
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 2 February 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

PRISM: Phase and Resource Information-Aware
Scheduler for MapReduce

P Ramesh Naidu

1
, Dr. Guruprasad

2

1Department of Computer Science and Engineering, Sri Venkateshwara College of Engineering, Bengaluru

2Department of Computer Science and Engineering, New Horizon College of Engineering, Bengaluru

Abstract: MapReduce is one of the important concepts of Hadoop that is used for data handling used by big companies today such as

Google and Facebook. Here we divide each job into the map and reduce phases and try to complete the execution of the assigned task in

a parallel form. In this paper, we suggest that it would be more efficient if we make the scheduler to work at the phase-level instead of

the task-level. The reason is because the task demands a lot of requirements during its lifetime. For this very purpose, we introduce the

concept called PRISM, which is aphase and information-aware scheduler for MapReduce and in this concept we divide the tasks into

unequal parts called as phases and apply phase-level scheduling to these phases and achieve efficient resource usage

Keywords: MapReduce, Hadoop, scheduling, resource allocation

1. Introduction

Businesses today are increasingly reliant on large scale data
analytics to make critical day-to-day business decisions. This
shift towards data-driven decision making has fueled the
development of MapReduce [10], a parallel programming
model that has become synonymous with large-scale, data-
intensive computation. In MapReduce, a job is a collection of
Map and Reduce tasks that can be scheduled concurrently on
multiple machines, resulting in significant reduction in job
running time. Many large companies, such as Google,
Facebook, and Yahoo!, use only MapReduce to process
large volumes of data on a daily basis. Consequently, the
performance and efficiency of MapReduce is good, but not
that great.

A central component of a MapReduce system is its job
scheduler. The role of the job scheduler is to create a
schedule of the Map and Reduce tasks that minimizes job
completion time and maximizes resource utilization. When
we apply a schedule with many tasks to a single machine,
then there will be resource contention and takes more time to
complete the job. Conversely, a schedule with too few
concurrently running tasks on a single machine will cause the
machine to have poor resource utilization.

The job scheduling problem can be easier to solve if we can
assume that all map and reduce tasks have homogenous
resource requirements in terms of CPU, memory, disk and
network bandwidth. Indeed, current MapReduce systems,
such as Hadoop MapReduce Version 1. x, make this
assumption to simplify the scheduling problem.
Unfortunately, in practice, run-time resource consumption
varies from task to task and from job to job. Several recent
studies have reported that production workloads often have
diverse utilization profiles and performance requirements [8].
Failing to consider these job usage characteristics can
potentially lead to inefficient job schedules with low resource
utilization and long job execution time. Due to this
disadvantage RAS i.e. resource aware scheduling and
Hadoop MapReduce Version 2 [7], have introduced

resource-aware job schedulers to the MapReduce framework.
However, these schedulers specify a fixed size for each task
in terms of required resources (e. g. CPU and memory), thus
assuming the run-time resource consumption of the task is
stable over its lifetime. In particular, it has been reported that
the execution of each MapReduce task can be divided into
multiple phases of data transfer, processing and storage [11].
A task is divided into small unequal sizes called phases. The
phases involved in the same task can have different resource
demand in terms of CPU, memory, disk and network usage.
Therefore, scheduled tasks based on fixed resource
requirements over their durations will often cause either
excessive resource contention by scheduling too many
simultaneous tasks on a machine.

In this paper, we present PRISM, a Phase and Resource
Information-aware Scheduler for MapReduce clusters that
performs resource-aware scheduling at the phase level.
Therefore, by initial finding out the resource demand at the
phase level, it is possible for the scheduler to maintain
parallelism and at the same time avoiding resource
contention. We suggest a phase–level scheduling algorithm
for this and show that PRISM produces up to 18%
improvement in resource utilization while allowing jobs to
complete up to 1.3times faster than current Hadoop
schedulers.

2. Existing System

2.1 Hadoop MapReduce

MapReduce [10] is a parallel computing model for large-
scale data-intensive computations. A MapReduce job
consists of two types of tasks, i.e. the map task and the
reduce task. A map task takes a keyvalue block as the input
that is stored in the underlying distributed file system and
runs a user-specified map function to of key-value output.
Subsequently, a reduce task is responsible for collecting and
applying specified reduce function on the collected key value
pairs to produce the final output. Currently, the most popular

 implementation of MapReduce is Apache Hadoop

Paper ID: NOV161284 940

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 2 February 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

MapReduce [1]. A Hadoop cluster consists of a collection of
machines where one node will act as a master node and all
the remaining n-1 nodes act as the slave node. The slave
nodes execute the tasks assigned by the master node. The
master node runs a resource manager (also known as a job
tracker) that is responsible for scheduling tasks on slave
nodes. Each slave node runs a local node manager (also
known as a task tracker) that is responsible for launching and
allocating resources for each task. To do so, the task tracker
launches a Java Virtual Machine (JVM) that executes the
corresponding map or reduce task. The original Hadoop
MapReduce (i.e. version 1.x and earlier) adopts a slot-based
resource allocation scheme. The scheduler assigns tasks to be
executed to each machine based on the availability of the
resources on each machine. The number of map and educe
slots determine how the data are divided and allocated to
each machine. As a Hadoop cluster is usually a multi-user
system, many users can simultaneously submit jobs to the
cluster. The job scheduling is performed by the resource
manager in the master node, which maintains a list of jobs in
the system. Here each slave node performs a small job and
informs its completion via a heartbeat message (usually
between 1-3 seconds) to the master node. The resource
scheduler will use the provided information to make
scheduling decisions. Today there are two commonly used
schedulers that are: Capacity scheduler [2] and Fair scheduler
[3]. These schedulers function on at task level.

2.2 MapReduce Job Phases

Current Hadoop job schedulers perform as task-level
scheduling where initially a task given by the user to execute
is divided into blocks or chunks which are of unequal size
this is the map phase. In particular, a map task can be divided
into 2 main phases: map and merge2. The Hadoop
Distributed File System (HDFS) [4], where data blocks are
stored across multiple slave nodes. In the map phase, a
mapper fetches an input data block from the Hadoop
Distributed File System (HDFS) [4] and applies the user - as
with the Hadoop implementation, defined a map function on
each record. The map function generates records that are
serialized and collected into a buffer. When the buffer
becomes full (i.e., content size exceeds a pre-specified
threshold), the content of the buffer will be written to the
local disk. Lastly, the mapper executors a merge phase to
group the output records based on the intermediary keys, and
store the records in multiple files so that each file can be
fetched a corresponding reducer. Similarly, the execution of a
reduce task can be divided into 3 phases: shuffle, sort, and
reduce. In the shuffle phase, the reducer fetches the output
file from the local storage of each map task and then places it
in a storage buffer that can be either in memory or on disk
depending on the size of the content. At the same time, the
reducer also launches one or more threads to perform local
merge sort in order to reduce the running time of the
subsequent sort phase. Once all the map output records have
been collected, the sort phase will perform one final sorting
procedure to ensure all collected records are in order. Finally,
in 1. Other resources such as disk and network I/O are yet to
be supported by Hadoop Yarn.
2. We use the same phase names

3. Phase-Level Resource Requirements

Here we analyze the run-time resource requirements in each
phase for various jobs that belong to Hadoop. We use
Apache Hadoop 0.202 which is run using a 16 node
environment where one node acts as master node and the
remaining 15 node acts as slaves. Each node uses a quad core
CPU with 12GB memory and 1TB local disk storage.

Here we evaluate the phase-level resource requirements
across various jobs. The CPU and memory usage of each
phase are collected using the Linux command called top and
the input-output usage are collected by reading MapReduce
I/O Counters at runtime.

We would actually prefer to divide certain phases into still
finer portions to achieve even more uniform resource usage,
but there may be system complexity involved and the
scheduling overhead may outweigh the gain attended by
phase-level scheduling.

3.1 Proposed System (PRISM)

It is said if the resource allocated to a machine is insufficient
then it will affect the performance because time will be taken
to complete execution of a task. This motivates us to design a
fine-grained, phase-level scheduling scheme that allocates
resources according to the phase that each task is currently
executing. By exploiting fine-grained phase-level resource
characteristics, it is possible to better “bin-pack” tasks on
machines to achieve higher resource utilization compared to
task-level schedulers.

 Figure 1: System Architecture.

Here in the proposed system we present the PRISM, a fine-
grained resource-aware scheduler, which performs
scheduling at phase-level. PRISM allows the job owners to
specify the phase-level requirements. The above figure gives
the description about the system architecture. The
architecture states that there are majorly three components: a

Paper ID: NOV161284 941

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 2 February 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

scheduler called the phase-based scheduler which is located
at the master node, local node managers that coordinate
phase transitions with the scheduler and a job progress
monitor that is indeed used progress information at the
phase-level. The below figure shows phase-level scheduling
mechanism that explains a series of actions that takes place
within this architecture. First, whenever a task needs to be
scheduled, the scheduler replies with a heart beat message
with the task scheduling request. Then the node manager then
assigns the task. Each time a task finishes executing a phase
it notifies and asks permission of the node manager to go to

the next phase. The node manager than forwards the
permission request to the scheduler through the regular
heartbeat message [10].If sufficient resources are available
the scheduler decides and informs its decision to the local
node manager whether it can proceed or wait the execution of
the next phase. Finally, if the task is given permission to
execute the next phase, the node manager grants the task to
continue its duty. Once the task is completed, the task status
is forwarded to the node manager and then forwarded again
to the scheduler

Figure 2: Phase-level scheduling mechanism

4. Scheduler Design

In this section, we describe in detail the design of PRISM’s
phase-based scheduling algorithm.

4.1 Design

The responsibility of a MapReduce job scheduler is to assign
tasks to machines with consideration for both efficiency and
fairness [8]. Efficiency can be achieved on proper resource
allocation. Job running time is another parameter for resource
efficiency because if the job is being able to compete is a
shorter time then we can say that our machine runs
efficiently. In contrast, fairness ensures that resources are
fairly divided among jobs such that no job will experience
starvation due to unfair resource allocation. However,
simultaneously achieving both fairness and efficiency is quite
difficult [10].Fair is scheduled algorithms such as Hadoop
Fair Scheduler [3], Quincy [11] and Dominant Resource
Fairness (DRF) [11] generally runs an iterative procedure by
identifying users that experience the highest degree of
unfairness (i.e. deficit) in each iteration, and schedule tasks
that belong to those users to improve the overall fairness of
the system. However, directly applying a fair scheduling
algorithm for phase level scheduling is insufficient. In
particular, given a set of phases that can be scheduled on a
machine, the scheduling algorithm must consider their
interdependencies in addition to their resource requirements

. In many cases, such delays can also propagate two phases in
other tasks, causing them to be delayed as well. For example,
even though the execution of a shuffle phase of a reduce task
can overlap with the execution of a merge phase of a map
task, the shuffle phase cannot finish unless all merge phases
of the map tasks have finished. Thus, when choosing between
scheduling merge phase and shuffle phases, it is preferable to
give sufficient resources to merge phases to allow them to
finish faster, instead of allocating most of the resources to the
shuffle phase and delay the completion of merge phases.

4.2 Algorithm description

We formally introduce our scheduling algorithm in this
section. Upon receiving a heartbeat message from a node
manager reporting resource availability on the node, the
scheduler must select which phase should be scheduled on
the node. Suppose there are J jobs and in the system.
Specifically, each job j 2 J consists of two types of tasks:
map tasks M and reduce task R. Let τ (t) 2 fM,Rg denote the
type of a task t. Given a phase i of a task t that can be
scheduled on a machine n, we define the utility function of
assigning a phase i to machine n as:

U (i, n) = Unfairness (i, n) + α _Uperf (i, n) (1)

Where Unfairness and Uperf represent the utilities for
improving fairness and job performance, respectively, and α

Paper ID: NOV161284 942

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 2 February 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

is an adjustable weight factor. If we set α close to zero, then
the algorithm would greedily schedule phases according to
the improvement in fairness. Notice that considering job
performance objectives will not severely hurt fairness. When
a job is severely below its fair share, scheduling any phase
with non-zero resource requirement will only improve its
fairness. Now we describe each term in Eq. (1). We define

Unfairness(i,n)=Ubeforefairness(i,n)+UafterFairness(i,n)(2)

Where Ubeforefairness (i,n) and Uafterfairness(i, n) are the
fairness measures of the job before and after scheduling.
Algorithm 1 Phase-Level Scheduling Algorithm
1: Upon receiving a status message from machine n:
2: Obtain the resource utilization of machine n
3: PhaseSelected ← {∅ }
4: Candidatep hases ← {∅ }
5: repeat

6: for each job j ∈ jobsthathastasksonn do

7: for each scheduable phase i ∈ j do

8:CandidatePhases←CandidatePhases∪ {i}
9: end for

10: end for

11: for each job j ∈ top k jobs with highest deficit n do

12: if exist schedulable data local task then

13:CandidatePhases←CandidatePhases∪{first phase of the
local task i}
14: else

15:CandidatePhases←CandidatePhases∪ {first phase of the
non-local task i}
16: end if

17: end for

18: if Candidate Phases ≠ null then

19: for i ∈ Candidate Phases do

20: if i is not schedulable on n given current utilization
then

21:CandidatePhases←CandidatePhases\{i}
22: continue;
23: end if

24: Compute the utility U(i; n) as in equation (1)
25: if U(i; n) ≤ 0 then

26:CandidatePhases←CandidatePhases\{i}
27: end if

28: end for

29: if Candidate Phases ≠ NULL then

30: i ← task with highest U(i; n) in the
 Candidate Phases
31: PhaseSelected ← PhaseSelected∪ {i}
32:CandidatePhases←CandidatePhases\{i}
33: Update the resource utilization of machine n
34: end if

35: end if

36: until Candidate Phases == NULL
37: return PhaseSelected

5. Conclusion

MapReduce is a famous and important programming concept
used for computing large data. Although there are many
schedulers existing today that are resource-efficient our
proposed work which is PRISM

A fine-grained resource-aware scheduler that coordinates
task execution at the task execution at the level of phases.
Here we first demonstrate how different the task run-time
over a variety of MapReduce jobs. We introduce a phase-
level scheduling algorithm that is said to improve the job
execution without introducing stragglers. In a 16 node
Hadoop cluster running standard benchmarks, we show that
PRISM provides high resource utilization and provides 1.3x
improvement in job running time compares to the existing
Hadoop schedulers.

References

[1] Hadoop MapReduce distribution. http://hadoop .apache.

org.
[2] Hadoop Capacity Scheduler,

http://hadoop.apache.org/docs/Stable/capacity
scheduler.html/.

[3] Hadoop Fair Scheduler.
http://hadoop.apache.org/docs/r0.20.2/fair
scheduler.html.

[4] Hadoop Distributed File System,hadoop.apache
.org/docs/hdfs/current/.

[5] GridMix benchmark for Hadoop clusters.
http://hadoop.apache.org/docs/mapreduce/current/gridmi
x. html.

[6] PUMABenchmarks,http://web.ics.purdue.edu/fahmad
/benchmarks/datasets.htm.

[7] The Next Generation of Apache Hadoop MapReduce.
http://hadoop.apache.org/docs/current/hadoop-yarn/

[8] R. Boutaba, L. Cheng, and Q. Zhang. On cloud
computational models and the heterogeneity challenge.
Journal of Internet Services and Applications, pages 1–
10, 2012.

[9] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K.
Elmeleegy, and R. Sears. MapReduce online. In
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2010.

[10] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. Communications of the
ACM, 51(1):107–113, 2008.

[11] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S.
Shenker, and I. Stoica. Dominant resource fairness: fair
allocation of multiple resource types. In USENIX
Symposium on Networked Systems Design and
Implementation (NSDI), 2011.

Author Profile

P Ramesh Naidu received the B.E and M.Tech degree
in Computer Science and Engineering from JNTU,
Hyderabad. He is having a work experience of 10 years
in Teaching and 1year in Industry. Published 4
international Journals and 2 National papers. SCJP

Certified by Sun Microsystems. He is also member of professional
societies like MIE and ISTE

Dr. N Guruprasad is basically a graduate, post
graduate and doctorate from the field of Computer
Science having 23 years of teaching experience. He is
currently working as Professor in Computer Science
Department at New Horizon college of Engineering.

Paper ID: NOV161284 943

http://hadoop.apache.org/docs/current/hadoop-yarn/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 5 Issue 2 February 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

To his credit he has more than 30 publications both at National and
at International level. He has also authored books on C
Programming and Data Structures. He is also member of
professional societies like CSI, IETE, ISTE and ORSI

Paper ID: NOV161284 944

