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Abstract: This paper discusses the thermal instability when a fluid is heated form below. The classic example of this, is a horizontal 
layer of fluid with its lower side hotter than its upper. The basic state is then one of rest with light fluid below heavy fluid. When the 
temperature difference across the layer is great enough, the stabilizing effects of viscosity and thermal conductivity are overcome by the 
destabilizing buoyancy, and an overturning instability ensues as thermal convection and an overturning instability ensues as thermal 
convection.
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1. Introduction 

Bènard worked with very thin layers, only about 1 mm
deep, standing on a levelled metallic plate which was 
maintained at a uniform temperature. The upper surface was 
usually free, and being in contact with the air was at a lower 
temperature. Various liquids were employed-some, indeed, 
which would be solids under ordinary conditions. The layer 
rapidly resolves itself into a number of cells, the motion 
being an ascension in the middle of a cell and a descension 
at the common boundary between a cell and its
neighbours…  . The cells acquire surfaces nearly identical, 
their forms being nearly regular convex polygons of, in
general, 4 to 7 sides. The boundaries are vertical…. Fig.2.1
shows a plan of the convection cells in a silicone oil, with 
regular hexagons as the predominantpolygons.  

Stimulate by Bènard’s experiments, Rayleigh (1916a) 
formulated the theory of convective instability of a layer of
fluidon and boundary conditions to model the experiments, 
and derived the linear equation for normal modes. between 
horizontal planes. He chose equations of motion he then 
showed that instability would occur only when the adverse 
temperature gradient was so large that the dimensionless 

parameter 
4g d   exceeded a certain critical value 

. Here g is the acceleration due to gravity, a the 
coefficient of thermal expansion of the fluid, 

d dzb = - Q the magnitude of the vertical temperature 

gradient of the basic state of rest, d the depth of the layer of

the fluid,  its thermal diffusivity and n its kinematic 
viscosity. This parameter is now called the Raleigh number. 
We shall denote it by Ra in this paper, Ra . The Raleigh 
number is characteristic ratio of the destabilizing effect of
buoyancy to the stabilizing effects of diffusion and 
dissipation. 

2. Thermal Instability 

2.1Equations of Motion

2.1.1 The Exact Equations  
The equations of motion of a heat-conducting viscous fluid 
under the action of gravity can be found in textbook (e.g. 
Batchelor 1967). In the notation of Cartesian tensors with 

position vector x = xj and velocity u = uj ( j = 1,2,3), the 
equations are as follows. The equation of continuity is  

( )
0.j

j

u
t x

rr ¶¶ + =
¶ ¶  (2.1.1)  

The equations of motion are the Navier-Stockes equations, 

3
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where . ,D Dt t u      the x3-axis is the 
upward vertical, the stress tensor is given by  
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 (2.1.3)
m is the coefficient of dynamic viscosity of the fluid, and 

l is that of bulk viscosity ( or secondviscosity). The 
equation of energy, or of heat conduction, is

,j

j j j

uDE k P
Dt x x x

qr
æ ö ¶¶ ¶ ÷ç ÷ç= - + F÷ç ÷÷çç¶ ¶ ¶è ø  (2.1.4) 
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Figure 2.1.1: Be'nard cells under an air surface ( from 
Koschmieder&pallas 1974)

where E is the internal energy per unit mass of the fluid, k is
the thermal conductivity, q is the temperature, and the rate 
of viscous dissipation per unit volume of fluid is given by

2 2
1 2( ) .
2 3

ji k

j i k

uu u
x x x

m l m
æ ö æ ö¶¶ ¶÷ç ÷ç÷ ÷çF = + + - ç÷ ÷ç ç÷ ÷÷ç÷çç¶ ¶ ¶è øè ø

(2.1.5)  

For a calorically perfect gas ,qvE = c  and for a liquid 

E c q= ,where cn is the specific heat at constant 
volume and c the specific heat.  

In general, the equations of state for a fluid specify 
, , , ,k c   and Eas functions of P and q . 

For layers of real fluid in which the pressure does not vary 
much, these functions are almost independent of P. 

The Boussinesq approximation 
To these equations of motion, Rayleigh (1916a) applied 
theBoussinesq approximation, due independently to
Oberbeck (1879) and Boussinesq(1903). The basis of this 
approximation is that there are flows in which the 
temperature varies little, and therefore the density varies 
little, yet in which the buoyancy drives the motion. Then 
the variation of density is neglected everywhere except in
the buoyancy. On the basis of this approximation for small 
temperature difference between the bottom and top of the 
layer of fluid, 

( ){ }1 ,o or r a q q= - - (2.2.1) 

where or is the density of the fluid at the temperature oq
of the bottom of the layer and a is the constant 

coefficient of cubical expansion. For a perfect gas,
3 11/ 3 10o Ka q - -= » ´ , and for a typical liquid used in

experiments 
4 15 10 Ka - -» ´ . If 10o Kq q- ¶ , 

then ( ) / ( ) 1,o o or r r a q q- = - = but nevertheless the 

buoyancy  0g   is of the same order of magnitude as
the inertia, acceleration or viscous stresses of the fluid and so
is not negligible. For most real fluids

/ , / , / ,d d dk kd dc cd     ˆ so that 

, km and c, or vc , are treated as constants in the Boussinesq 

approximation. (The coefficient of bulk viscosity l is

neglected, because it only arises as a factor of /j ju x¶ ¶ , 
which is of order a . In short, one approximates the 
thermodynamic variables as constants except for the pressure 
and temperature and except for the density when multiplied 
by g. This approximation works well for flows with 
temperature differences of a few degrees or less, such as those 
in Bènardexperiments, and can be formally justified by
dimensional analysis (Spiegel &Veronis 1960, Mihaljan 
1962). Here we shall give only a partial justification. 

The differences of density in the continuity equation(2.2.1) 
are of order a , so the approximation gives 

0,j

j

u
x

¶
=

¶ (2.2.2)  

as for an incompressible fluid. Then the stress tensor is given 
by  

.ji
ij ij

j i

uuP
x x

s d m
æ ö¶¶ ÷ç ÷ç= - + + ÷ç ÷÷çç¶ ¶è ø (2.2.3)  

Again, on treating r and  as constants in each term 
other than the buoyancy, the Navier-Stockes equations 
become 

0 3
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  
(2.2.4)  

where the Laplacian operator is given by
2 2/ jxD = ¶ ¶ . 

 Next we must simplify the heat equation (1.1.4). Firstly, note 
that, if V is representative velocity scale of the flow, d a length 

scale, and 1oq q- a scale of temperature difference, then 
the ratio of the rate of production of heat by internal friction to
the rate of transfer of heat is

( ) ( ) ( )2 2 1
0 0 1 0 1/ / / ,

D c
V d c Vd V c d

Dt
q

r m r q q n q q- -F » - = -

1q  being the temperature of the top of the layer of thickness 

d. Now, for a typical gas 810 sKn -»v/c and for typical 

liquid 
910 sKn -»/c ,which shows that the ratio is very 
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small forboth gases and liquids unless ( )0 1/V dq q- is
very large. 

Therefore we shall neglect . Secondly, note that the 
heating due to compression is

j

j

u P D DP P
x Dt Dt

r qa
r

¶
- = =

¶

For a perfect gas, ( )p vP c c r q= -  and 1/a q=
Therefore 

,j
p

j

uDE DP c
Dt x Dt

qr r
¶

+ @
¶ (2.2.5) 

and the heating due to compression is not negligible in
comparison to the heat transfer, as approximation (2.2.2) 
might have led one to expect. For liquids, however, the 
heating is negligible at normal pressure. The reason for this 
difference between gases and liquids is chiefly because, 
although the heating due to compression is typically only an
order of magnitude less for a liquid than for a gas, the heat 
transfer is proportional to the density of the fluid, and a 
typical liquid is 103 times more dense than a typical gas. 
With all of these approximations, the heat equation 
becomes 

,D
Dt

q k q= D
                           

 (2.2.6) 

where the thermal diffusivity 0 pk c   for perfect 

gas and 0k c for a liquid. Equations (2.2.3) , (2.2.5) and 
(2.2.6) are called the Boussinesq equations and describe the 
motion of Boussinesqfluid.

3. The Stability Problem 

3.1. The Linearized Equations  

Rayleigh (1916a) modelled Bènard’s experiments as the 
instability of Boussinesq fluid at rest between two infinite 
horizontal planes at different temperatures. Let the planes 
have equations 0Z   and d, where the temperatures are 

0q and 1q  respectively. Here we denote a dimensional 
variable by subscripted asterisk to prepare for our choice of
dimensionless variables; e.g. we shall soon take 

/z z d*= to be the dimensionless variable of height. 
Then the equations of motion give the basic state with  

0,U* = 0 zq b* *Q = - , (3. 1.1) 

 21
* 0 0 * *2p p g z z     for 0 z d*£ £ , 

where the basic temperature gradient 

0 1( ) .db q q= - We anticipate that there can be

instability only when 0q  1q , i.e. when there is an adverse 

temperature gradient and 0b f .  

On putting  

u* = u'*(x*, t*), 

* * * * * * * *( ) ( , ), ( ) ( , ),z t P P z P tq q* * * *
¢ ¢= Q + = +x x

and linearizing the Boussinesq equations for small 

perturbations *¢u , ,Pq* *
¢ ¢, it follows that  

. 0* *¢Ñ =u  , (3. 1.2) 

*
*

0

1 P
t

a q n
r * * * *

*

¢¶ ¢ ¢¢= - Ñ + + D
¶
u g k u  , (3. 1.3) 

w*
*t

q b k q*
*

¢¶ ¢ ¢- = D
¶ * (3. 1.4) 

In the absence of any basic velocity, we seek convection 
driven by buoyancy and moderated by viscosity and thermal 
diffusivity, so it is convenient to use scales d of length, 

2d k of time, and 0 1db q q= - of temperature 

difference. (One may equivalently use 2 /d n as the time 

scale; this somewhat simpler if n k? .) Accordingly we
define the dimensionless variables 

x = x*/d , 
2/ ,t t dk *= u = du'*/ k , (3. 1.5) 

/ ,dq q b*
¢= 2 ' 2

0/P d P r k*= . 
Then the linearized stability equations (3. 1.2)- (3. 1.4) 
become  

. 0Ñ =u , (3.1.6) 

P r P r ,P R
t

q¶ = - Ñ + + D
¶

u k u  (3. 1.7) 

w ,
t
q q¶ - = D
¶  (3. 1.8) 

respectively, where the dimensionless Rayleigh number is
given by  

4 /R da b k n= g  (3. 1.9) 
and the Prandtl number by  

P r / .n k=  (3.1.10) 
Note that the Rayleigh number is positive when the lower 

boundary is the hotter one ( 0q  1q ) and is seen to be a 
characteristic ratio of the buoyancy to the viscous forces. Also 
note that the Prandtl number is an intrinsic property of the 
fluid, not of the flow; it measures the ratio of the rates of
molecular diffusion of momentum and heat.  We can now 
easily eliminate all the dependent variables except w, to get a 
single stability equation. The curl of equation (3. 1.7) gives  

P r( ) P r ,R
t

q¶ = Ñ ´ + D
¶

kω
ω  (3. 1.11) 

where the velocity = Ñ´ uω . The curl of equation 
(3.1.11) in turn gives, after use of equation (2. 1.6), 
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2P r( ) P rR
t z

qq¶ ¶D = D - Ñ + D
¶ ¶

u k u . (3. 1.12) 

In particular , 

w w,2
1P r P rR

t
q¶ D = D + D

¶  (3. 1.13) 

where the horizontal Laplacian 
2 2 2 2

1 / /x yD = ¶ ¶ + ¶ ¶  . Finally elimination of

  from equations (3.1.8),(3.1.13) gives 

w w.1
1

P r
R

t t
æ öæ ö¶ ¶÷ ÷ç ç- D - D D = D÷ ÷ç ç÷ ÷ç çè øè ø¶ ¶  (3. 1.14) 

Similarly it can be shown that   satisfies the same 
equation. 

It can be shown from the equation of continuity that  
w2

3
1 ,u

x z y
w¶¶D = - -

¶ ¶ ¶                 
 (3. 1.15) 

w2
3

1 ,v
y z x

w¶¶D = - +
¶ ¶ ¶                

 (3.1.16) 

where 3 / /v x u yw = ¶ ¶ - ¶ ¶ is the vertical 
component of vorticity.  

This is given by the vertical component of equation (3. 
1.11), namely 

3
3P r

t
w w¶ = D
¶                        

 . (3. 1.17) 

So ,u v can be found by solving the Poisson equations (3. 

1.15), (3. 1.16) when w has been found by solving 
equation (3.1.14) and 3w by solving the diffusion equation 
(3.1.17). 
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