
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 3, March 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Survey on Automatic Bug Triage Using Data
Mining Concepts

K. Reshma Revathi1, Dr. S. Kirubakaran2

¹P.G Scholar Department of Computer Science and Engineering, Anna University, India

²Professor, Department of Computer Science and Engineering, Anna University, India

Abstract:In bug triage process, assigning a correct developer to fix the new incoming bug is tedious than fixing that bug. Since the
number of daily new coming bug is high, manual triaging increases the development cost and time. In order to automate the bug triage
process, data mining techniques such as text classifications are used. Data reduction is one of the major problem identified in applying
text classification to automate the bug triage process, which decreases the accuracy of bug triaging. This paper provides thecomplete
survey of automatic bug triage using data mining concept. Also, a framework called Auto-BugTriager that eliminates the problem of
data reduction to greater extent in bug triaging has been proposed. The proposed framework consist of three phases namely InfoZie,
DataReduction and NBPredictor which process together to predict the recommendation list of expert developer for fixing the bug. This
framework focus on domain specific environment in order to extend the idea for practical use. This system improves the accuracy of bug
triaging and also, the quality of development and maintenance process in software industries.

Keywords: Bug Triage Process, Manual Triaging, Data Mining Techniques, Text Classification, Data Reduction, Domain Specific
Environment.

1. Introduction

Almost, every software companies deals with the flow of
bugs in all kinds of projects. In open source environment,
almost 300 bugs appears every day. Where in domain
specific environment, almost 30 to 100 bugs are encountered
based on the size of the projects. This is much for
programmers to handle by themselves since many bug
reports are invalid or duplicate of another bug reports.
Therefore, every bug report needs to be triaged, in order to
check its validity and duplicity. One of the time-consuming
step in processing bug triage is to assign an appropriate
developer to fix a new bug.

In traditional software development, triaging is done
manually by an expert developer, i.e., a human triage. Due to
the large number of daily bugs and the lack of expertise of all
the bugs, manual bug triage is expensive both in time and
cost. In human triage whenever a new bug appears, an expert
assigns the new bug to a developer, who will try to fix this
bug. Most of the time the prediction of expert is not accurate.
Manual triage is error-prone due to the large number of daily
bugs and the lack of knowledge about all bugs by the
developers. Human bug triage results in expensive time loss,
high cost and low accuracy. Reassigning the new bug for
different developers to fix lasts for months while fixing that
bug takes only 2 to three days.Therefore, it is important to
automate the bug triage process in every software companies
for improving their production quality. Research trend
employs data mining concepts to deal with the software
engineering problems. Many mining concepts such as text
classification, fuzzy logic, text mining, extraction methods,
etc., are being applied to automate the bug triage process.
Bug reports are free-form of data, which has two main
challenges. First challenge is the duplicate reports available
in the bug repository. Mining large scale data will only
results in low accuracy. The second challenge is the low
quality of data i.e., the uninformative stop words in the bug
report. Both these challenges are together are called as data

reduction problem, which degrades the accuracy of bug
triage.

In this paper, a framework called Auto-BugTriager is
proposed which aims to eliminates the problem of data
reduction to greater extent in bug triaging. Our framework
consist of three phases namely InfoZie, DataReduction and
NBPredictor which works together to predict the
recommendation list of expert developer for fixing the bug.
In order to extend our idea for practical use, we propose to
implement this framework in a domain specific environment.
We strongly believe that this system helps in improving the
accuracy of bug triaging and also, the quality of development
and maintenance process in software industries.

2. Literature Review

To avoid the expensive cost of manual bug triage, automatic
bug triage approaches are being proposed using data mining
techniques such as text classification. Jifeng Xuan et al. [1]
address the problem of data reduction for bug triage, i.e., how
to reduce the bug dimension and the word dimension. They
proposed to combine feature selection with instance selection
algorithms to reduce the scale of bug reports as well as to
improve the data quality. Finally, they empirically
investigated the data reduction for bug triage in bug
repositories of two large open source projects, namely
Eclipse and Mozilla.In our paper, we propose an alternative
framework called Auto-BugTriager that aims to alleviate the
problem of data reduction. Which consist of three phases
namely InfoZie, DataReduction and NBPredictor which
process together to predict the recommendation list of expert
developer for fixing the bug.

Nicolas Bettenburg et al. [2] developed a tool called InfoZilla
which compares the structural elements extracted from the
master and duplicate bug reports. The description of bug
reports are typically treated as natural language text, although
it often contains stack traces, source code, and patches.

Paper ID: NOV161511 184

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 3, March 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Ignoring such structural elements is a loss of valuable
information; these structural useful information’s helps in
improving the performance of machine learning approaches
as well as the accuracy of bug triage. Also, as specified in [3]
the duplicate reports in the bug repositories are not always a
copy of original. Most of the times these duplicate reports are
re-submitted intentionally by the programmers. There are
90% of chances for the presence of extra valuable
information’s in the duplicate reports. Removing such
valuable information will decrease the accuracy of bug triage.

Therefore, it is important to validate the duplicate reports
available in the bug repository. The validation can be
performed using a specific tool that as in [2] called InfoZilla
which validates the duplicate reports through the extracted
structural information from the bug reports.In proposed
system, we create a tool called InfoZie based on diff
algorithm (diff is a data comparison tool used to show the
changes between two versions of the same file) that
compares the technical elements extracted from both
duplicate and master bug reports. When duplicate report
contains extra information's, it is merged with the master bug
report otherwise ignored. This improves the bug dimension
and also the accuracy of bug triage buy handling the
duplicate bug reports.

V. Bolon-Canedo et al. [4], projected the experimental
analysis of several fundamental algorithms which has been
studied to assess their performance in a controlled scenario.
Out of all, Feature Selection Algorithm is increasingly
reliable with sample size and pursue the solution of a clearly
stated optimization goal. Therefore, in proposed system we
use feature extraction method to remove the unwanted stop
words from the bug reports. This helps improve the quality of
dataset as well as improve the accuracy of bug triage.

D. Cubranic et al. [5] developed an application of supervised
machine learning (text categorization) has been developed
and using a naive Bayes classifier to automatically assign
bug reports to developers. Only 30 percent of classification
accuracy is achieved with the demonstration of 15,859 bug
reports from a large open-source project, Eclipse.org, The
analysis shows that, Naive Bayes classifier algorithm cannot
deal with unlabelled documents in the corpus.

In our paper we propose to combine Expectation
Maximization (EM) method with Naïve Bayes (NB)
classifier to achieve very good results in classifying a
document corpus that containing a high proportion of
unlabelled documents.

T. M. Khoshgoftaar et al. [6] presents a process involving a
feature selection technique for selecting the important
attributes and a data sampling technique for addressing class
imbalance. The study answers research questions such as
whether to apply feature selection to the original or sampled
data, and whether the training data should be formed based
on the original or sampled data, given a set of selected
features. In our paper, as specified in [1] we extract attributes
from the history of existing bug reports based on the
technical aspect as well as developers detail to train the
classifier.

J. Anvik et al. [7] projected a semi-automated approach
which can be used to ease one part of bug triage process, i.e.,
the assignment of reports to a developer by using a
supervised machine learning algorithm. The system has been
demonstrated for the Eclipse and Firefox projects, which
achieved precision rates of over 50%, reaching 64%
respectively. But when the system is applied for gcc project,
the results were far worse i.e., only 6% of accuracy is
achieved because of characteristics of the project. And, S.
Kim et al. [8]presents a bug finding algorithm using bug fix
memories: a project-specific bug and fix knowledge base
developed by analyzing the history of bug fixes. Analysis of
five open source projects shows that, for these projects,
19.3%-40.3% of bugs appear repeatedly in the memories.
The results analysis demonstrates that project-specific bug
fix patterns occur frequently enough to be useful as a bug
detection technique.In our paper we aim to automate the bug
triage in a domain specific environment. As every software
companies spends 40% of their time and cost on manual bug
triage.

Bug tracking systems play a central role in supporting
collaboration between the developers and the users of the
software. As in [9] highlights the importance of user
community involvement in bug fixing activities, and keeping
them up-to-date about the status of a bug.We propose to
create a user friendly application in java, i.e., in a platform
independent environment and also we tend to add extra
supporting features to the application system which will help
both the developer and user to manage and organize the bug
reports.

3. Proposed System

The proposed system design a framework called Auto-
BugTriager as shown in Figure 1. Which aims to eliminate
the problem of data reduction in bug triage. This framework
consist of three phases, namely InfoZie, DataReduction and
NBPredictor which process together to predict the
recommendation list of expert developer for fixing the bug.
The processing of each phase is as described below.

3.1. InfoZie

This phase creates a comparative tool that validates the
duplicate reports by comparing the extracted technical terms
from both master and duplicate bug reports.

Figure 1: Auto-BugTriage Framework

Paper ID: NOV161511 185

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 3, March 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3.2. DataReduction

This is the second phase that performs the following two
process.

3.2.1. Pre-processing
Here, text classification technique is used to convert the
summarized bug reports into text matrix where each row
indicates one bug report, and each column indicates one
word.

3.2.2. Noise Reduction
This phase make use of feature extraction method to reduce
the word dimension i.e., removes the uninformative stop
words from the bug reports.

3.3. NBClassifier

This is the final phase of the framework that builds a Naïve
Bayes classifier trained with the attributes extracted from the
history of processed bug reports. The NBclassifier phase
predicts the expert recommendation list for fixing the new
bug.

We propose to extend this idea for real-time use by
implementing the Auto-BugTriager framework at backend
process of an application system. We implement the system
in java using Eclipse platform to as it provide a platform
independent environment to run the application system. This
system helps the software developing team in managing and
organizing the bug reports by adding extra supporting
features.

4. Conclusions

One of the time-consuming step in processing bug triage is to
assign an appropriate developer to fix a new bug. Data
reduction is one of the major problem identified in applying
text classification to automate the bug triage process, which
decreases the accuracy of bug triaging. This paper explains
the complete idea behind the automatic bug triage process,
and proposed a framework called Auto-BugTriager that
eliminates the problem of data reduction to greater extent in
bug triaging. Our framework consist of three phases namely
InfoZie, DataReduction and NBPredictor which process
together to predict the recommendation list of expert
developer for fixing the bug. The proposed system can be
used for any all kinds of domain specific project environment
that generate large number of bug data every day. This
proposed system will help software companies in improving
both the software quality and accuracy of bug triage.

References

[1] JifengXuan, He Jiang, Yan Hu, ZhileiRen, WeiqinZou,
ZhongxuanLuo, and Xindong Wu,”Towards Effective
Bug Triage with Software Data Reduction Techniques”
IEEE Transactions on Knowledge and Data
Engineering, vol. 27, no. 1, January 2015

[2] Nicolas Bettenburg and Rahul Premraj, “Extracting
Structural Information from Bug Reports,” May 2008,

[3] N. Bettenburg, R. Premraj, T. Zimmermann, and S.
Kim, “Duplicate bug reports considered harmful ...
really?” in ICSM08: Proceedings of IEEE International
Conference on Software Maintenance, 2008, pp. 337–
345.

[4] V. Bolon-Canedo, N. Sanchez-Maro~no, and A.
Alonso-Betanzos,“A review of feature selection
methods on synthetic data,” Knowl. Inform. Syst., vol.
34, no. 3, pp. 483–519, 2013.

[5] D. Cubranic and G. C. Murphy, “Automatic bug triage
using text categorization,” in Proc. 16th Int. Conf.
Softw. Eng. Knowl. Eng., Jun. 2004, pp. 92–97.

[6] T. M. Khoshgoftaar, K. Gao, and N. Seliya, “Attribute
selection and imbalanced data: Problems in software
defect prediction,” in Proc. 22nd IEEE Int. Conf. Tools
Artif. Intell., Oct. 2010, pp. 137–144.

[7] J. Anvik and G. C. Murphy, “Reducing the effort of bug
report triage: Recommenders for development-oriented
decisions,” ACM Trans. Soft. Eng. Methodol., vol. 20,
no. 3, article 10, Aug. 2011.

[8] S. Kim, K. Pan, E. J. Whitehead, Jr., “Memories of bug
fixes,” in Proc. ACM SIGSOFT Int. Symp. Found.
Softw. Eng., 2006, pp. 35–45.

[9] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann,
“Information needs in bug reports: Improving
cooperation between developers and users,” in Proc.
ACM Conf. Comput. Supported Cooperative Work,
Feb. 2010, pp. 301–310.

Paper ID: NOV161511 186

