Chemistry of 1, 2, 4-Triazole: A Review Article

Jawad K. Shneine1, Yusra H. Alaraji2

Department of Chemistry, College of Science, Al-Nahrain University, Al-Jadria, Baghdad, Iraq

Abstract: Triazole was first synthesized over a century ago, but still attracts attention of chemists, biologists, technologists and other specialists. In recent years, antiviral, anti-inflammatory, anti-fertility, anti-tubercular activity, antimicrobial activities, anti-cancer and anti-corrosion properties of triazoles have been published. This review aims to describe the structures, synthesis, reactions and spectral properties of triazoles for highlighting the future applications in several bioactive phenomena and analytical uses.

Keywords: 1, 2, 4-Trizole, Thiole Derivatives, Applications of 1,2,4-Triazole, Synthetic approaches of 1,2,4-triazole.

Content:
1. Introduction
2. 1, 2, 4-Triazole
3. Structural Properties of Triazoles
 3.1. Aromaticity and Stability
 3.2. Tautomerism in Triazoles
 3.2.1. Tautomerism in 1,2,3-Triazoles
 3.2.2. Tautomerism in 1,2,4-Triazoles
 3.2.3. Tautomerism in Substituted-1,2,4-Triazoles
 4. Spectroscopy of 1,2,4-Triazole
 4.1. Ultraviolet Spectroscopy (UV)
 4.2. Infrared Spectroscopy (IR)
 4.3. Nuclear Magnetic Resonance (NMR)
 4.4. Mass Spectrometry (MS)
5. Synthetic Methods of 1,2,4-Triazoles
 5.1. From Carboxylic Acid Hydrazide
 5.2. From 1,3,5-Triazine
 5.3. From Oxazole
 5.4. From Thiosemicarbazide
 5.5. From Urea
 5.6. From Acid Chloride
6. Biological Activities
 6.1. Agriculture Applications
 6.2. Pharmacological Applications
 6.2.1. Antimicrobial Activities
 6.2.2. Antifungal Activities
 6.2.3. Anticancer and Antitumor Activities
 6.2.4. Anti-inflammatory Activities
 6.2.5. Anticonvulsant Activities
 6.2.6. Antiviral Activities
 6.2.7. Antitubercular Activities
 6.2.8. Antioxidant Activities
7. Industrial Applications

1. Introduction

Heterocyclic chemistry is a separate field of organic chemistry with long history and future prospects. Life is totally dependent on the heterocyclic compounds, such as purine and pyrimidine bases (building unit of DNA and RNA). Now a days, the heterocyclic chemistry brings reagents and synthetic methods of its own usual activity in synthesis of drugs [1], pesticides [2] and detergents [3], as well as into the correlated fields such as biochemistry [4], polymers [5, 6], Dyes [7, 8], and material sciences [9].

2. 1, 2, 4-Triazole

There is significant and continuous concern in the chemistry of five-member N-heterocycle compounds, mainly tetrazole (CH2N4), triazoles (C2H3N3), and their substituted derivatives [10]. Five-membered nitrogen heterocycle compounds are important structural fragments and considered as biologically active compounds [11-16], corrosion inhibitors [17], pesticides [18], dyes [19], acid-base indicator [20], and other industrial chemicals [21]. At 1885, Bladin was the first science who gave the name of (triazole) to the carbon nitrogen ring system (C2N3H3) and described triazoles' derivatives [22].

Triazole exists as two isomers, 1,2,3-triazoles and 1,2,4-triazoles, as shown in (Fig. 1) [10].

1, 2, 3-triazole is used as antibacterial [23-26], antifungal [26, 27], antioxidant [28], anti-malarial and anti-leishmanial drugs [29, 30]. 1, 2, 4-triazole is used as a factor in drug structures even more than 1,2,3-isomer. The chemical industry got attention in the synthesis of both simple and fused triazole systems [31-36] after finding that the certain triazoles have the ability of inhibiting the fog formation in photographic emulsions [37], and some others being useful...
3. **Structural Properties of Triazoles**

3.1. **Aromaticity and Stability**

Aromaticity is the main reason of stability of triazole nucleus. An aromatic sextet is formed by donation of one π electron from each atom connected by double bonds, in addition of the remaining two electrons from a nitrogen atom [38]. Also, triazole nucleus is stabilized by resonance that it can be represented by tautomeric forms [39].

3.2. **Tautomerism in Triazoles**

Tautomerism is possible in both the structural isomers of triazoles.

3.2.1. **Tautomerism in 1,2,3-triazoles**

1,2,3-Triazoles have two tautomeric forms, 1H-1,2,3-triazole (1) and 2H-1,2,3-triazole (2) [40].

3.2.2. **Tautomerism in 1,2,4-triazoles**

1,2,4-Triazoles have two tautomeric forms: 1H-1,2,4-triazole (3) and 4H-1,2,4-triazole (4) [41]. Many studies have indicated that is tautomer (3) more stable than tautomer (4) [42].

3.2.3. **Tautomerism in substituted-1,2,4-triazoles**

Among the substituted 1,2,4-triazoles, 3-mercapto-1,2,4-triazoles exist in two tautomeric forms, that is mobile hydrogen can be attached either to the nitrogen (thion form) (5) or the sulfur (thiol form) (6). Thion (5) is the predominant form [42].

Other substituted 1,2,4-triazole can be exist in three tautomeric forms, such as:

1. Chloro-1,2,4-triazoles can exist as; 3-chloro-1H-1,2,4-triazole (7a), 3-chloro-4H-1,2,4-triazole (7b) and 5-chloro-1H-1,2,4-triazole (7c). Stability order of these tautomers is; 7a > 7c > 7b according to physical and theoretical studies [43, 44].

2. Bromo-1,2,4-triazoles, tautomeric forms of these compounds are, 3-bromo-1H-1,2,4-triazole (8a), 3-bromo-4H-1,2,4-triazole (8b) and 5-bromo-1H-1,2,4-triazole (8c). According to the physical and theoretical studies [44], the tautomer (8a) and (8c) are of similar energy and the most stable tautomer is (8b).

3. 3-Amino-1,2,4-triazole, can be exist as; 3-amino-1H-1,2,4-triazole (9a), 3-amino-2H-1,2,4-triazole (9b) and 3-amino-4H-1,2,4-triazole (9c). the stability order according to physical and theoretical studies [45] for the tautomers is; 9a > 9b > 9c.

4. **Spectroscopy of 1,2,4-triazole**

Ultraviolet (UV), infrared (IR), nuclear magnetic resonance (NMR) and mass spectroscopic studies are very informative about the structure of 1,2,4-triazoles and their derivatives.

4.1. **Ultraviolet spectroscopy (UV)**

Holam and Straub, observed that in (UV) absorption spectrum, the un-substituted 1,2,4-triazole (5) shows a very weak absorption at 205 nm. While in the case of N-acetyl-1,2,4-triazole (10), Bathochromic shift occurs with the absorption band at 221.5 nm. A similar shift in the maximum absorption of 3,5-dimethyl-1,2,4-triazole (11) appears in contrast with N-acetyl-3,5-dimethyl-1,2,4-triazole (12) [46].

Thion-thiol tautomeric forms can also be detected by (UV) spectroscopy. That in case of 5-substituted-3-mercapto-1,2,4-triazoles, the ultraviolet spectra of an ethanolic solution of these compounds usually show two maximum absorption bands at 252-256 nm and 288-298 nm. The higher value of absorption is due to the presence of the chromophoric C=S group [47].
4.2. Infrared Spectroscopy (IR) [48]

The infrared spectroscopy is very significant in characterization of triazole compounds. The absorption bands at 1570-1550 cm\(^{-1}\) due to N=N and in the region of 1600-1411 cm\(^{-1}\) due to C=N functions are the diagnostic features. In 5-substituted-4-amino-3-mercapto-1,2,4-triazoles, thion-thiol tautomeric forms can also be identified in IR spectra by the presence of C=S absorption band at about 1258-1166 cm\(^{-1}\) for thion and by characteristic SH absorption band at about 2700-2550 cm\(^{-1}\) for thiol forms. The primary N–H stretching vibrations have been observed as two weak absorption bands near 3350 cm\(^{-1}\) and 3250 cm\(^{-1}\) have also been found supportive of thion-thiol equilibrium. Also, the appearance of N–H bands in the regions of 3200-3100 cm\(^{-1}\).

4.3. Nuclear Magnetic Resonance (NMR)

Both 1H and 13C NMR are important to verify the structure of the derivatives, also they are useful in synthesis of isomers. Important 13C NMR and 1H NMR chemical shifts can be shown in Table (1-2), and number of atoms can be shown in (Fig. 1) [49].

<table>
<thead>
<tr>
<th>Atom</th>
<th>Experimental (ppm)</th>
<th>Calculated (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>128.57</td>
<td>121.59</td>
</tr>
<tr>
<td>C2</td>
<td>130.98</td>
<td>122.48</td>
</tr>
<tr>
<td>C3</td>
<td>129.03</td>
<td>124.31</td>
</tr>
<tr>
<td>C4</td>
<td>126.27</td>
<td>122.48</td>
</tr>
<tr>
<td>C5</td>
<td>129.03</td>
<td>124.31</td>
</tr>
<tr>
<td>C6</td>
<td>130.98</td>
<td>122.48</td>
</tr>
<tr>
<td>C7</td>
<td>167.39</td>
<td>154.48</td>
</tr>
<tr>
<td>H14</td>
<td>7.99</td>
<td>6.86</td>
</tr>
<tr>
<td>H15</td>
<td>7.52</td>
<td>6.75</td>
</tr>
<tr>
<td>H16</td>
<td>7.48</td>
<td>6.07</td>
</tr>
<tr>
<td>H17</td>
<td>7.51</td>
<td>6.98</td>
</tr>
<tr>
<td>H18</td>
<td>8.03</td>
<td>8.92</td>
</tr>
<tr>
<td>H19</td>
<td>13.99</td>
<td>11.86</td>
</tr>
<tr>
<td>H20</td>
<td>5.78</td>
<td>5.15</td>
</tr>
<tr>
<td>H21</td>
<td>5.78</td>
<td>5.06</td>
</tr>
</tbody>
</table>

Figure 2: Molecular structure of 4-amino-3-phenyl-1H-1,2,4-triazole-5(4H)-thione along with numbering of atom [49]

13C NMR is a powerful tool to characterize thion and thiol tautomers. In the spectrum of thion two values for chemical shifts are obtained, one at about 164-173 ppm for imine (C=N) and the other at 150-160 ppm for thionyl (C=S). While in thiol tautomer there is chemical shift in 50-75 ppm for (C-S) instead of thionyl group [48].

4.4. Mass Spectrometry (MS) [50]

1,2,4-Triazoles have a strong molecular ion peak with the cleavage of bonds between N1–N2 and N4–C5 has been observed. In addition of N1–N2 and C3–N4 cleavage, number of atoms can be shown in (Fig. 1-2).

5. Synthetic Methods of 1,2,4-Triazoles

5.1. From Carboxylic Acid Hydrazide

N-(3-mercapto-5-phenyl-4H-1,2,4-triazol-4-yl) hydrazinecarbothioamide (VI) prepared from the condensation of 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol and thiosemicarbazide (III) which synthesized by reaction of hydrazine hydrate and 5-phenyl-1,3,4-oxadiazol-2-ylamine (II), which in itself was synthesized from benzoic acid hydrazide (I) [51], As shown in Scheme (1).

While 6-(substituted)-3-(pyridin-4-yl)-1,2,4-triazole [3,4-b][1,3,4]thiadiazole (IV) has the synthetic root of isonicotinic acid hydrazide (I) which has been converted to potassium dithiocarbazinate (II). Then, salt (II) has been treated with hydrazine hydrate to yield 1,2,4-triazole (III), which treated with various carboxylic acids to get a series of compound (IV a-j) [52], as shown in Scheme (2).

![Scheme 1: Synthesis of N-(3-mercapto-5-phenyl-4H-1,2,4-triazol-4-yl) hydrazinecarbothioamide](image1)

![Scheme 2: Synthesis of 6-(substituted)-3-(pyridin-4-yl)-1,2,4-triazole[3,4-b][1,3,4]thiadiazole](image2)
5.2. From 1, 3, 5-Triazine

5-amino-3-(p-nitrophenyl) [1,2,4] triazolo[4,3-a] [1,3,5] triazine (III), 5-amino[1,2,4]triazolo[4,3-a][1,3,5]triazine-3-thiol (IV), and 5-amino-3-phenyl[1,2,4]triazolo[4,3-a][1,3,5]triazine (V) were synthesized from 2-amino-4-hydrazino-1,3,5-triazine (II) which has been prepared by substitution of hydroxy group in 2-Amino-4-hydroxy-1,3,5-triazine (II) with hydrazino group [53], as shown in Scheme (3).

5.3 From Oxazole

After the substitution of mecapto group in 2-mercapto benzoxazole (I) with hydrazino group to prepare 2-hydrazino benzoxazol (II), Reaction of (II) with carbon disulfide and sodium hydroxide gave 1,2,4-triazole \[4,3-b\] benzoxazole-1-(2H)thione (III) [54], As shown in Scheme (4).

5.4 From Thiosemicarbazide

5-(4-Nitrophenyl)-4-phenyl-4H-1,2,4-triazole-3-thiol (II) were prepared from 1-phenyl-4-(4-nitrobenzoyl)thiosemicarbazide (I) [55], As shown in Scheme (5).

5.5 From Urea

Reaction of 3-benzylidene phthalide (I) with urea under microwave irradiation (MWI) gave 1-(2-(α-phenylacetyl)benzoyl)urea (II) which reacted with hydrazine hydrate to yield 1-(2-(5-amino-4H-1,2,4-triazol-3-yl)phenyl)-2-phenylethanone (III) [56], As shown in Scheme (6).

5.6 From Acid Chloride

Conventional heating of 3-chloro-2-chlorocarbonylbenzo[b]thiophene (I) with hydrazine hydrate afforded the corresponding hydrazide (II). Potassium dithiocarbazate (III) was cyclized with hydrazine to afford 4-amino-5-(3-chlorobenzol[b] thien-2-yl)-3-mercapto-1,2,4-triazole (IV) [57], As shown in Scheme (7).

Scheme (3): Synthesis of 1,2,4-triazole derivates from 1,3,5-triazine

Scheme (4): Synthesis of 1,2,4-triazole [4,3-b] benzoxazole-1-(2H)thione

Scheme (5): Synthesis of 5-(4-Nitrophenyl)-4-phenyl-4H-1,2,4-triazole-3-thiol

Scheme (6): Synthesis of 1-(2-(5-amino-4H-1,2,4-triazol-3-yl)phenyl)-2-phenylethanone

Scheme (7): Synthesis of 4-amino-5-(3-chlorobenzol[b] thien-2-yl)-3-mercapto-1,2,4-triazole
6. Applications and Biological Activities

1,2,4-Triazole and its derivatives are an imperative type of compounds which possess environmental [58], industrial [11, 17, 59], agricultural [62, 67, 69] and biological activities, including antimicrobial [60-64], antifungal [65], antibacterial [66-68], antitubercul [69], anticancer [70-72], anti-oxidant [67, 69, 73], anti-inflammatory [74, 75], antiviral [16, 76], and anticonvulsant [77] activities.

6.1. Agricultural Applications

Azole derivatives have been used in the plant protection technology as pesticides [77]. In order to selectively control the growth of weeds, a wide range of azole herbicides have been developed that are exhibiting [78]:

- high level of activity
- application flexibility
- crop tolerance
- low levels of toxicity to mammals

Specifically, triazoles play an important role among this classes of heterocyclic compounds [50, 51].

Sutton et al. [44] have been evaluated a good in vitro activity of Etaconazole on fungi that causing summer disease of apple. While Amer et al. [49] have been determined diniconazole fungicides residues in tomatoes and green beans by capillary gas chromatography.

Schermerhorn et al. [79] have been determined 22 triazole compounds including parents fungicides and metabolites in apple, peaches, flour and water by liquid chromatography/tandem mass spectroscopy, and the most three common fungicides triazole are: 1,2,4-triazole (2), triazolyalanine (13), and triazolylacetic acid (14).

6.2 Pharmacological Applications

Over the last few decades, the biological and pharmaceutical properties of 1,2,4-triazoles have been formed considerable attention in their synthesis and characterization [80]. 1,2,4-Triazole and its derivatives possess widely different biological activities Figure (3).
6.2.2. Antifungal Activities

Antifungal are the class of drugs that are used to eliminate fungal infections from the human body. They work by exploiting differences between mammalian and fungal cells to eliminate fungal organism without harming the host cells. As both the cells are eukaryotic in nature so it is more difficult to design the drugs of antifungal activity with fine selections of the cells without causing any side effects [84].

The mechanism of action of triazole antifungal, was investigated with Trichophyton mentagrophytes and Candida albicans by Tatsumi et al. whom explained that Efinaconazole (20) dose-dependently decreased ergosterol production and accumulated 4,4-di methylsterols. Efinaconazole induced morphological and ultrastructural changes in T. mentagrophytes hyphae that became more prominent with increasing drug concentrations. In conclusion, the primary mechanism of action of efinaconazole is blockage of ergosterol biosynthesis, presumably through sterol 14α-demethylase inhibition, leading to secondary degenerative changes [85].

Anti (Mucor, Aspergillus Niger and Penicillium) were synthesized and characterized by Patel et al. whom prepared 3-(Substitutedphenyl)-N-(4H-1,2,4-triazol-4-yl) acrylamide derivatives (21) [86].

Suresh et al. found that (Z)-2-(4-substitutedbenzylidene)-7-isocyano-3,6-dioxo-8-phenyl-3,6-dihydro-2H-thiazolo[3',2':2,3][1,2,4]-triazolo[1,5-a]pyridine-9-carbon nitrile derivatives (22) exhibit good antifungal activity against Aspergillus flavus, Aspergillus fumigatus, Candida albicans, Penicillium marneffei and Trichophyton mentagrophytes [87].

6.2.3. Anticancer and Antitumor Activities

Cancer, a diverse group of diseases identified by the production and prevalence of abnormal cells, is a major global problem [88]. Therefore, the discovery and development of new effective and selective anticancer drugs are of high importance in modern cancer researches. 1,2,4-Triazole derivatives have their chance with these researches with a good results [41, 59]. Li et al., synthesized and evaluated in vitro anticancer activity of 12 hybrid 1,2,4-triazole Schiff's bases (23) bearing γ-substituted butenolide moiety [89].
A. Anton Smith et al. have been synthesized and evaluated in vitro anticancer activity of 1,2,4-triazole derivatives (24) [72].

B. A. Baviskar et al. have been synthesized clubbed triazolyl indeno [1,2-C]isoquinolines (26) as anticancer agent [71].

6.2.4. Anti-inflammatory Activities

Therapeutic use of non-steroidal anti-inflammatory drugs (NSAIDs) which are used in treatment of a number of arthritic diseases is limited because of their side effects, such as, gastrointestinal haemorrhage and ulceration. So, new drugs having effective anti-inflammatory activity with minimum side effects have been developed [75].

A series of hybrids from diaryl-1,2,4-triazole and N-hydroxyurea (27) were synthesized, evaluated as novel anti-inflammatory agents, and displayed promising analgesic activity in acetic acid-induced writhing response and hot-plate assay, by Jiang et al. [90].

Subbarao et al. have been evaluated a good anti-inflammatory activities of novel series of 1,2,4-triazolo [3,4-b] [1,3,4] thiadiazoles (28) [91].

Murti et al. have been characterized the anti-inflammatory activity of 4-(Substituted benzylideneamino)-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-thiol derivatives (29) [92].
6.2.5. Anticonvulsant Activities

Anticonvulsants are drugs that avoid or decrease the severity and rate of seizures in various types of epilepsy. The different types of anticonvulsants may proceed on different receptors in the brain and have different forms of action [93]. 1,2,4-triazole derivatives considered as a good anticonvulsants such as alprazoam (39).

Wingrove et al. put forward a hypothesis that the activity of loreclezole (30) (second-generation antiepileptic drug) is dependent on the interaction between the triazole moiety and the amide group of asparagine (Asn-289), which is located on the β2 subunit of the GABAA receptor [94].

Plech et al. have been Studied on the anticonvulsant activity and influence on GABA-ergic neurotransmission of 1,2,4-triazole-3-thione based compounds (31), (32), and (33) [95].

D. Kumudha et al. synthesized and evaluated anticonvulsant and CNS depressant activity of some 1,3,4-thiadiazoles having substituted 1,2,4-triazole moiety (34) [96].

6.2.6. Antiviral Activities

Antiviral drugs are a class of medication used specifically for treating viral infections. specific antivirals are used for specific viruses [97].

K. Benci et al. were synthesized and evaluated 1,2,4-triazole acyclic cyclopropane nucleoside analogues (35) [98].

A. Abou-zeid et al. were used 1,2,4-triazole derivatives (36) and (37) as antiviral agents [99].

6.2.7. Antitubercular Activities

Tuberculosis is still a major treat to mankind. The increasing problem of Multi-Drug Resistant-tuberculosis has focused attention on developing new drugs that are not only active against drug resistant tuberculosis, but also shorten the lengthy therapy. There is urgent need and significant interest in developing new tubercular drugs. In developing new tubercular drugs, it is essential to think about which targets in the tubercule bacillus are good drug targets. Several recent reviews on this topic are already available [96, 100, and 101].

M. Maste Meenaxi et al. were studied the antitubercular activity of 1,2,4-triazole derivatives (38) [69].
6.2.8. Antioxidant Activities

Damage to cells caused by free radical is supposed to play an essential role in the aging process and in disease development. Antioxidants are our first line of protection against free radical damage. The antioxidants became even more critical with amplified exposure to free radicals. Pollution, cigarette smoke, drugs, illness, stress and even exercise can increase free radical exposure [102].

A. Abdul Hameed and F. Hassan have been synthesized and evaluated antioxidant activity of 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol derivatives (39) [73]. K. Sancak et al. found that tri-substituted triazole (40) and (41) possess highly potent antioxidant properties [103].

Also, triazole have been used as acid-base indicator because it shows reversible, clear colour change, sharp and low relative error (RE~1.4%) in the pH range 8.5-10.1, As shown in Scheme (8) (20).

Some triazole systems have extensive use in the separation of silver from other metal cations in liquid membrane systems [105]. In addition, these compounds are used as synthetic dyes and bleaching agents [106]. It also they are used as non-ionic surfactants [107]. Moreover, triazoles (43) have also been reported as inhibitors of corrosion of aluminum in hydrochloric acid solution [17].

References

S. Sripriya1, C. Subha, & A. Selvaraj, “The Inhibition Chemistry of 2-Amino, 5-Phenyl 1, 3, 4-Triazole for Aluminum in Hydrochloric Acid Solution,” IOSR-JAC, 6 (2), 25-29, 2013.

JNUS., 16 (2), 081-086, 2014.

OA. Naif, “Synthesis of New Benzoxadiazole Compounds Derived from Ethyl-4-(7-nitro-2,1,3-
benzoxadiazole-4-yl)aminobenzoate, JNUS, 15 (1), 1-12, 2012.

[34] AM. Al-Azzawi, & KK. Hammud, “Synthesis and Characterization of Some New 1,3,4-Oxadiazole and 1,2,4-Triazoles Derivatives Based on 3,4,5,6-Tetrachlorophthalimide, ” Iraqi J. Sci., 54 (4), 782-788, 2013.

[36] BA. Ahmed, & SJ. Mohammed, “Improved Synthesis of 3-(α,α-Diphenyl-α-hydroxy)methyl -4-amino-1,2,4-triazoline -5-thione and Facile Route to 3,6-Disubstituted 1,2,4-Triazo[3,4-b][1,3,4]-thiadiazoles, ” J. Raf. Sci., 20 (4), 11-16, 2009.

WW. Hope, R. Lewis, & JA. Smith, “Clinical Primer: Potential Hepatic Complications with Triazole Therapy, USA: University of Wisconsin-Madison School of Medicine and Public Health, School of Pharmacy, and School of Nursing and Fallon Medica LLC. 2010.

YH. Hou, J. Sun, ZH. Pang, PC. Lv, DD. Li, L. Yan, HJ. Zhang, EX. Zheng, J. Zhao, & HL. Zhu, “Synthesis and Antitumor Activity of 1,2,4-Triazoles Having 1,4-Benzodioxan Fragment As a Novel Class of Potent Methionine Aminopeptidase Type II Inhibitors,” Bioorg. Med. Chem., 19, 5948-5954, 2011.

K. Arul, & AA. Smith, In-Silico Design, “Synthesis and in vitro Anticancer Evaluation of Some Novel 1,2,4-

Triazole Derivatives,” The Experiment, 21 (1), 1439-1452, 2014

VR. Uchil, & V. Joshi, “Selective Reduction of Substituted α-(1,2,4-Triazol-1-yl)chalcones NaBH4 and Al-Isopropoxide: Synthesis of Substituted (+)-α-(4-Chlorophenyl)-β-(phenylmethylene)-1H-1,2,4-triazole-1-ethanols Having Potential Bacteriostatic and Agro-Based Fungical Activity,” Indian J. Chem., 41B, 631-634, 2002.

R. Singh, & A. Chouhan, “Important Methods of Synthesis and Biological Significance 1,2,4-Triazole Derivatives,” WORLD J. PHARMACY PHARMA. SCI., 3 (8), 874-906, 2014.

Author Profile

Jawad Shneine received the B.S. and M.S. degrees in Chemistry from Baghdad University and RWTH Aachen University in 1986 and 1995, respectively. He accomplished his PhD degree at the Institute of Biochemistry of RWTH Aachen University, Germany in 1999. He continued there a research project for further two years. Since 2005 he is a teaching and research member of the Chemistry Department of the Science faculties of the Al-Nahrain University in Baghdad – Iraq.