasodilator, allowing more blood to flow in muscle tissues, thereby increasing the pump from oxygen and nutrients and delivered where they are needed[4].

2. Experimental Details

Experimental Technique

Solutions of the sample of different concentrations are prepared with AR grade salt. It is used without further purification. The solution is studied at different concentrations (0.001, 0.01, 0.05, 0.1, 0.2) mol. d.m⁻³ with an accuracy of 0.0001gm is maintained. The density of the solutions is determined using 25ml specific gravity bottle, using the thermostatic bath with a compressor unit. A Cannon Fenske viscometer (10ml) was used for the viscosity measurements. Variable bath interferometer having a frequency of 2MHz (Mittal Enterprises, New Delhi) with overall accuracy of 0.1% was used for velocity measurements. With the high purity (99%) the samples are purchased from siscom research laboratories, Mumbai. The samples are measured using an electronic balance precise to 0.0001gm.Ultrasonic velocity (u) is measured with a variable path interferometer (2MHz) with an accuracy of ± 2 m/s. The density (ρ) measurement is made with an accuracy of ± 0.001 gm. FTIR spectrum of these solution were recorded in the region of 4000 - 400 cm-1 using (PERKIN ELMER) model SPECTRUM RXI FTIR spectrometer.

The following formulae are used for the computation of Internal Pressure (π_i), Free Volume (V_f), Rao's constant and Wada's constant:

Internal pressure
$$\pi_i = bRT \left(\frac{k\eta}{u}\right) \frac{1}{2} \times \left(\rho^{\frac{2}{3}} / M_{eff}^{\frac{7}{6}}\right) atms.$$

Free volume
$$V_f = [M_{eff} \times u / k\eta]^{\frac{1}{2}} cc$$

$$R = \frac{M_{eff} (U)^{\frac{1}{3}}}{\rho}$$

Rao's constant

$$W = \frac{M_{eff}}{(\rho)\beta^{-1/7}}$$

Wada's constant Where.

- Meff Effective molecular weight of the
- solution in gm.u.
- u Ultrasonic velocity in cm/sec.
- K Constant equal to 4.285×10^9
- η Viscosity of the solution in poise
- R Gas constant (8.314×10^7)
- T Temperature
- B Cubic constant (2)

Volume 5 Issue 3, March 2016

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

 $ho\,$ - Density of the solution is gm/cc.

3. Results and Discussions

In the present work, the internal pressure and free volume shows an increasing trend with respect to molalities. This increasing trend in internal pressure indicates the orientation of the solvent molecules around the L-Arginine ions, which may be due to the influence of electrostatic field of ions. This behavior suggests that the presence of strong ionsolvent interaction occurs in the solution [5]. The binding of the NH_3^+ group of solute into the solvent molecules introduces the greater cohesion by the electrostatic forces in the solution. Thus, the electrostriction effect brings about the shrinkage in the volume of the solvent caused by the Zwitterionic portion of the L-Arginine solution [6]. There is a dip observed at 0.05 m at all temperature in L-Arginine mono hydrochloride solution. Hence there is a reduction in internal pressure with increase in temperature L-Arginine mono hydro chloride exists in ionic form and it is solvated both at NH₃⁺ site of guanidino group and COO⁻sites of solute in which the existence of Zwitterionic form to a greater extent. These results support that there is a weak ionsolvent interaction within the solution [7]. However in L-Arginine methyl ester di hydrochloride internal pressure is to be increasing with respect to increasing molality. But at 278.15k and at 0.05 molality it is observed as minimum. This decrease in internal pressure shows that there is a weak solute - solvent interaction prevails in the solution which is shown in Tables 1.1-1.3 and Figure 1.(i)-1.(iii). It is also confirmed by increasing values of free volume given in tables 2.1-2.3 and figures 2.(i)-2.(iii) at low molalities and at low temperature [8].

Rao's and Wada's Constant In L-Arginine the solvent shows that there may be association taking place between the molecules in the solution [9]. This behavior is exhibited by Rao's and Wada's constant (Tables 3.1-3.3 and Figures3.(i)-3.(iii) for the same system..The irregular behavior of Rao's and Wada's constants of L-Arginine mono hydrochloride system also supports that there is a molecular dissociation existing in the solution. In L-Arginine Methyl Ester di hydrochloride, Rao's and Wada's constants are increasing with increasing concentration and also with temperature. At 308.15k there is a dip observed at 0.01 molality. Though there is a curvilinear variation of these constant at 308.15k the noticeable deviation indicates the weakening the structure of the solvent [10]. This indicates that the structure breaking nature of the solute in the solvent [11]. These values are tabulated in the shown in tables 4.1-4.3 and Figure 4.(i)-4.(iii). Thus, the acoustical parameters, explains the nature and strength of the molecular interaction in the solution[12].

In the FT-IR spectra of formamide and for the samples, the presence of various vibrational frequencies have been identified and analyzed based on shifts in frequencies. L-Arginine, can exist in two forms i.e., charge solvated (CS) and salt bridge (SB) as in (Figure 6.1 and 6.2).

Figure 6.2: Zwitterion (Salt Bridge - SB)

These **FT-IR spectral results of L-Arginine** with formamide indicate the formation of H-bands between NH_2 group of formamide and guanidino group of L-Arginine. The Zwitterionic form of L-Arginine is solvated by both enolic form (monomer) and dimeric forms of formamide. The amino acid exists in both neutral and Zwitterionic forms [13].

In L-Arginine mono HCL system the shifts are small compared to L-Arginine. Hence solvation is of weak type [13]. This indicates the existence of enolic (neutral) form and amide form. Thus solvation is through weak H-bonding results in neutral form (Fig. 6.3). This may be due to dipole-dipole interaction [14].

Figure 6.3: Neutral form of L-Arginine mono hydrochloride

In the L-Arginine methyl ester di hydrochloride sample there is no acidic COOH proton but it has an O-CH₃ group in the place of O-H. Therefore it has a free C=O group and not having COO⁻ group compared to L-Arginine and exist in neutral form (figure 6.4)[15].

Figure 6.4: Neutral form of L-Arginine methyl ester di hydrochloride

A new peak arrived at 2405 cm⁻¹ indicates solvation at this site by formamide, resulting in the structure (Figure 6.5) for the charge solvated

Figure 6.5: Charge solvated form of L-Arginine methyl ester di hydrochloride

The dilution studies thus indicate the appearance of new peaks at 2405 cm⁻¹ and disappearance of 1442 cm⁻¹ peak (C-N Stretch & NH bending). These changes can be accounted by considering solvation only at guanidino group. The broadening of NH_2 stretching vibration of the solvent indicates binding of the amino acid ester to the NH_2 group of formamide [16]. It exists as mirror image form at chiral center (CH COO CH₃) [17] depicted in (Figs.6.6a and 6.6b) as inferred from the FT-IR spectrum Figure 5.1- 5.7..

Figure 6.6b: Mirror images of L-Arginine methyl ester di hydrochloride

4. Conclusion

The thermodynamic and acoustic studies confirm the hydrophilic interactions occurring between the Zwitterionic center of L-Arginine and Carbonyl group of formamide. These results support that there is a weak ion-solvent interaction within the solution. The behavior in internal pressure suggests that the intermolecular hydrogen bonding exists in the amino acid moiety [18]. These result shows weak-solute-solvent interactions prevail in the solution. The Zwitterionic form of L-Arginine is solvated by both enolic form (monomer) and dimeric forms of formamide.

References

- [1] Gnanamba S, RamachandraRao B, Ind J Pure & ApplPhy, 11 (1973) 99.
- [2] Gokce N, Myer B, Journal of Nutrition, 134 (2004) 2807-2811.
- [3] Takeshi Naito, Hiroshi Irie, Abcouwer S F, Kazuko Tsujimoto, Keikolkeda, International J Mol Medicine, 23 (2009) 495-499.
- [4] Karapetyan H A, Antipin M Yu, Sukiasyan R P, Petrosyan AM, J MolStruc, 831 (2007) 90-96.
- [5] Andrew P J, Myer B, Cardiovascular Research 43 (1999) 521-531.
- [6] Devlin T M, Textbook of Biochemistry with Clinical Correlations, 5th ed Wiley-Liss (New York) 97 (2002) 791-871.
- [7] Jasmine Vasantha Rani E, Kannagi K, Padmavathi R, Proceedings of NSA, Bhandelkand University, Jhansi (UP), 17th-19th November, Appl Ultrasonic, (2012) 102 – 110.
- [8,9] Jasmine Vasantha Rani E, Kannagi K, Padmavathi R, Radha N, Proceedings of NSA, Bhandelkand University, Jhansi (UP), 17th-19th November, Acoustic waves,1 (2012) 410 – 417.
- [10] Jasmine Vasantha Rani E, Kannagi K, Padmavathi R, Radha N, Proceedings of National symposium on Acoustics, National physical Laboratory -New Delhi, 46 (2013) 410-414.
- [11] Santhakumari S, Padmavathi R, Jasmine Vasantha Rani E, International Soc Socio Techno Welfare - J ApplPhys, 4 (2013) 53-60.
- [12] Sujatha S, Padmavathi R, Jasmine Vasantha Rani E, International J Phys Appli, 5 (2013) 109-114.
- [13] Solachi V, Ambika R, J AcousSoc India, 34 (2005) 207-209.
- [14] Palani R, Jayachitra K, Ind J Pure & ApplPhys, 46 (2008) 251.
- [15, 17]Jasmine Vasantha Rani E, Kannagi K, Padmavathi R, Radha N, Proceedings of National Conference on EXFOVIS, Nagarcoil 1st&2nd September 34 (2011) 402 – 408.
- [18] Kannagi K, Jasmine Vasantha Rani E, Padmavathi R, Radha N, International J Current Res & Rev, 4 (2012) 156 – 166.
- [19] Jasmine Vasantha Rani E, Kannagi K, Padmavathi R, Radha N, J Basic & ApplPhys, 3 (2012) 96 101.

Volume 5 Issue 3, March 2016 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

Figure 5.7: FT IR Spectrum of L-Arginine methyl ester dihydrochloride (Saturation molality)

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

FREE VOLUME (CC)

Table 2.2 L-ARGININE MONOHYDRO CHLORIDE

25º C

0.0512

0.0291

0.0273

0.0275

0.0260

0.0243

0.0244

0.0218

15° C

0.0142

0.0145

0.0140

0.0146

0.0136

#P C

0.0091

0.0085

0.0091

457 C

0.0639

0.0408

0.0657

0.0714

0.0431

0.0475

0.0582

0.0547

35º C

0.0483

0.0454

0.0426

0.0441

0.0413

0.0444

0.0415

0.0454

0.0354

0.0348

55° C

0.0835

0.0535

0.0837

0.0632

0.0547

SEP C

0.0014

0.0932

0.0913

0.0911

0.0995

58° C

0.097

0.0932

0.0919

0.0902

0.0629

RAO'S CONSTANT

Table 3.1 L-ARGININE

25° C

2165

2189

2173

2178

25° C

3174

2170

2165

2174

2190

25° C

2162

216

2179

2191

2232

Table 3.3 L-ARGININE METHYL ESTER DIHYDROCHLORIDE

Table 3.2 L-ARGININE MONOHYDRO CHLORIDE

350 0

2170

2171

2177

2180

2181

36° C

2187

2181

2178

2169

2198

35° C

2170

2114

2159

2208

2243

55° C

2165

2191

2188

2196

55° C

3364

2198

2302

2210

222)

55° C

2183

2189

2207

2227

2255

45° C

2175

2179

2190

2155

2190

45° C

2192

2168

2200

2213

45° C

2175

213

2200

2217

2250

15º C

2157

2158

2161

2167

15º C

2143

2158

2154

2163

2173

15° C

2152

2158

2169

2179

2219

5° C

2149

2151

2153

2155

50 0

3140

2150

2146

2152

2164

£° C

2145

2143

2156

2167

2210

Molality (m

0.001

0.005

0.01

0.025

Molality in

0.005

0.01

0.05

0.1

Molality (m)

0.001

0.01

0.05

0.1

0.2

INTERNAL PRESSURE (ADMI)

		Table 1.11	ARGININ	Æ		Table 2.1 L-ARGININE												
Molality (m)	PC.	15º C	25° C	35° C	45° C	55° C	Molality (m)	₽°C	15º C	25º C	35° C	451 C						
0.001	1\$306	15764	12964	11731	11275	10398	0.001	0.0100	0.0172	0.0338	0.0494	0.0808						
0.005	18541	16117	13591	12249	11258	10396	0.005	0.0095	0.01#1	0.0299	0.0433	0.0606						
0.01	19951	16275	13757	12165	11315	10399	0.01	0.0065	0.0157	0.0283	0.0445	0.0602						
0.025	19102	18293	13505	12299	11332	10403	0.025	0.0088	0.0156	0.0298	0.0429	0.0395						
0.05	18654	16267	13699	12098	11316	10304	0.08	0.0094	0.0155	0.0254	0.0445	0,0594						

Molality (r

0.005

6.61

0.05

Table 1.2 L-ARGININE MONOHYDRO CHLORIDE

Molality (m) PC 14° C 25° C 35° C 45° C 651 C 18271 16105 13321 11841 10669 10091 18912 16877 13626 12092 11062 19279 16905 13920 12334 11263 9576 0.01 0.05 16775 18504 12150 10091 0.1 19572 18929 14345 12363 11054 10085

TAME 2.3 L-ARGININE METHYL ESTER DIHYDROCHLORIDE 45° C 28° C 34º C

Table 1.3 L-ARGININE METHYL ESTER DIHYDROCHLORIDE 15º C Molality (m) ₽°C Molality (m) F² C 15° C 25° C 35° C 45° C 55° C 100.0 0.0095 0.0145 15421 9904 0.0084 0.0152 11101 0.01 19236 16424 14136 13453 10035 0.0065 0.0138 0.05 19187 16872 14215 12502 11130 10031 0.1 0.0080 0.0121 19506 17249 14305 12846 11322 10037 0.1 0.2 0.0064 0.0118 10217 20723 17602 14619 12906 1144\$

		WADA' Table 4	S CONSTA	NT			1	able 5 F	T-LR (barra	d opectival v	ibrational fra	questi	6		Table 7 FT	JE ale	erato	umalvites	four lives				Table 6 FT	-ER obu	enedisp	ectral vibrat	ional freque	ide:	
Molalizy (m) 5° C 15° C 25° C 35° C 45° C 55°			880 C	Stretching Vibration: cm				IONEL CHE!"	E" CONH		NHoutof		NO CHI	5 (86 [°]		SHout		Stretching Vibrations on"				0007		NHIS						
0,001	1226	9 124	2 1245	1248	1256	1260	Name of the tample	1000			Anidel Band Voe	band cm ⁴	em4	Bending Box	20122			-		CONH .	đ	ofpiase	Name of the		-		Amide I	amide II	I 100	of plan Benfir
0.005	1231	8 124	1 1244	1345	1252	1255				V Det					Name of the Sample		***	1.00	Anide1	bad	bad or	Benfing Ava	Sample	¥.	¥0X.	Yon	Band voe	CHI ⁴	cm ⁴	and the second
0.01	124	0 124	3 1241	1221	1255	1251		2 3050	2953	3 2912 2913		1473 - 1420	1183 1420 1078	848 + 760 701 - 607				1	Band vow	and wore one'		121	-		-	\vdash			+ +	177
0.025	124	1 124	7 1251	1293	1299	1261					1662											a.								855
0.05	124	3 124	7 1253	1 1254	1251	1266	L-Arginine Sal																	3010		2110	1593	1464		343
Tabled 2 L-ARGININE MONOHYDROCHLORIDE							2555	2107	1588	1330	1005	509 - 483	L-Arginine	3177		2609	1743 1441	1379	1007	131	1-Arginine monohydrachi	3173	2993 2950	2734 2576 3458	1516	1174 1410	10541 099 1069	792		
Molality (m)	5º C	15° C	25° C	35° C	45° C	55° C									marityl enter dilty dearbineds	1140	3958	L.	1617	1355	1091		cites (m)	3155-3875	2895	2575	1574	1358	1045	677
0.001	1235	1244	1249	1256	1260	1265	0.05 m.	3416	2991	2171 1 2701 2198	1 1694 1 1697 1 1692	1451 1391 1314	1091 1052	410	347	3035	-	2014	1508	1511	103	800		3299		2514	1637	1319		827
0.005	1233	1242	1248	1259	1258	1262								40								(4) 464								#25
0,01	1238	1240	1245	1255	1257	1264												Ι.							$ \rightarrow $	\vdash				-477
0.05	1241	1246	1251	1258	1262	1266									-		+			- 1413	+-		f I	3135		100	033	1472		k -
0.1	1244	1252	1260	1264	1271	1277	1	3735		2770	1421	1473		474	22	3931		3425	1920	1458	1092	615	0.05 m	3723	2995	2178	1653	1456	1019	608
Table 4.3 L-ARGININE METHYL ESTER DIHYDROCHLORIDE					0.025 m	3421	2888	1 2702 2391	1652	1457 1391	1099	605	21 e	3795 3427	2391	2198 2190	1612 1614	1442	1052	\$99 \$13		341*				1391 1316				
Molality (m)	5º C	15° C	25º C	35° C	45° C	55° C		3408		2199	1878	1313	8	456						1972				1112			1421	1400	1010	
0.001	1234	1239	1244	1248	1250	1254		3203								3138		111	1993	1433	1071	514	01m	3413	2594	2181	1492	1301	1052	607
0.01	1237	1243	1247	1248	1252	1257	laturation m	3416-	-	2774 3 2701	1894	145) 1391 1313	1091 1852		1.6	3417	1392	2993	2682	1291	1052	422					10.0000	1316		
0.05	1244	1249	1254	1259	1282	1268		3203	2393					636			-	-	-		-	15			-			1413	+	411
0.1	1252	1255	1262	1269	1275	12%		3425	218	2192					Saturnice at	3798	2194	2778	1594	1391	1095	525	faranties m.	1.33	2893	2775	1894	1301	1092	808
0.2	1272	1280	1258	1291	1295	1299	<u> </u>		-		-		-			342		2:13	1912	1318	1003	41		3418		****	2002	1215	1032	454