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Abstract: The ternary cubic Diophantine equation 322 404)(46)(5 zyxxyyx  is analyzed for its non-zero distinct integer 
solutions. Five different patterns of integral solutions are obtained. Few interesting relations among the solutions and some special 
polygonal numbers are presented. 
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1. Introduction 

Ternary cubic equations are rich in variety. For more detailed 
understanding one can see [1-7]. For the non-trivial integral 
solutions of ternary cubic Diophantine equations [8-9] has 
been studied. [10-12] has been referred for various ternary 
cubic Diophantine equations. 

In this communication, we consider yet another interesting 
ternary cubic equation 322 404)(46)(5 zyxxyyx    
and obtain different patterns of non-trivial integral solutions. 
Also, a few interesting relations among the solutions and 
special polygonal, Centered, Gnomonic, Rhombic, Pronic 
numbers are presented. 

2. Notations 

n.rank  ofNumber  Triangular , nmT   

nrank  ofNumber  Pyramidal     n

mP . 

n.rank  ofNumber  Pronic)( nP   

n.rank  ofNumber Star nStar
n.rank  ofNumber  Hexagonal CenterednCH

n.rank  ofNumber  lDodecagona RhombicnRD
n.rank  ofNumber  GnomonicnGno

3. Method of Analysis 

Consider the equation  
322 404)(46)(5 zyxxyyx  (1)

The substitution of the linear transformation 

v-u =y  v;+u =x                               (2) 

in (1) give 322 40)4(2)+(2u zv                (3) 

We present below different methods of solving (3) and thus 
obtain different choices of integer solutions of (1) 

Pattern-1:
Let 22 baz                                 (4) 

Write )26)(26(40 ii                     (5) 
Using (4) and (5) in (3) and using factorization method we
have, 

3ib)]-ib)(a2i)[(a-2i)(6(6i4v)-2i4v)(2u2(2u 

Equating real and imaginary we get 

]261826[
2
1 2233  baabbau

]933[
2
1 2233 baabbav 

Since our aim is to get integer solutions, we take a=2A, 
b=2B. 
Employing the values of u and v in (2) we get 

11284428 2233  BAABBAx

160602020 2233  BAABBAy
22 44 BAz    

Observations 

integers cubic are A)9y(A,- and  A)A)],-7x(A,A[z(A, .1
)34(mod0)1,(29P6[P .2 ,6,10

13
A

19
A  AxGnoTT AAA

)14(mod0]146018[)Pr(T15A)y(A,-A)z(A, .3 519
A6,  AAA GnoPPA

)19(mod0]19)Pr(126[TA)x(A,-A)z(A, .4 1819
A6,  AAA GnoAPP

)29(mod0]10P2[6P-64Pr(A)y(A,1) .5 11
A

19
A  AGno

 Pattern-2:
Write (3) as 1.40)4(2)+(2u 322 zv  (6)  

and 
210

8i)-8i)(6(61 


                              
 (7) 

Using (4),(5) and (7) in (6) and proceeding as in pattern 1 we
get the non-zero distinct integer solutions of (1) to be

160000600002000020000 2233  BAABBAx
18400012000280004000 2233  BAABBAy

22 400400 BAz 
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Observations:
)20001(mod0)1,(]6[10000.1 A  AxGnoCHCC AA

)1999(mod0]837[1000),1(.2  BBB GnoCHRDBy
)34001(mod0)]1,([]28212[1000.3 16  ByGnOCHP BBB

numbernasty  a represents  ),(12 expression The .4 AAz
)33001(mod0)]1,()1,([29432120[100.5 B6,

16  BzByGnoTP BB

Pattern-3: 

Write 25
3i)-3i)(4(41 

                           (8) 

Using (4),(5) and (8) in (6) and proceeding as in pattern 2 we
get the non-zero distinct integer solutions of (1) to be

15100930017003100 2233  BAABBAx
11050015003500500 2233  BAABBAy

22 100100 BAz 

Observations: 
)7799(mod0)1,(6100]2P6100[6P .1 ,82,19

16
A

19
A  AxGnoTT AAA

)9399(mod05900)]Pr(118100[2P-y(A,1) .2 ,26
17
A  AA GnoAT

)50(mod0)Pr(10050z(A,1) .3  AGnoA
)6898(mod0)1,()1,(]1724100[12P .4 ,6

15
A  AxAyGnoT AA

)6399(mod0)]1,()1,([]4828)P100[6(P .5 ,6
16
A

19
A  AzAxGnoT AA

Pattern-4:  

Write 261
60i)-60i)(1111(1 

                        (9) 

Using (4),(5) and (9) in (6) and proceeding as in pattern3 we
get the non-zero distinct integer solutions of (1) to be

161173241826266860875562039108 2233  ABBABAx
1109397401585146052838203646580 2233  ABBABAy

22 1488414884 BAz 

Observations: 
numbernasty  a represents ),(12.1 AAz

30) (mod0 )],(),(([.2  AAyAAx
32) 0(mod  ),(),(.3  AAxAAy
9) 0(mod  ),(),(.4  AAxAAz

Pattern-5: 

Write 
2

4i)-4i)(88(04 
                       (10) 

2
i)-i)(11(1 

                                   (11) 

Using (4),(10) and (11) in (6) and proceeding as in pattern 4 
we get the non-zero distinct integer solutions of (1) to be

16060AB2020 2233  BABAx
18412284 2233  BAABBAy

22 44 BAz 

Observations: 
number square a is  ),().,( .1 AAyAAx

integers cubic are A)7y(A,- and  A)A)],-9x(A,A[z(A, .2

)19(mod0]19)Pr(126[TA)y(A,-A)z(A, .3 1819
A6,  AAA GnoAPP

)14(mod0]146018[)Pr(T15A)x(A,-A)z(A, .4 519
A6,  AAA GnoPPA

)29(mod0]102[6-64Pr(A) x(A,1).5 1119  AAA GnoPP

4. Conclusion 

In this paper, we have obtained infinitely many non-zero 
distinct integer solutions to the ternary cubic Diophantine 
equation represented by

322 404)(46)(5 zyxxyyx 

One can also search for other patterns of solutions for the 
above equation. 
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