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Abstract: This paper develops a model to determine the optimal reliability and production rate that achieves the biggest total integrated 
profit for an imperfect production process under allowable shortage. In this system, production facility may shift ‘in-control’ state to an
‘out-control state’ at any random time. The basic assumption of the classical EPL model is that 100% of product is of perfect quality. But 
practically this is not true. More specifically, the paper extends the paper of Sana (S.S.Sana, 2010, an economic production lot size model 
in an imperfect production system. European Journal of Operational Research 201, 158-170). Here we consider two type of production 
process in a cycle time. One is ‘in-control’ state at the starting of the production which provides conforming quality items and second one 
is ‘out-control’ state after certain time due to higher production rate and production run time. The proposed model is formulated 
assuming that a certain percent of total product which described by a function is defective. The imperfect quality items are reworked at a 
cost to restore its quality to the original one. The total cost function is illustrated by numerical examples and also its sensitivity analysis is
carried out.
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1. Introduction 

It is generally admitted that inventory management is
affected by the imperfect quality of goods and this aspect 
has to be taken into account. In the last few decades, the 
development of inventory control models and their uses are 
popularized by academicians as well as industries. However, 
one of the weaknesses of current inventory models is the 
unrealistic assumption that all items produced are of good 
quality. In classical economic production lot size (EPL) 
model, the production rate of a machine is assumed to be
predetermined and inflexible (Hax and Candea , 1984). 
However, production rate can be easily changed (Schweitzer 
and Seidmaan, 1991). In other words, production rate in
many cases should be treated as decision variable. Empirical 
observations indicate that as machine production rate is
increased, tool or die costs increase (Drozda and Wick, 
1987). The treatment of production rate as a decision 
variable is especially appropriate for automated technologies 
that are volume flexibility. Volume flexibility of a 
manufacturing system is defined as its ability to be operated 
profitably at different overall output levels. Volume 
flexibility permits a manufacturing system to adjust 
production upwards or downwards within wide limit period 
to the start of production of a lot. It is a major component of
Flexible Manufacturing System (FMS). It helps to reduce 
the rate of production to avoid rapid accumulation of
inventories and non-conforming (defective) items. Advances 
in computer sciences have contributed to development of
Volume Flexible Manufacturing Systems. In modern 
automobile industries, computer-controlled machines have 
been introduced to increase productivity and high quality of
products. The speed of production at such machines is
controlled by a computer. It is rationale that an increasing 
rate of production increases the probability of components 
(machinery parts, labor etc.) failure and thus non-
conforming quality items increases. Generally, percentage of
defective items increases with increase of production rate 
and production-run time. Because, almost all machinery 
system may undergo malfunctioning or unsatisfactory 
performance after some time and also these increase with 

time. At the start of production, process is ‘in-control’ state 
and the items produced are of conforming quality. After 
some time, it may shift to an ‘out-of-control’ state while in
process, there by resulting in the production of non-
conforming quality items.  

Several researchers have initiated to analyze various 
problems related to imperfect production process by
devoting their time and efforts. According to Rosenblatt and 
Lee (1986), the time of shift from ‘in-control’ state to ‘out-
of-control’ state follows an exponential distribution with a 
mean 1/m, assuming m is a small value. They have derived 
an Economic Manufacture Quantity (EMQ) formula by
using approximate value up to second order of Maclaurin 
series expansion of the exponential function. Lee and 
Rosenblatt (1987, 1989), on the basis of RL model 
(Rosenblatt and Lee, 1986), have determined an optimal 
production run-time and optimal inspection policy 
simultaneously to monitor the production process. Cheng 
(1991) have derived a closed form expression for the 
optimal demand to satisfy order quantity and process 
reliability while the demand exceeds supply and the 
production process is imperfect. Khouja and Mehrez (1994) 
have considered the elapsed time until the production 
process shifts to an ‘out-of-control’ state to be an
exponentially distributed random variable. The results of this 
model indicate the aspect for both weak and strong 
relationship between the rate of production and process 
quality. Hariga and Ben-Daya(1998) and Kim and Hong 
(1999) have extended RL model, considering the general 
time required to shift distribution and an optimal production-
run-time shown to be unique. Makis (1998) has studied 
several properties of the optimal production and inspection 
policies in imperfect production process. Some of the above 
modeler has showed that defective items can be reworked 
instantaneously at a cost. In the model of Wang (2004), an
imperfect EMQ model for production which are repaired and 
sold under a free-repair warranty policy (i.e., the cost 
incurred by a defective item after its sale) discussed by Yeh
et al. (2000) has been extended to consider general shift 
distribution. Sheu and Chen (2004) have developed a lot-
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sizing model to determine the level of preventive 
maintenance for an imperfect process control. Lee (2005a–c)
has extended the model to increase the service level and 
reduce the defectives in imperfect production system with 
imperfect quality of the products and imperfect supplied 
quantity. Chen and Lo (2006) have developed an imperfect 
production system with allowable shortage and the products 
are sold with free minimal repair warranty. The probabilities 
of non-conforming items in both the states (out-of-control 
and in-control) are different. They have formulated a cost 
minimization model in which the production-run-length and 
the time length when back-order is replenished are decision 
variables. Lee (2006) has presented the investment model 
with respect to repetitive inspections and measurement 
equipment in imperfect production process. Sana et al. 
(2007a) have extended an EPLS (Economic Production Lot 
size) model which accounts for production system producing 
items of perfect as well as imperfect quality. The probability 
of imperfect quality items increases with increase of
production-run-time because of machinery problems, 
impatience of labor staff and improper distribution of raw 
materials. They have assumed that the demand rate of
perfect quality items is constant whereas the demand rate of
defective items which are not repaired is a function of
reduction rate. In another model, Sana et al. (2007b) have 
developed a volume flexible inventory model with an
imperfect production system where demand rate of
conforming quality items is a random variable and the 
demand rate of defective items is a function of a random 
variable and reduction rate. Giri and Dohi (2007) have 
studied a problem inspection scheduling in an imperfect 
production process in which the manufacturing process may 
shift from ‘in-control’ state to an ‘out-of-control’ state. The 
shift time follows an arbitrary probability distribution with 
increasing hazard (failure) rate and the products are sold 
with a free minimal repair warranty. The inspection process 
monitors the production process which in turn reduces the 
number of imperfect quality products. Liao (2007) has 
investigated an imperfect production process that requires 
production corrections and imperfect maintenance. Two 
states of production process are occur, namely state I (out-
of-control state) and state II (in-control state). In ‘out-of-
control’ state, the product is not perfect and a part is rejected 
(reworking is impossible) with a probability ‘q’. The product 
is perfect (good quality) with a probability ‘(1-q)’. The mean 
loss cost due to reproduction through production correction 
per total expected cost until the N+1 ‘out-of-control’ states 
are entered successively is determined. Lo et al. (2007) have 
extended a production–inventory model in aspect of both the 
manufacturer and the retailer. They have assumed a varying 
rate of deterioration, partial back-ordering, inflation, 
imperfect production process and multiple deliveries. The 
elapsed time for the production process shift to imperfect 
production is assumed to be exponential distribution (same 
as Khouja and Mehrez, 1994). Panda et al. (2008) have 
modeled an Economic Production Lot size model for 
imperfect items in which production rate is considered as
fixed quantity and the demand rate is probabilistic under 
certain budget and shortage constraints. They also have 
assumed that the percentage of defective items is stochastic 
and the natures of uncertainty in the constraints are 
stochastic or fuzzy. In this case, the percentage of defective 
item is independent of production rate and production-run-

time. Lee (2008) has developed a maintenance model in
multi-level multi-stage system. According to his model, the 
investment in preventive maintenance is to reduce the 
variance and the deviation of the mean from the target value 
of the quality characteristics that reduce the proportion of
defectives also to increase reliability of the product. The 
proportion of defectives can be linked to the cost of
manufacturing, cost of inventory, and loss of profit. The 
total costs in this model include the cost of manufacturing, 
setup cost, holding cost, loss of profit and warranty cost.  

In most EOQ (Economic Order Quantity) model, the 
assumption is that 100% of produced units are of good 
(perfect) quality. This unrealistic assumption may not be
valid for any production environment. Schwaller (1988) has 
presented a procedure that extends EOQ models by adding 
the assumptions that defectives of a known proportion are 
present in incoming lots and that fixed and variable 
inspection costs are incurred in finding and removing the 
items. Zhang and Gerchak (1990) have considered a joint lot 
sizing and inspection policy studied under an EOQ model 
where a random proportion of units are defective. These 
defectives cannot be used and thus must be replaced by non-
defective ones. Khouja and Mehrez (1994) have developed 
an EPLS with imperfect quality. They have taken the 
percentage of defective items as a product of production rate 
and production run time. Salameh and Jaber (2000) have 
developed an economic production/inventory quantity model 
for items with imperfect quality. They have assumed that 
poor quality items are sold as a single batch at the end of
100% screening process. Hayek and Salameh (2001) have 
developed an EPQ (Economic Production Quantity) model 
considering a percent of total products as defective items 
that has a uniform distribution. The basic assumptions of this 
model are: backorders are permitted, all defective items are 
reworked and become perfect quality and rework time is
also considered. Goyal and Cardenas-Barron (2002) have 
reworked on the paper of Salameh and Jaber (2000) and 
presented practical approach to find out the optimal lot size. 
Chiu (2003) has extended Hayek and Salameh’s (2001) 
model by assuming a portion of the defective items are 
reworked to make them good quality item instead of
reworking on all of the defective items and the remaining 
items are sold at a price. Chan et al. (2003) have extended an
EPQ model using similar assumptions as Salameh and Jaber 
(2000). They have classified products as good quality, good 
quality after reworking, imperfect quality and scrap. Crucial 
assumptions of these models are not allowing backorders, 
reworking time is zero and imperfect quality products are 
sold at a price. Chang (2004) has developed an EOQ model 
with fuzzy defective rate and demand. Papachristos and 
Konstantaras (2006) have considered the issue of non-
shortage in inventory models with imperfect quality where 
the rate of defective is a random variable. Referring to the 
models of Salameh and Jaber (2000) and Chan et al. (2003), 
they have pointed out that the conditions proposed as
sufficient ones to guarantee that shortages will not occur, 
cannot ensure it. Maddah and Jaber (2008) have identified a 
flaw in the work of Salameh and Jaber (2000) on the EOQ 
model with a random fraction of imperfect quality items 
subject to 100% screening, and proposed a new model that 
rectified this flaw using renewal theory. This model leads to
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simple expressions for the expected profit per unit time and 
the optimal order quantity. 

Khouja and Mehrez (1994), Chung and Hou (2003) and 
some other researchers have used a function for percentage 
of defective items as a product of production rate and 
production run time. Sana (2010) has assumed the 
percentage of defective items varies non-linearly with 
production rate and production-run-time. 

All of the above-mentioned models assume that shortages 
are not permitted to occur. Nevertheless, in many practical 
situations, stock out is unavoidable due to various 
uncertainties. Therefore, the occurrence of shortage in
inventory is a natural phenomenon. The main purpose of this 
paper is to generalize Sana (2010) to assume the shortage is
allowed. In addition in this paper we consider unit 
production cost dependent selling price as it is very much 
important for many realistic practical situations. Also in this 
study we consider screening cost of the item during 
production process as it should not be neglected.  

It starts with shortage. After a certain time, the production 
starts with a variable production rate up to an optimal time. 
During production-run-time, the manufacturing process may 
shift to an ‘out-of-control’ state after certain time that 
follows exponential distribution function. In ‘out-of-control’
state, a percent of produced items are defective. The 
defective items are reworked immediately at a cost. Then, I 
have formulated a profit function, and maximized it by
considering the production lot size and production rate as
decision variables. 

The paper is organized as follows: Section 2 presents 
fundamental assumptions and notation. Section 3 formulates 
the model. Section 4 provides numerical examples. 
Sensitivity analysis is discussed in Section 5. Section 6 
concludes the paper. 

2. Fundamental Assumptions and Notations 

The following assumptions and notations are considered to
develop the model: 

Assumptions 
1) At the starts of each production cycle, the production 

process is always in an in-control state and perfect items 
are produced. 

2) The production process shifts from the in-control state to
an out-control state. During out-control state imperfect 
quality items are produced and these are reworked at a 
cost immediately  

3) An elapsed time until shift is arbitrarily distributed with 
mean and variance. 

4) the rate of production and lot size are decision variables 
5) lead time is zero 
6) shortage is completely backordered 
7) the model is developed for a single item 
8) time horizon is infinite 

Notations:  
P- Production rate in units per year  
Q- Production lot size in unit 
T- Cycle time in years  

2 3t t  - Production runs time in year 

1t - Shortage period 

sC  - Setup cost 
W- Selling price per unit time is determined by a mark up
over the unit production cost i.e. W =  C (P) 

hC - Holding cost per unit per unit time  
R- Cost to reworked one unit  
D- Annual demand  
B- The maximum backordering quantity in units 
b- The backordering cost per unit 
d- The screening cost per unit  
 C (P) - Unit production cost as a function of the production 
rate  
- An exponential random variable that depends on P and 
denotes the elapsed time until the process shifts to the out-
control state 
 1/f (P) - Mean of. Here f (P) is an increasing function of P 
(t, , P)- Percentage of the defective items produced at time 
t when the machine is in the out- control state 
N- Number of defective items in a production cycle 
E- Integrated expected profit per unit time  

3. Formulation of Model 

The system operates as follow. It starts at t = 0 at a demand 
rate D up to time t= 1t to allow shortage of B units to occur. 
Then production starts where the inventory level increases at
a rate P-D in order to satisfy the demand and to eliminate the 
entire shortages of B units, where the inventory level 
become zero by time 1t + 2t . At this time, the inventory level 

starts to go up with a rate P-D until time 1 2 3t t t  . At time 

t= 3t  the stock of inventory is (P-D) 3t . During time span 

[0, 4t ] this stock level depletes satisfying the demand in the 

demand in the market and it reaches at zero level at time 4t  . 
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Figure 1: Inventory versus Time 

Here total lot size is Q. so the production is 2 3t t = Q/P. in
the mode, production process is so adjusted that the 
produced items at the beginning of the production are of
conforming quality up to a certain time  (> 1 2t t ) (i.e. in
control state). After which the production process shifts to
an out-control state. In out-control state; some of the 
produced items are of non-conforming quality. The 
production rate of defective items is (t,, P) percent of
production rate P. here (t, , P) is defined as  

(t, , P) =  P t 
   where 0<<1, 01, 0 θ<1

and t……. (1)  

In general, the percentage of defective items increases with 
increase of production rate and production run time. The 
formulation of the function shows that it is an increasing 
function of production rate and production run time 
simultaneously. These total defective items during [0,] is 0 
and [, 3t ] is
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The exponential distribution has often been used to describe 
the elapsed time to failure if many components of the 
machinery system. The mean time to failure is decreasing 
function of P. therefore, the expected number of defective 
items in a production lot size Q is
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Figure 2: Unit Cost versus Production Rate 

The unit production cost is  

C (P) = m
gr A P
P




  

This disproportional combination between fixed and variable 
factors may enhance the cost of production. That is why the 
cost function is U-shaped (see fig.-2)
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The minimum cost  
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The total inventory cost for a cycle of length T is given by  

Total Cost = Production Cost + Screening Cost + Setup Cost 
+ Holding Cost + Shortage Cost + Rework Cost 

Integrated Expected Profit for a cycle of length T = Total 
Revenue – Total Cost 

  
 Integrated Expected Profit per unit Time  

E (Q, P) = 1/T [Total Revenue – Total Cost] 
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4. Numerical Examples 

Ex. 1 The values of the parameters are considered in
appropriate units as follows 
 = 0.0005,  = 1,  = 2,  = $ 0.00001,  = 0, mr = $200, g 

= 2500, A= $ 50, D = 200 units hC = $10, sC = $1000, R = 
$100, f (P) = 0.0005P, d = $0.5/unit, b = $10/unit, B = 500, 
the required optimal solution are Q  = 1238.29 units, P  = 

480.87 units, C ( P ) = $257.51, =1.5  
W = C ( P ) = $386.26, Rework Cost ( RC ) = $0.2929, 
Inventory Cost ( IC ) =$2115.34, Setup Cost ( SC ) 
=$161.55, E   = $ 23363.1 and 

1t 2t 3t 4t T

2.5 1.78 0.793 1.11 6.9
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Figure 3: Expected Profit versus production rate and lot 
size of Example 1 
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Sensitivity analysis of example 1.

Indicates optimal solution, nc indicates no change solution, 
IC – inventory cost, RC – rework cost, SC – setup cost. 

5. Sensitivity Analysis 

From the sensitivity analysis of the Examples 1 (see Tables 
1); it is observed that the optimal production rate P , lot-
size Q , total inventory cost ( IC ), total rework cost 

( RC ), setup cost ( SC ) and total expected profit per unit 
time ( E  ) are fairly sensitive with changes of the key 
parameters ( ,,g, hC , R, sC , D). The optimal production 

cost of unit item C ( P ) is fairly sensitive with changes in
the parameters g, and mr . From the sensitivity analysis of
the above example (see Tables 1 and Figs. 5–9), the 
following facts occur:

-60

-40

-20

0

20

40

60

1 2 3 4

g
P
Q
E

Figure 5: Change of optimal E, P and Q (in %), versus change of parameter ‘‘g” (in %) for Example 1.

Parameters changes (in %) P Q SC IC RC C ( P ) E 

g -50%
-25%
+25%
+50%

 -50%
-25%
+25%
+50%

 -50%
-25%
+25%
+50%

hC -50%
-25%
+25%
+50%

R -50%
-25%
+25%
+50%

sC -50%
-25%
+25%
+50%

D -50%
-25%
+25%
+50%

-23.95
-10.41
+08.75
+16.04

+26.04
+10.20
-07.08
-12.50

nc
nc
nc
nc

+00.83
+00.41
-00.20
-00.41

nc
nc
nc
nc

+02.08
+01.04
-01.04
-01.87

+02.08
+01.04
-01.04
-02.08

+28.51
+08.80
-05.25
-08.80

-12.52
-05.98
+05.65
+11.22

nc
nc
nc
nc

+22.69
+08.07
-05.25
-08.88

nc
nc
nc
nc

-02.50
-01.29
+01.29
+02.58

-27.14
-15.75
+23.10
+60.74

-22.36
-08.07
+05.59
+09.93

+14.28
+06.21
-05.59
-09.93

nc
nc
nc
nc

-18.63
-07.45
+05.59
+09.93

nc
nc
nc
nc

+22.48
+01.24
-01.24
-02.48

-31.67
-11.18
+01.86
-06.83

+25.62
+07.42
-04.25
-07.80

-10.63
-04.72
+05.05
+10.49

nc
nc
nc
nc

+54.23
+21.18
-14.84
-25.81

nc
nc
nc
nc

-08.27
-04.34
+06.38
+09.31

+41.04
+10.82
-01.74
+05.20

+26.15
+24.71
-04.43
-07.98

-10.99
-04.95
+05.18
+10.61

-50.01
-25.02
+24.99
+49.98

+149.88
+49.02
-27.99
-45.54

-50.01
-25.02
+24.99
+49.98

-07.27
-03.82
+03.68
+08.05

-64.56
-37.52
+53.60
+137.58

-01.16
-00.38
+00.38
+00.77

-00.77
-00.38
+00.38
+00.38

nc
nc
nc
nc

nc
nc
nc
nc

nc
nc
nc
nc

nc
nc
nc
nc

nc
nc
nc
nc

-01.76
-00.53
-00.20
-00.34

-02.20
-02.88
-03.88
-04.28

nc
nc
nc
-00.004

+00.30
-00.40
-01.17
-01.40

nc
nc
nc
nc

+00.34
+00.18
-01.75
-03.42

-54.56
-27.31
+27.37
+54.80
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1. P  , Q , IC and C ( P ) increase with increases in

labour/energy costs (g), whereas RC , SC and E 

decrease with increases in g. It is quite natural that optimal 
production rate is higher for higher labour/energy costs, 
keeping in mind the cost minimization of production cost. 

As production rate increases lot-size Q automatically 
increases that results in higher inventory cost. Here, the 
change of production rate compared to the lot-size is higher. 
It provides lower production-run-time. Consequently, total 
rework cost and setup cost are higher in spite of higher 
production rate. 
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Figure 6: Change of optimal E , P and Q (in %), versus change of parameter ‘‘” (in %) for Example 1.

2. With increases in tool/die costs, optimum production rate 
decreases obviously that results in lower lot size and 
inventory cost. It is also obvious that lower production rate 
and lot-size reduce total rework cost and setup cost. And, 
lower production rate causes higher unit production cost. 

3. The production rate increases and lot-size decreases with 
increases in . Smaller lot-size causes lower inventory cost 
and higher setup cost as total demand is fixed. Higher 

production rate produces more defective items that results in
higher rework cost. 

4. P , RC , SC increase and Q , IC and E   decrease 
with increases in R. Although the production-run time 
decreases with increases in R, the number of defective items 
is higher due to higher production rate that results in higher 
rework cost. Also, lower lot-size reduces the inventory cost 
and setup cost. 
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Figure 7: Change of optimal E, P and Q (in %), versus change of parameter ‘‘ hC ” (in %) for Example 1.

6. Conclusion 

In this paper, we propose a generalized production lot size
model with backordering. Our model extends the approach 
by Sana (2010) to consider permissible shortage 
backordering. We have maintained the originality of the 
model of Sana (2010) as he described that given the ongoing 
addition of new technology, the introduction of more 
robotics and automation, the increasing use of computer-
aided devices, etc., ‘out-of-control’ state is likely to be even 
higher with higher production rate. During ‘out-of-control’
state, the process starts to produce defective items. As the 

rate of production increases, the defective items are more 
produced. Generally speaking, the probability of defective 
items increases with increase of production-run-time 
because of machinery problems, impatience of labor staff 
and improper distribution of raw materials. Also, in long-run 
production process, the percentage of defective items 
increases with both the increase of production rate and 
production-run time. In this point of view, I have considered 
the rate of production of defective items (percentage of total 
production) is a nonlinear function of both production rate 
and production-run time. The probability distribution of shift 
time from ‘in-control’ state to an ‘out-of-control’ state 
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follows an exponential distribution function with mean 
1=f(P), where f(P) is an increasing function of P. In the 
existing literature, everybody considers this percentage is a 
fixed constant throughout the production cycle. The 
defective items are reworked at a cost in a separate cell to
restore its original quality. The reworking cost is measured 
by wasted materials, labor, equipment time and other 
resources. We have described the final results of Sana 
(2010) model as a particular case (Special case 2). We have 
used some things like shortage, unit production cost 
dependent selling price, and screening cost and found the 
optimal values of total cost and other costs in this situation. 
We have also determined the time period for different stage 
like shortage period, backlogging period, production run 
time, only demand period and total cycle time. I have 
obtained an optimal lot-size and production rate, solving by
numerical techniques. And, the features of key parameters 
are studied in sensitivity analysis section.  
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