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Abstract: In this paper we give an overview of results about two types of an isoperimetric Inequalities on its eigenvalues and the 

eigenvalues of the laplacian. We estimate the isoperimetric type constant      of 2-dimentional Riemannian manifold    . if  be the 

diameter of compact Riemannian manifold   ,      is the volume of the unit  -dimensional sphere, and     be an injectivity radius of 

 , we prove that 
      

 
 

     

       
     . 
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1. Introduction 

 
 In this paper we consider sharp isoperimetric inequalities 

       

      
 
        

       
                              

        

         
 
           

       
                       

where    is a compact Riemannian manifold with boundary 

  and diameter    and    is a constant depending on  . For 

a history of isoperimetric inequalities see [7]. 

 

In general the constant    is hard to compute, but in some 

interesting cases it can be estimated. 

 

For example, we consider the following case. Let    be a 

compact manifold without boundary. Define the 

isoperimetric type constants 

        
 

      

                    
  

        
 

         

                      
   

 

where   runs over codimension one submanifolds of   

which divide   into two pieces   , and   . 

 

[4], shows that the first eigenvalue of the Laplacian of 

       , can be bounded below in terms of     . [9], 

shows that      [and hence     ] can be bounded below by 

the diameter, volume, and Ricci curvature of  . In this 

section we reproduce Yau's result, with a slightly better 

constant, and show that in the two dimensional case      
can be bounded below by the volume and injectivity radius 

of  . 

 

In [6] Peter Li ,uses      to get lower bounds for the higher 

eigenvalues of the Laplacian,for forms as well as functions, 

and upper bounds on their multiplicities. We show that      
can also be bounded below by the volume, diameter, and 

Ricci curvatureof , while in the two dimensional case it can 

be bounded by the volume and injectivity radius of  . 

 

Another case where one can estimate    is where   is 

contained in a compact manifold   without boundary, and 

the diameter of  is less than the injectivity radius of  . In 

this case     , so the isoperimetric inequality ( ) is in 

terms only of the dimension of  . As a consequence we 

show that the volume of a metric ball of radius   in  , where 

 is less than or equal to one half the injectivity radius of  , 

is bounded below by a constant times   , where the constant 

depends only on the dimension of  . 

 

We next turn our attention to universal upper and lower 

bounds on the first eigenvalue,   , of the Dirichlet problem 

for the Laplacian. 

 

We prove a sharp lower bound for       where   is a 

sufficiently nice compact manifold with boundary. In 

particular, if   is contained in a compact manifold   

without boundary, and the diameter   of   is less than the 

injectivity radius of  , then            
   where   

  is a 

hemisphere of the constant curvature sphere of diameter  . 

Further equality holds if and only if   is isometric to   
 . 

Cheng [10] has independently shown a universal bound for 

such  ; however, his bound is not sharp. 

 

We then show that there is a constant     depending only on 

  such that for every compact manifold    without 

boundary of convexity radius     , for every     and 

every       we have 

           
           

     
  

Where        is the metric ball of radius   about  . This 

allows us to show 

      
           

        
  

The proof of this result borrows much from the proof in [2]. 

[2] shows that there is a constant       depending only on the 

dimension   of   such that for every  less than the 

injectivety radius of   there is a point     such that 
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Using this we get an upper bound for       under the 

assumption that   admits a fixed point free involutive 

isometry. 

 

Let         be a smooth compact manifold   with 

smooth boundary    and Riemannian metric  . 

 

Let   
 
   represent the unit sphere bundle with the 

canonical measure. For     let    be the geodesic with 

  
      , let      represent the geodesic flow, i.e.      
  
    . Let     be the smallest value of     (possibly  ) 

such that         . Note      is defined for       . Let  

                                           . 
Now let the subsets             be defined by 

 

                      

                         

 
Let           

     and           
     . Define     

             and                 where   

represents the canonical measure on the unit sphere. Also let 

                           

 

For     let   be the inwardly pointing unit normal 

vector. Let         be thebundle of inwardly pointing 

unit vectors. That is 

                             

Let      have the local product measure, where the 

measure on the fibre is the measure from the upper unit 

hemisphere. 

 

We will let      represent the volume of the unit  -sphere. 

 

Proposition 1:For        we have: 

       
    

                          
    

     

    

       
   

                         
     

     

     

Where  is any integrable function. In particular for   we 

have: 

                          
    

      

                          
    

     

This formula occurs in [9], 

 

Corollary 2: 
       

      
 
    

 
      

       

      
 
    

 
     

where                                   and  is 

the diameter of  . 

Note.The inequalities are both sharp when   in the upper 

hemisphere of a constant curvature sphere. In this case 

        and     = diameter of the sphere. 

 

Lemma 3: Let   be a compact Riemannian manifold 

without boundary, such that the Ricci curvature is bounded 

below by       . Then if   is any     dimensional 

submanifold dividing   into two pieces   and   we have 

    
       

                      
   

  
 

 

       

In particular if                then 

    
      

                       
   

  
 

 

 

where we use the convention that               is 

interpreted as   if     and as           if   .   

represents the diameter of  . 

 

Proof 

                            
    

     

 

                          
   

  
 

 

  

For the inequality                       
   

, see 

[11], where 

                                      

And        is the volume form in normal polar coordinates.  

Now from Corollary 2 we have                        

(where    is sharp). Thus using Lemma (1.2.4) we get ,(see 

Yau [6]) 

 

Proposition 4: 

     
 

    

      

                  
   

  
 

 

 

 (     was defined on page 1.) 
 
Theorem 5: Let   be a compact  -dimensional Riemannian 

manifold whose Ricci curvature is bounded below by 

      . Thus Proposition 4 holds. Since       
        we find a lower bound of    in terms of          , 
and  . In some cases we are able to show that o must be 1. 

For example let   be a compact manifold without boundary 

and let   be an     dimensional submanifold dividing 

 into  ,    then we have: 

 

Lemma 6: If the maximum distance in   between any two 

points of  is less than the injectivity radius of       , then 

      for    or  . 

 

Proof. Let     then 

                               

Let   , be the piece of   lying entirely inside          . 

By continuity this choice isindependent of the choice of  . 

Now for                 for every    , by the 

choice of   . Hence            . Let   . be the piece of 

  lying in          . By continuity    is independent of   

and hence must be   . Thus every geodesic from   

minimizes up to  . Hence      .  

 

If   is a compact manifold without boundary and       , 
let                                         
                
Then Lemma 6 and Corollary 2 give: 
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Corollary 7: 

For         : 

           

           
 
  
  
 
       

     
  

If   is a two dimensional compact manifold without 

boundary and   divides   into two pieces   ,    we can 

consider separately the cases where the length of         
and length of         to get: 

 

Corollary 8: For   a compact 2-dimensional manifold 

         
     

      
 
  
    

   

Hence   can be bounded below by     and      . 
 

Lemma 9: Let    be a Riemannian manifold and     . 

Then for every       (the distance to the cut locus in the 

direction  ): 

                
     

   

   

   

     
    

    
  

Where                        Further equality 

holds if and only if 

    
         

                        
Here      is the volume form in polar coordinates 

                 
    

   

           

 is the curvature tensor and    is the geodesic determined by 

 . 

This follows from a slight modification of [3]. 

 

Proposition 10: For         we have 

                  
   

           
    

  

with                 . Equality holds for the upper 

hemisphere of a constant curvature sphere. 

Proof. 

                        
     

    

  

            
     

   

 

              
     

    

    

                               
         

 

     

     

 

                     
       

 

     

 

            
    

 

  
    

    
        

   
           

    

      

The above follows from Proposition 1, Lemma 9, and the 

fact that                  . Equality holds for the upper 

hemisphere of a sphere at each stage.  

 

Theorem 11: For        we have the isoperimetric 

inequality: 
        

         
     

     

where                      . 

Equality holds if and only if     and  is the upper 

hemisphere of a constant curvature sphere. 

 

Proof: From Proposition 10 and a Hölder inequality we have 

                  
   

           
    

 

    
                      

 
   

                 
 
       

using Proposition 1 we have 

                     
    

 

 

           
   

 

                    
    

giving 
        

         
     

     

To compute    one need only note that equality holds 

everywhere for upper hemisphere. 

To order for equality to hold we must have equality in (9), 

(10) and (11). Equality in(11) implies       is a constant   
almost everywhere in     . Equality in (9) implies     . 

Equality in (10) implies equality in Lemma 9. Thus we see 

that   must have constant curvature equal to       . 

 

For   an interior point of       , the sphere of curvature 

      , and           
  an isometry, we see that 

            
         must be an isometry by [5]. To 

see that the image is a hemisphere one need only look at 

    and note that             .  
 

The equality condition only says that the upper hemisphere 

minimizes                   over spaces 

        with     . 

 

Consider   a compact Riemannian manifold without 

boundary, and   a codimension one submanifold dividing   

into two pieces   and   . If the maximum distance in   

between any two points of   is less than the injectivity 

radius, then we can combine Lemma 6 and Theorem 11 to 

get 

       

                     
   

    
    

       
  

Using this in the case that   is two dimensional we see: 

 

Proposition 12: Let   be a compact 2-dimensional 

Riemannian manifold then:                  , which 

is sharp for a constant curvature sphere. 

 

Proof: Since    we can assume that   is a smooth closed 

curve of length  .if       then 

       

                     
   

 
       

 

      

 

 

 
      

      
  

If        then by the above 
       

                     
   

 

 
      

  
     

Now in [1], and [10], show                 Thus 
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                .  
For     we need only combine Theorem 11 with 

Lemma 3 to get: 

 

Theorem 13: 

        
      

                
   

  
 

 

 

   

  

with the same convention as Lemma 3 for       
                . 

Now Proposition 12 and Theorem 13 can be applied to the 

results of [6]. Thus we get a lower bound on the higher 

eigenvalues of   as well as upper bounds on 

theirmultiplicities in terms of the volume of  , the diameter 

of  , and a lower bound on the Ricci curvature of  . 

 

 Note that :For         we can consider 

        
 

       

                     
   

   

Where   moves over submanifolds dividing   into two 

pieces    and   (     not necessarily empty). If for 

given   we let     be the set of vectors whose geodesies 

minimize up to the point they intersect  , and define     

analogously, then the same method will give an isoperimetric 

inequality. If   is geodesically convex, then an argument 

similar to Lemma 3 will put a lower bound on    . This will 

give a lower bound on     . 
Let   be a compact Riemannian manifold without boundary. 

Define 

       

                                   
Since      is equivalent to the statement that the cut locus 

to any interior point of        lies outside       , we see 

that              for all    . 

 

Corollary 14:Let   be a compact 2-dimensional 

Riemannian manifold then:            
         , 

which is sharp for a constant curvature sphere [11] . 

Proof.Since     we can assume that   is a smooth closed 

curve of length  .if         then 
       

                         
   

 

 
        

 

       

 

 

 
      

 

       
  

If         then by the above 
       

                         
   

 

 
      

  
     

Shows that               
    see[1],[10] .Thus 

         
         .  

 

Proposition 15 :For      (or in particular         we 

have 

             
  
  
     

             
  
    

      

in particular 

        
    

 
   

       

          
       

Proof.By Theorem 11 for      : 

           

            
       

   
   

 

integrating both sides with respect to   yields 

              
   

   
   
   

This gives the first statement. The second follows from 

Theorem 11 and the first statement.  

This relates to a question of Berger. Berger is interested in 

bounding the volume of a compact manifold from below in 

terms of the injectivity radius. In [3], he proves that 

                          .Proposition 15 can be 

considered as a local version of this result. One has from 

Proposition 15 that 

              
  
    

       

Where        is the topological category of   (i.e., the 

number of topological  -balls needed to cover  ). To see 

this one need only note that for every               

(open) is a topological  -ball, then choose     , choose 

               , in general choose      

           
   
   ; by the definition of        we can 

choose at least        such   . Now for              

    hence                            .Hence 

Proposition 15 gives the result. 

 

Proposition 15 also allows us to get good lower bounds on 

       when       is large forsome   even though the 

injectivity radius may be small. Another consequence is: 

 

Corollary 16 : Let   be a compact Riemannian manifold 

then 
      

 
 

       

          
         

 

Proof. Let   be the integer such that              
 . Let   be a minimizing geodesic from   to  in  of length 

 . Choose points                     along   such that 

               . Then the geodesic balls              
will be disjoint and have volume          
2          . Thus 

             
            

          
 

 
 

    

            

          
  

 
Corollary 17: Let   be a compact Riemannian manifold 

[11] then 

      

 
 

     

       
       

 

Proof. Let     be the integer such that            
   . Let   be a minimizing geodesic from   to   in  of 

length  . Choose points                       along 

  such that                . Then the geodesic balls 

             will be disjoint and have volume 
                    . Thus 
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We prove the following lower bound for the first eigenvalue 

of the Dirichlet problem for the Laplacian. 

 

Corollary 18:Let   be a complete Riemannian manifold of 

injectivity radius     . Then for every    and every 

        we have                   
  , with equality 

holding if and only if        is isometric to    
 . [in which 

case        ]. 

 

Theorem 19: Let         be a compact Riemannian 

manifold with boundary such that every geodesic ray in   

intersects  . (i.e.,     ). Let   be the maximum length of 

any geodesic (from boundary point to boundary point). Then 

we have           
  . If further every geodesic ray 

minimizes distance up to the point that it intersects the 

boundary(i.e.,     ), then equality holds if and only if   is 

isometric to   
 . 

Proof . By the minimum principle we need only show that 

        
 

       
 

      
   

for all   such that        . 

We first note that 

         
 

      
        
  

  

Where    represents differentiation. 

Using this, Proposition 1 (with           ) and the one 

dimensional version: 

         
 

 

 
  

  
        
 

 

  

                

with equality if and only if                  , we see 

        
 

 
 

      
        
  

 

 
 

      
            

 
             

    

     

 

 
 

      
 

  

     
              

 

             
    

     

 

 
   

        
               

 

             
    

     

 

 
   

        
          

 
  

  

 

 
   

  
     
 

      
       

 

 

Now we assume that equality holds. Equality holds if and 

only if: 

(a)      for every       and 

(b)                       for all       , where 

      represents the geodesic with initial tangent vector 

 and     is a constant depending on  . 

 

By scaling we may assume that         . Let     be 

such that      . Then if   is any geodesic through   

(parameterized from boundary point to boundary point),   

will take on the maximum value of hence         . Thus 

it is not hard to see: 

(i)   is the metric ball of radius     around   and 

                   . 

                          for all    . 

                    forall      . 

 

Let            . Bycontinuity       is defined (i.e. 

lies in  ) for      . Since                 we see 

that            for all    . Hence        for    

 .Thus    is totally geodesic. 

For      we let    represent the (antipodal) point        

  . We now assume (as in the statement of the Theorem) 

that every geodesic minimizes length up to the point it 

intersects   . As   is the metric ball of radius     around 

  the unique point of distance  from  is   . Hence if   is any 

geodesic from  we have        . Hence this holds for 

geodesies in   . Hence the metric on   is that of a Blaske 

structure on a sphere. Hence by [3]  is isometric to the 

constant curvature sphere    
 . Inparticular         

       
  . Now using the assumptions of the Theorem, the 

fact that      , and the proof of Corollary 2 we see that 

       

      
 
       

  

      
  
  

Thus 

        

         
 
       

   

      
     

     

Now the fact that every geodesic minimizes up to 

  combined with Theorem 13 gives  is isometric to   
 .  
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