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Abstract. The aim of this work is to set an adequate discrete HIV models taking into consideration two antiretroviral: Protease 
Inhibitors and Reverse Transcriptase Inhibitors. Furthermore, we investigate optimal control strategies in order to reduce infected cells 
and infectious virions. Using an iterative method, three numerical simulations are carried out, compared and interpreted to confirm the 
the proposed model and to prove the performance of the optimization strategies. Finally, we improve the patients’ lives by minimizing 
serious side effects and also reducing drug costs and duration of treatments. 
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1. Introduction 

 
HIV (human immunodeficiency virus) is the virus that 
causes AIDS (acquired immunodeficiency syndrome). HIV 
kills and damages cells of the body’s immune system and 
destroys progressively the body’s ability to fight infections 
and certain cancers. AIDS appeared for the first times in 80-
81 years in the United States. A few years later (in 1983), 
HIV was highlighted at the Pasteur Institute in Paris and 
recognized as responsible for this syndrome. Today, over 36 
million people living with HIV in the world. The latest 
statistics of 2014 are detailed in Table 1, according to the 
World Health Organization (WHO).  

 

Table 1: Global summary of the AIDS epidemic 2014 
 Adults children Total 

Number of people (million) living 
with HIV in 2014 

34.3 2.6 36.9 

People newly infected (million) 
with HIV in 2014 

1.8 0.2 2.0 

AIDS deaths (million) in 2014 1.0 0.15 1.2 

 
The immune system is a complex set of organs, cells and 
molecules. It is responsible for the body’s defenses against 
infectious agents. The main components of the immune 
system to which we will interest are CD4

+ T lymphocytes. 
We are interested in mathematical models considering the 
dynamic contribution of these cells. 
CD4 T-cells (or T4), also known as helper T cells (Th) or 
Helper T, are the cells responsible for the coordination and 
activation of the immune response. These cells are also 
produced by the thymus and have CD4 protein on their 
membranes. These helper cells, as their name suggests, are 
the key to the immune system. They help to trigger the 
reaction and the immune response in case of infection. 
The different classes of ART (antiretroviral) used against 
HIV act at different stages of the virus life cycle. The most 
common antiretroviral are mainly: 
 Reverse Transcriptase Inhibitors (RTIs); 
 Protease Inhibitors (PIs). 
 

 

Table 2: Number of people receiving ART and percentage 
of all people living with HIV receiving ART in low and 

middle income countries, 2013 

Region 

Number of 
people 

receiving 
ART 

Percentage 
of people 
receiving 

ART in each 
region 

Africa region 9, 100, 000 37 

South and middle of The Americas 790, 000 44 

South-East Asia region 1, 100, 000 33 

Eastern European region 255, 000 22 

Eastern Mediterranean region 790, 000 44 

Western Pacific region 400, 000 32 

 
Unfortunately, much of infected does not receive ART, 
especially in countries whose income is low or limited. The 
Table 2, according to the World Health Organization 
(WHO), shows clearly this reality.  
Mathematical modeling of biological processes aims to 
better understand complex or often misunderstood 
phenomena of these bio-processes. A mathematical model is 
a set of mathematical equations that links; on one side, a set 
of variables which are states of the system studied for 
example body temperature, viral load, on the other hand, a 
set of parameters that are constants or variables specific to 
the system, for example the mass body, the life of the virus. 
In addition, the mathematical model takes also into 
consideration a set of constraints. 
In this study, we adopt discrete-time models for many 
reasons: the statistics data concerning HIV infection are 
collected in discrete-time, the discrete-time models may 
escape some mathematical complexities like regularity of 
solutions, adequate topology and the choice of state space. 
On top of that, to simulate continuous models, we are in need 
to discretize the concerned model, this passage 
(discretization) may not reflect exactly the continuous model. 
So the discrete-time are more suitable to describe HIV 
infection than the continuous ones. 
Two controls which measure the efficiency of reverse 
transcriptase inhibitors and protease inhibitors are introduced 
so new discrete epidemic model with two controls:  and  

, is developed and validated. Furthermore, Pontryagin’s 
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maximum principle is applied to this discrete HIV model in 
order to minimize the objective functional defined in (6) by 
decreasing the number of infected cells, the number of 
infectious virus and reducing the costs of treatment.  Optimal 
control problem is established to predict efficient economic 
strategy and prescribe adequate dose of treatment. 
In the literature, W. Garira et al. [1] presented continuous 
model with two controls and the results show that for drugs 
with less toxicity, continuous therapy is beneficial. H. Joshi 
[2] presented HIV system of ordinary differential equation 
but he took into account just two variable states uninfected 
CD4

+ T cells and free infectious virions. D. Kirschner [3] 
introduced chemotherapy in an early treatment setting and 
used a single control, the results don’t depend on the 
treatment duration. 
This paper is organized as follows. In the next section, we 
develop several HIV models until getting the discrete HIV 
models with two classes of antiretroviral (RTIs) and (PIs). In 
section 3, the analysis of optimization problem is presented. 
In section 4, we suggest a numerical appropriate method and 
the corresponding simulation results. Finally, conclusions are 
summarized in the last section. 
 

2. Presentation of Discrete HIV Model with 

Two Controls 
 
In this section, different HIV models will be described, 
explained, discussed and presented. In fact, we show 
different steps traversed in order to reach the final model this 
our subject matter. 
 

2.1 Discrete HIV Model 

 
In this subsection, we present a discrete HIV model under 
therapy. The model takes into consideration three variable 
states described below.  

  uninfected CD4+ T-cells at time k; 
  infected CD4+ T-cells cells at time k; 

 infectious virus at time k. 

Uninfected CD4+ T-cells  are produced at a rate s and 
cleared at a rate d. Infectious virus  die at a rate µ and 

infected CD4+ T-cells   die at a rate a. The movement from 
class of uninfected cells to class of infected cells is described 
by , where  is the effective contact rate. Hence, the 

 term is subtracted from uninfected CD4+ T-cells 
 and added to infected cells . The virus is 

produced by infected cells at a rate K . Furthermore, through 
therapy a part of infected cells may also revert to the 
uninfected state by loss of all cccDNA from their nucleus at 
a rate r. Hence, the model is described as follows 
 

 

                           (1)            

 

2.2 Discrete HIV model with Protease Inhibitors (PIs) 
 
Protease Inhibitors (PIs) are kind of  medications used to 
treat or prevent infection by viruses, in other words, they 
work by blocking the activity of reverse transcriptase and 
prevent production of viruses from the actively infected 
CD4+ T-cells, see table 3.  
 

Table 3: Examples of most common PIs 
Abbreviation International noun Commercial noun 

APV Amprenavir Agenerase 

TPV Indinavir Crixivan 

RTV Ritonavir Norvir 
ATZ Atazanvir Reyataz 

 
Protease Inhibitors (PIs) force part of infected CD4+ T-cells 
to be converted to noninfectious virions. So, another variable 
state is added. 

 noninfectious virus at time k. 
Noninfectious virus die also at a rate µ, and part of 
infectious virus  move to noninfectious virus class 
where the parameter ρ measures the effectiveness of 
Protease Inhibitors (PIs). Then, we obtain the following 
model 
 

 

                     (2) 

 

 

2.3 Discrete HIV model with Reverse Transcriptase 

Inhibitors (RTIs) 
 
We introduce Reverse Transcriptase Inhibitors (RTIs) in 
order to prevent infection of new cells. They are also a class 
of antiretroviral drug used to treat HIV infection. Another 
new parameter will be included: σ with the aim of measuring 
the effectiveness of Reverse Transcriptase Inhibitors (RTIs), 
see table 4.  
 

Table 4: Examples of most common RTIs 
Abbreviation International noun Commercial noun 

AZT Zidovudine Rtrovir 
ddI Didanosine Videx 

ddC Zalcitabine Hivid 

d4T Staduvine Zerit 
 
In this case, under Reverse Transcriptase Inhibitors (RTIs), 
the model  (1) becomes 
 

 

             (3) 
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2.4 Discrete HIV model with two controls (PIs) and 

(RTIs) 
 
In this subsection, we introduce two drugs Protease 
Inhibitors (PIs) and Reverse Transcriptase Inhibitors (RTIs). 
In fact, the parameters σ and ρ depend on time, are 
respectively considered as control functions  and  . 

 is the set of admissible controls given by (4)    

         
For k=0,..,T-1 and  i=1,2.  
As a result, our next model is described as follows  
   

 

        (5) 

               

 

For biological reasons, we have , , ,  

   and  .   
Note that k = 0,1,..,T-1, is the index for the time steps and 
there are two controls defined as follows   

  with i = 1, 2. 
 

3. The Optimal Control Problem 
 
In this section, our target is to minimize the objective 
functional defined in (6) by decreasing the number of 
infected cells and the number of infectious virus. On top of 
that, we are interested also in reducing costs of treatment by 
Protease Inhibitors (PIs) and Reverse Transcriptase 
Inhibitors (RTIs). We first define  as the objective 
functional given by  
 

                              (6) 

 
For simplicity the cost of each treatment is considered 
quadratic, where A, C, B1, and B2 are the cost coefficients 
and depend respectively on the relative importance of  , 

, , and  . 

The positive constants A, C, B1, and B2 represent desired 
weight on the benefit and cost, and  are bounded,  
lebesgue integrals functions and reflect the severity of the 
side effects of the drugs [2]. We are looking for optimal 
control   which verifies  (7) 
 

         
 

3.1 Existence of an optimal control 
 
The existence of the optimal control pair can be obtained 

using a result by Fleming and Rishel [4] and by Lukes [5]. 
 
Theorem 3.1  
There exists control  function    which verifies   
             

Proof 
To prove the existence of an optimal control pair it is 
sufficient to verify that 
1) The set of controls and corresponding state variables is 

nonempty. 
2) The admissible set  is convex and closed. 
3) The right hand side of the state system (5) is bounded by 

a linear function in the state and control variables. 
4) The integrand of the objective functional is concave on 

 . 
5) There exists constants c1 > 0, c2 > 0 and  ρ > 1 such that 

the integrand L(y, v, u1 , u2 ) of the objective functional 
satisfies  

 
 

The result follows directly from (Fleming and Rishel 1975). 
In order to verify these conditions, we use a result by Lukes 
[5] to give the existence of solutions of (5) with bounded 
coefficients, which gives condition 1. We note that the 
solutions are bounded. Our control set satisfies condition 2. 
Since our state system is bilinear in  and , the model (5) 
satisfies condition 3, using the boundedness of the solutions. 
Note that the integrand of our objective functional is 
concave. Also we have the last condition needed where c2 
depends on the upper bound on y and v, furthermore c1 > 0 
since B1, B2 > 0. We conclude there exists an optimal control 
pair. 
 
3.2 Characterization of the Optimal Control 
 
According to the Pontryagin’s Maximum Principal in 
discrete-time, Equations (5), (6) and (7) will be converted 
into a problem of minimizing a Hamiltonian   .  
At each time step k, the Hamiltonian is given by  

              (8)               

              
 Where  is the right side of the difference equation of the 
jth  state variable at time step k + 1. 
 
Theorem 3.2   
Given an optimal control  and 
solutions , , , and  of the corresponding states 
system (5), there exist adjoint functions  ,  ,  , 

and   satisfying   
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                                        (9) 

  

           

 

          

 

with the transversality conditions , 

 and  

Furthemore, for k=0,..,T-1 the optimal control 
 is given by (10) 

 

 
  
 Proof. 
The Hamiltonian is given by  

      
 

 

              (11)  

 

According to the Pontryagin’s Maximum Principle in 
discrete time, see [6], the equations for the adjoint 
variables, for k=0,1..,T−1, are 
 

  

                                        (12) 

   

  

For k=0,1..,T−1, the control characterization is derived 
from  (13) 

 

 

Subject to the lower and upper bounds for  , 
the characterization becomes 

 

 

4. Implementation and interpretation 
 
In this section, we make use of an iterative method with 
forward solving of the state system followed by backward 
solving of the adjoint system and we give the meaning and 
the estimated value of each parameter in table 5. Also, we 
present three numerical illustrations using different weight 
factors. In each example, we achieve relevant results that 
help us to compare between before and after of these 
treatments namely the uninfected cells, the infected cells and 
the viral load. 
 
4.1 Numerical method and estimated parameters 
 
In this study, we will implement numerical method for 
solving this problem. This system consists of the state 
system, adjoint system, initial and final time conditions, and 
the controls characterization. 
The optimality system is given by  (14) 
 

 

 

 

 

 

                 

  

                   

 

                     

 

With these initial conditions    

 and the transversality conditions are given by 

,  and .
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Table 5: Meanings and values of parameters 
Parameters Meanings Values 

d Death rate of uninfected CD4+ T-cells population 0.02 d−1 

a Death rate of uninfected CD4+ T-cells population 0.5 d−1 

µ Death rate of infectious and noninfectious virus 0.3 d−1 

K Virion production by infected cells 6 vir.cell−1.d−1 

r Rate of cure 0.01 d−1 

β Rate of virion infection of CD4+ T-cells 0.000024 mm3 .vir−1.d−1 

s Source term for uninfected CD4 + T-cells 10 cell.mm−3.d−1 

 
There are initial conditions for the state variables and 
terminal conditions for the adjoints. That is, the optimality 
system is a two-point boundary value problem, with 
separated boundary conditions at times step k = 0 and k = T . 
We solve the optimality system by an iterative method with 
forward solving of the state system followed by backward 
solving of the adjoint system. We start with an initial guess 
for the controls at the first iteration and then before the next 
iteration, we update the controls via the characterization [7]. 
We exploit several resources [8],[9],[10],[11],[12],[13] in 
order to extract the different estimated parameters. So, a 
complete list of parameters and their estimated values are 
given in table 5. 
Chemotherapy has potentially hazardous side effects. 
Therefore, the length of treatment is restricted. For most HIV 
chemotherapy drugs, the length of treatment is less than 500 
days. In addition, the optimal controls will depend implicitly 
on the length of the treatment, and the general shape of the 
optimal controls stays the same as the treatment interval 
changes [14]. Hence, the period of the therapy considered at 
the first is 100 days.  
In the following simulations, we adopt initial conditions 
given by: =1000cell.mm−3, =100cell.mm−3,                

=30vir.mm−3 and =0vir.mm−3. 
 
4.2 Numerical Illustration 1 
 
In the first illustration, the weight factors are given by:         
A = 20, B1 = 3000, B2 = 2000 and C = 500. The figure 1 
gives us the opportunity to compare easily the behaviors of 
the two discrete HIV models, before and after therapy with 
Protease Inhibitors (PIs) and Reverse Transcriptase 
Inhibitors (RTIs). In addition to this, optimal chemotherapy 
strategy for the HIV infection is viewed on the figure 2. In 
fact, Fig1.(a) shows that the concentration of uninfected       
CD4

+ T-cells is higher in case of therapy. Fig1.(b) reveals 
that in presence of treatment concentration of infected CD4

+ 

T-cells decreases rapidly. In Fig1.(c) we remark that in the 
absence of therapy infectious virus reach the top at 913 
cell.mm−3 in 3 days and decrease rapidly towards zero in the 
60th day, whereas in the presence of therapy virus reach just 
810 cell.mm−3 in one day and decreases asymptotically to 
zero in the 20th day. In Fig1.(d) the concentration of 
noninfectious virus grows rapidly until 402 vir.mm−3 in three 
days but decreases exponentially until disappearance after 30 
days of treatment. 
On the whole, we can deduce that introduction of therapy by 
Protease Inhibitors (PIs) and Reverse Transcriptase 
Inhibitors (RTIs) has a powerful rule to fight HIV infection 
and improve the life of the patient. These beneficial results 
are obtained by the treatment described in Fig.2. The first 

control has a duration of 75 days, whereas the second control 
has duration of 80 days. Hence, the treatment lasts 80 days. 
 
4.3 Numerical Illustration 2 
 
In the second illustration, the weight factors are given by:    
A = 1000, B1 = 500, B2 = 1000 and C = 200. Evolution of 
cells and virus is described clearly in the Fig.3 which permits 
us to confirm that treatment is able to reduce more and more 
concentration of infected cells and infectious virus. Despite 
changing weight factors, the result related to concentration of 
uninfected cells, infected cells, infectious virus and 
noninfectious virus differ but slightly, in other words Fig.3 
don’t bring an extra supply. Unlike optimal controls, adopted 
in this second simulation, are different to optimal controls in 
the first simulation, see Fig.2 and Fig.4, whereas the 
treatment here has the same duration 80 days. 
 
4.4 Numerical Illustration 3 
 
In the last illustration, the weight factors are given by:         
A = 3000, B1 = 50, B2 = 10 and C = 400. In this subsection, 
we vary the weight factors once more, but evolution of 
uninfected cells, infected cells, infectious virus and 
noninfectious virus is almost the same compared to the first 
simulation, see Fig.1 and Fig.5. According to Fig.6, the first 
control has a duration of 75 days, whereas the second control 
has duration of  92 days. Consequently, the treatment 
requires a longer period 92 days. 
 

5. Conclusion 
 
This research is part of a multidisciplinary subject and its 
objective was to study mathematical modeling and optimal 
control of HIV/AIDS infection. Our approach consists of 
modeling in discrete time dynamics evolution of the 
infection, mainly the dynamics of viral load in order to 
predict its evolution and adopt a medical and economic 
strategy in a relevant and efficient way. 
Despite these many scientific advances due in particular to 
chemical engineering, genetic engineering and biomedical, 
HIV/AIDS remains a major scientific problem. 
Antiretroviral (ART) that exist allow to lower the viral load 
in the patient in order to slow the depletion of the immune 
system but eradication of virus from the body is still 
impossible. In addition to the high costs of these ART, 
treatments are very heavy for the patient considering their 
severe side effects (neurological disorders, acute diarrhea, 
metabolic disorders, etc.) and often irreversible [8], [15]. 
To evaluate this work and to establish better treatment 
strategy, we have investigated three different numerical 
simulations and  have achieved many objectives and results. 
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First, the treatment period was reduced to 92 days in the 
worst case. Second, without controls, infected cells and viral 
load decrease at a slower rate than in case of control with 
two therapies (PIs) and (RTIs). These latest results confirm 
the effectiveness of the optimal control in terms of time and 
in terms of improvement of the health of patients. To end, 
another point to raise is that despite the change of weight 
factors in each illustration, the results at the patient’s health 
are beneficial and almost identical, while the treatment 
varied from one case to another in terms of distribution and 
duration. 
The purpose of this work is to offer intelligent tools that will 
serve the field of biomedicine and can help the public health 
authorities to intervene in the right time and with the right 
way. Not to mention that, according to results approved in 
this research, governmental organizations, non-governmental 
organizations and the international community should react 
as soon as possible to provide ART especially in low and 
middle income countries to preserve the life of humanity. 
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Figures List 
 

 

 
Figure 1: Simulation 1. (a) Evolution of unifected cells in two cases: with controls and without controls. (b) Evolution of 
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infected cells in two cases: with controls and without controls. (c) Infectious virus in the absence of therapy and during 
therapy. (d) Noninfectious virus appeared thanks to Protease Inhibitors (PIS). 

 
Figure 2: Simulation 1. (a) Optimal control  (RTIs). (b) Optimal control   (PIs). 

 
Figure 3: Simulation 2. (a) Evolution of unifected cells in two cases: with controls and without controls. (b) Evolution of 
infected cells in two cases: with controls and without controls. (c) Infectious virus in the absence of therapy and during 

therapy. (d) Noninfectious virus appeared thanks to Protease Inhibitors (PIS). 

 
Figure 4: Simulation 2. (a) Optimal control   (RTIs). (b) Optimal control   (PIs). 
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Figure 5: Simulation 3. (a) Evolution of unifected cells in two cases: with controls and without controls. (b) Evolution of 
infected cells in two cases: with controls and without controls. (c) Infectious virus in the absence of therapy and during 

therapy. (d) Noninfectious virus appeared thanks to Protease Inhibitors (PIS). 

 
Figure 6: Simulation 3. (a) Optimal control  (RTIs). (b) Optimal control  (PIs). 
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