On The Ternary Cubic Diophantine Equation \(5(x^2 + y^2) - 6xy + 4(x + y) + 4 = 40z^3\)

Dr. G. Janaki\(^1\), P. Saranya\(^2\)

\(^1\)Assistant Professor, Department of Mathematics, Cauvery College for Women, Trichy – 18, India
\(^2\)Assistant Professor, Department of Mathematics, Cauvery College for Women, Trichy – 18, India

Abstract: The ternary cubic Diophantine equation \(5(x^2 + y^2) - 6xy + 4(x + y) + 4 = 40z^3\) is analyzed for its non-zero distinct integer solutions. Five different patterns of integral solutions are obtained. Few interesting relations among the solutions and some special polygonal numbers are presented.

Keywords: Ternary cubic, Diophantine equations, Integral solutions

Mathematical Classification: 11D25

1. Introduction

Ternary cubic equations are rich in variety. For more detailed understanding one can see [1-7]. For the non-trivial integral solutions of ternary cubic Diophantine equations [8-9] has been studied. [10-12] has been referred for various ternary cubic Diophantine equations.

In this communication, we consider yet another interesting ternary cubic equation \(5(x^2 + y^2) - 6xy + 4(x + y) + 4 = 40z^3\) and obtain different patterns of non-trivial integral solutions. Also, a few interesting relations among the solutions and special polygonal, Centered, Gnomonic, Rhombic, Pronic numbers are presented.

2. Notations

- \(T_{m,n}\) = Triangular Number of rank \(n\).
- \(P_m\) = Pyramidal Number of rank \(n\).
- \(P(n)\) = Pronic Number of rank \(n\).
- \(Star_n\) = Star Number of rank \(n\).
- \(CH_n\) = Centered Hexagonal Number of rank \(n\).
- \(RD_n\) = Rhombic Dodecagonal Number of rank \(n\).
- \(Gno_n\) = Gnomonic Number of rank \(n\).

3. Method of Analysis

Consider the equation
\[5(x^2 + y^2) - 6xy + 4(x + y) + 4 = 40z^3\]

The substitution of the linear transformation
\[x = u + v; y = u - v\]
in (1) give \((2u + 2)^2 + (4v)^2 = 40z^3\)

We present below different methods of solving (3) and thus obtain different choices of integer solutions of (1)

Pattern-1:
Let \(z = a^2 + b^2\) (4)
Write \(40 = (6 + 2i)(6 - 2i)\) (5)
Using (4) and (5) in (3) and using factorization method we have,
\((2u+2+i4v)(2u-2-i4v) = (6+2i)(6-2i)((a+ib)(a-ib))^3\)
Equating real and imaginary we get
\[u = \frac{1}{2}[6a^3+2b^3-18ab^2-6a^2b-2]\]
\[v = \frac{1}{2}[a^3-3b^3-3ab^2+9a^2b]\]
Since our aim is to get integer solutions, we take \(a=2A, b=2B\).

Observations
1. \(A[x(A, A), -7x(A, A)]\) and \(-9y(A, A)\) are cubic integers
2. \(6P_A^{19} + P_A^{13} + T_{10.4} + T_{6.4} - 29Gno_A - x(A, I) \equiv 0 (mod 34)\)
3. \(x(A, A) + 15T_{5.4} + Pr(A) - [18P_A^{13} + 60P_A^{12} + 14Gno_A] = 0 (mod 14)\)
4. \(x(A, A) + 15T_{5.4} + Pr(A) - [6P_A^{19} + 12P_A^{18} + Pr(A) + 19Gno_A] = 0 (mod 19)\)
5. \(y(A, I) + 64Pr(A) - [6P_A^{19} + 2P_A^{11} + 10Gno_A] \equiv 0 (mod 29)\)

Pattern-2:
Write (3) as \((2u + 2)^2 + (4v)^2 = 40z^3 . 1\)
\[and \quad 1 = \frac{(6 + 8i)(6 - 8i)}{10^2}\]
Using (4),(5) and (7) in (6) and proceeding as in pattern 1 we get the non-zero distinct integer solutions of (1) to be
\[x = 20000A^2 + 20000B^2 - 60000AB^2 - 60000A^2B - 1\]
\[y = -4000A^3 + 28000B^3 + 12000A^2B - 8400A^2B - 1\]
\[z = 400A^2 + 400B^2\]
Observations:

1. $1000(4C_A - CH_A - 6Gno_A) - x(A, A) \equiv 0 (\text{mod } 2000)$
2. $y(B, B) - 100(77D_B + 3CH_B - 8Gno_B) \equiv 0 (\text{mod } 9999)$
3. $100(12P_B^{16} + 2CH_B - 28Gno_B) - [y(B, B)] \equiv 0 (\text{mod } 34001)$
4. The expression $12(z, A)$ represents a non-zero distinct integer number 5.

Pattern-3:

Write $1 = \frac{(4 + 3i)(4 - 3i)}{5^2}$

Using (4), (5) and (8) in (6) and proceeding as in pattern 2 we get the non-zero distinct integer solutions of (1) to be

$x = 3100A^3 + 1700B^3 - 9300AB^2 - 5100A^2B - 1$

$y = 500A^3 + 3500B^3 - 1500AB^2 - 1050A^2B - 1$

$z = 100A^2 + 100B^2$\n
Observations:

$100(6P_A^2 + 6P_{4,4} - 2T_{19,4} - T_{32,1} - 6100Gno_A - x(A, A) \equiv 0 (\text{mod } 7799)$

$2. y(A, A) - 100(2P_{B,4} - T_{6,6} - 118P(A)) + 5900Gno_A \equiv 0 (\text{mod } 9399)$

$3. z(A, A) + 50Gno_A - 100Pr(A) \equiv 0 (\text{mod } 50)$

$4. 100(12P_B^{16} + 24T_{a,4} - 17Gno_A) + y(A, A) - 100(A) \equiv 0 (\text{mod } 6898)$

$5. 100(6P_A^2 + P_{4,4}) - 28T_{a,4} - 48Gno_A) - [x(A, A) + z(B, B)] \equiv 0 (\text{mod } 6399)$

Pattern-4:

Write $1 = \frac{(11 + 60i)(11 - 60i)}{61^2}$

Using (4), (5) and (9) in (6) and proceeding as in pattern 3 we get the non-zero distinct integer solutions of (1) to be

$x = 2039108^3 + 6087556B^3 - 182626684B^2 - 6117324AB^2 - 1$

$y = -3646580^3 + 5283820B^3 - 15851460B^2 + 10939740B^2 - 1$

$z = 14884A^2 + 14884B^2$\n
Observations:

$1. 12z(A, A)$ represents a non-zero distinct integer number

2. $-[x((A, A) + y(A, A)) \equiv 0 (\text{mod } 30)$

3. $y(A, A) - x(A, A) \equiv 0 (\text{mod } 32)$

4. $z(A, A) - x(A, A) \equiv 0 (\text{mod } 9)$

Pattern-5:

Write $40 = \frac{(8 + 4i)(8 - 4i)}{2}$

$1 = \frac{(1 + i)(1 - i)}{2}$

Using (4), (10) and (11) in (6) and proceeding as in pattern 4 we get the non-zero distinct integer solutions of (1) to be

$x = 20A^3 + 20B^3 - 60AB^2 - 60A^2B - 1$

$y = -4A^3 + 28B^3 + 12AB^2 - 84A^2B - 1$

$z = 4A^2 + 4B^2$\n
Observations:

1. $(x(A, A), y(A, A)$ is a square number

2. $A[z(A, A), -9x(A, A)$ and $-7y(A, A)$ are cubic integers

3. $x(A, A) - y(A, A) + T_{19,4} - [6P_B^{16} + 12P_{2,8} + Pr(A) + 19Gno_A] \equiv 0 (\text{mod } 19)$

4. $x(A, A) - x(A, A) + 15T_{a,4} + Pr(A) \equiv [18P_B^{16} + 60P_{2,8} + 14Gno_A] \equiv 0 (\text{mod } 14)$

5. $(x, A) + 64Pr(A) - [6P_B^{16} + 2P_{2,8} + 10Gno_A] \equiv 0 (\text{mod } 29)$

4. Conclusion

In this paper, we have obtained infinitely many non-zero distinct integer solutions to the ternary cubic Diophantine equation represented by

$5(x^3 + y^3) - 6xy + 4(x + y) + 4 = 40z^3$

One can also search for other patterns of solutions for the above equation.

References

5(x^2 + y^2) - 9xy + x + y + 1 = 23z^3
IJIRR,1,(10),99-101.

x^3 + y^3 = z(x^2 + y^2 - 20) = 4(x + y)^2 z

Author Profile

Dr. G. Janaki has completed her under graduation and post graduation in Seethalakshmi Ramasamy college Tiruchirapalli, Tamilnadu followed by M. Phil in St. Josephs college Tiruchirapalli Tamilnadu. She has completed her Doctorate in Bharathidasan university, Tiruchirapalli, Tamilnadu. Currently working as Assistant Professor in Cauvery College for Women.

P. Saranya has completed her under graduation and post graduation in Cauvery College for Women, affiliated to Bharathidasan University Tiruchirapalli. Done M.Phil in Vinayaga Missions University Salem. Pursuing PhD in Cauvery College for Women, affiliated to Bharathidasan University Tiruchirapalli, also working as Assistant Professor in Cauvery College for Women.