
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 12, December 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Container Based Intrusion Detection System in
Multitier Web Applications

Nishigandha Shendkar

Department of Computer Engineering, Pune Institute of Computer Technology, Pune University, India

Abstract: Internet services and applications have become an inextricable part of daily life, enabling communication and the
management of personal information from anywhere. To accommodate this increase in application and data complexity, web services
have moved to a multitier design wherein the web server runs the application front-end logic and data are outsourced to a database or
file server. In this paper, we present an IDS system that models the network behavior of user sessions across both the front-end web
server and the back-end database. By monitoring both web and subsequent database requests, we are able to ferret out attacks that
independent IDS would not be able to identify. Furthermore, we quantify the limitations of any multitier IDS in terms of training
sessions and functionality coverage. We implemented using an Apache webserver with MySQL and lightweight virtualization.

Keywords: Anomaly detection, virtualization, multitier web application

1. Introduction

Web delivered services and applications have increased in
both popularity and complexity over the past few years.
Daily tasks, such as banking, travel, and social networking,
are all done via the web. Such services typically employ a
web server front end that runs the application user interface
logic, as well as a back-end server that consists of a database
or file server. Due to their ubiquitous use for personal and
corporate data, web services have always been the target of
attacks. These attacks have recently become more diverse, as
attention has shifted from attacking the front end to
exploiting vulnerabilities of the web applications in order to
corrupt the back-end database system (e.g., SQL injection
attacks).

A plethora of Intrusion Detection Systems (IDSs) currently
examine network packets individually within both the web
server and the database system. However, there is very little
work being performed on multitier Anomaly Detection (AD)
systems that generate models of network behavior for both
web and database network interactions.

In such multitier architectures, the back-end database server
is often protected behind a firewall while the web servers are
remotely accessible over the Internet. Unfortunately, though
they are protected from direct remote attacks, the back-end
systems are susceptible to attacks that use web requests as a
means to exploit the back end. To protect multitier web
services, Intrusion detection systems have been widely used
to detect known attacks by matching misused traffic patterns
or signatures.

Individually, the web IDS and the database IDS can detect
abnormal network traffic sent to either of them. However, it
is found that these IDSs cannot detect cases wherein normal
traffic is used to attack the web server and the database
server. For example, if an attacker with non admin privileges
can log in to a Web server using normal-user access
credentials, he/she can find a way to issue a privileged
database query by exploiting vulnerabilities in the web
server. Neither the web IDS nor the database IDS would
detect this type of attack since the web IDS would merely

see typical user login traffic and the database IDS would see
only the normal traffic of a privileged user. This type of
attack can be readily detected if the database IDS can
identify that a privileged request from the web server is not
associated with user privileged access.

Unfortunately, within the current multithreaded Web server
architecture, it is not feasible to detect or profile such causal
mapping between web server traffic and DB server traffic
since traffic cannot be clearly attributed to user sessions. Our
approach can create normality models of isolated user
sessions that include both the web front-end (HTTP) and
back-end (File or SQL) network transactions. To achieve
this, we employ a lightweight virtualization technique to
assign each user’s web session to a dedicated container, an
isolated virtual computing environment. The container ID is
used to accurately associate the web request with the
subsequent DB queries. Thus, it can build a causal mapping
profile by taking both the Web server and DB traffic into
account.

2. Related Work

2.1 History about multitier web application

The three tier Architecture may seem similar to the model-
view-controller (MVC) concept; however, topologically they
are different. A fundamental rule in three tier architecture is
the client tier never communicates directly with the data tier;
in a three-tier model all communication must pass through
the middle tier called Web tier. Conceptually the three-tier
architecture is linear. However, the MVC architecture is
triangular: the view sends updates to the controller, the
controller updates the model, and the view gets updated
directly from the model.

From a historical perspective the three-tier architecture
concept emerged in the 1990s from observations of
distributed systems (e.g., web applications) where the client,
middle ware and data tiers ran on physically separate
platforms. Whereas MVC comes from the previous decade
(by work at Xerox PARC in the late 1970s and early 1980s)
and is based on observations of applications that ran on a

Paper ID: SUB154548 440

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 12, December 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

single graphical workstation; MVC was applied to
distributed applications later in its history. Today, MVC and
similar model-view-presenter (MVP) are Separation of
Concerns design patterns that apply exclusively to the
presentation layer of a larger system. In simple scenarios
MVC may represent the primary design of a system,
reaching directly into the database; however, in most
scenarios the Controller and Model in MVC have a loose
dependency on either a Service or Data layer/tier [4].

2.2 Literature Survey

A network Intrusion Detection System can be classified into
two types: anomaly detection and misuse detection. Anomaly
detection first requires the IDS to define and characterize the
correct and acceptable static form and dynamic behavior of
the system, which can then be used to detect abnormal
changes or anomalous behaviors [5]. CLAMP [6] is
architecture for preventing data leaks even in the presence of
attacks. By isolating code at the Web server layer and data at
the database layer by users, CLAMP guarantees that a user’s
sensitive data can only be accessed by code running on
behalf of different users. In contrast, this system focuses on
modeling the mapping patterns between HTTP requests and
DB queries to detect malicious user sessions. There are
additional differences between these two in terms of
requirements and focus. CLAMP requires modification to the
existing application code, and the Query Restrictor works as
a proxy to mediate all database access requests. Container
based system uses process isolation whereas CLAMP
requires platform virtualization, and CLAMP provides more
coarse-grained isolation than this system. However, this
system would be ineffective at detecting attacks if it were to
use the coarse grained isolation as used in CLAMP. Building
the mapping model in this system would require a large
number of isolated web stack instances so that mapping
patterns would appear across different session instances.
 Virtualization is used to isolate objects and enhance security
performance. Full virtualization and para-virtualization are
not the only approaches being taken. An alternative is a
lightweight virtualization, such as OpenVZ [7]. In general,
these are based on some sort of container concept. With
containers, a group of processes still appears to have its own
dedicated system, yet it is running in an isolated
environment. On the other hand, lightweight containers can
have considerable performance advantages over full
virtualization or para-virtualization. Thousands of containers
can run on a single physical host. Such virtualization
techniques are commonly used for isolation and containment
of attacks. However, in this system, we utilized the container
ID to separate session traffic as a way of extracting and
identifying causal relationships between web server requests
and database query events.

3. Proposed Work

3.1 Container Architecture

Implementation of Intrusion detection System in multitier
web application using container architecture as following:
Container architecture basically detects intrusion in two sides
that is web server side as well as database side. This
architecture of Intrusion Detection System comes under two

type of Intrusion detection system so we can also able to say,
Implementation of Container Architecture Intrusion
detection system is combination of behavioral IDS and
Signature based IDS. That means it is Hybrid category of
intrusion detection system. This is best approach for
Intrusion Detection in multitier web application. An efficient
system is proposed using container architecture that can
detect the attacks in multi-tiered web services. It can create
normality models of isolated user sessions that include both
the web front-end (HTTP) and back-end (File or SQL)
network transactions. To achieve this, a lightweight
virtualization technique is employed to assign each user’s

web session to a dedicated container in an isolated virtual
computing environment. The container ID is used to
accurately associate the web request with the subsequent DB
queries. Typical flow data particularly relevant to intrusion
detection and prevention includes the following [2]:
1) Source and destination IP addresses.
2) Source and destination TCP or UDP ports or ICMP types

and codes.
3) Number of packets and number of bytes transmitted in

the session.
4) Timestamps for the start and end of the session.

In this prototype, each user session into a different container;
however, this was a design decision. For instance, we can
assign a new container per each new IP address of the client.
In our implementation, containers were recycled based on
events or when sessions time out. We were able to use the
same session tracking mechanisms as implemented by the
Apache server (cookies, mod, user track, etc.) because
lightweight virtualization containers do not impose high
memory and storage overhead. Thus, we could maintain a
large number of parallel-running Apache instances similar to
the Apache threads that the server would maintain in the
scenario without containers. If a session timed out, the
Apache instance was terminated along with its container.
Consider, we used a 60-minute timeout due to resource
constraints of our test server. However, this was not a
limitation and could be removed for a production
environment where long-running processes are required.
Figure.1 depicts the architecture and session assignment of
our prototype, where the host web server works as a
dispatcher.

Figure 1: Container Architecture

Paper ID: SUB154548 441

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 12, December 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Above figure1 shows container architecture [3]. This shows
that how communications are categorized as sessions and
how database transactions can be related to a corresponding
sessions.

3.2 Behavioral approach in container architecture

According to figure 1, if client 2 is malicious and takes over
the web server, all subsequent database transactions become
suspects, and response to the client. But in figure 1, client 2
will only use the container 2 sessions and corresponding
database transaction set T2 will be the only affected session
of data within the database. A Container Architecture is a
device or software application for intrusion detection that
monitors network or system for malicious activities and
produces reports to server.

The primary focus of Container Architecture is to identify
possible incidents, logged information about them and
produce report of attempts of an incident. Many
organizations uses Container Architecture for other purposes
like to identify the problems with policies of security,
existing threats documentation etc. Nearly every
organization uses the Container Architecture technique of
intrusion detection for their security infrastructure.

3.3 Architecture and Confinement

All network traffic, from both legitimate users and
adversaries, is received intermixed at the same web server. If
an attacker compromises the web server, he/she can
potentially affect all future sessions (i.e., session hijacking).
Assigning each session to a dedicated web server is not a
realistic option, as it will deplete the web server resources.
To achieve similar confinement while maintaining a low
performance and resource overhead, we use lightweight
virtualization. In our design, we make use of lightweight
process containers, referred to as “containers,” as ephemeral,
disposable servers for client sessions. It is possible to
initialize thousands of containers on a single physical
machine, and these virtualized containers can be discarded,
reverted, or quickly reinitialized to serve new sessions. A
single physical web server runs many containers, each one an
exact copy of the original web server. Our approach
dynamically generates new containers and recycles used
ones. As a result, a single physical server can run
continuously and serve all web requests. However, from a
logical perspective, each session is assigned to a dedicated
web server and isolated from other sessions. Since we
initialize each virtualized container using a read-only clean
template, we can guarantee that each session will be served
with a clean web server instance at initialization. We choose
to separate communications at the session level so that a
single user always deals with the same web server. Sessions
can represent different users to some extent, and we expect
the communication of a single user to go to the same
dedicated web server, thereby allowing us to identify suspect
behavior by both session and user. If we detect abnormal
behavior in a session, we will treat all traffic within this
session as tainted. If an attacker compromises a vanilla web
server, other sessions’ communications can also be hijacked.
In our system, an attacker can only stay within the web

server containers that he/she is connected to, with no
knowledge of the existence of other session communications.

We can thus ensure that legitimate sessions will not be
compromised directly by an attacker.

Figure 2: Classic three-tier model

Figure 2 illustrates the classic three-tier model. At the
database side, we are unable to tell which transaction
corresponds to which client request. The communication
between the web server and the database server is not
separated, and we can hardly understand the relationships
among them. Figure 3 depicts how communications are
categorized as sessions and how database transactions can be
related to a corresponding session. According to Figure2, if
Client 2 is malicious and takes over the web server, all
subsequent database transactions become suspect, as well as
the response to the client. By contrast, according to Figure3,
Client 2 will only compromise the VE 2, and the
corresponding database transaction set T2 will be the only
affected section of data within the database.

3.4 Building the Normality Model

This container-based and session-separated web server
architecture not only enhances the security performances but
also provides us with the isolated information flows that are
separated in each container session. It allows us to identify
the mapping between the web server requests and the
subsequent DB queries, and to utilize such a mapping model
to detect abnormal behaviors on a session/client level. In
typical three-tiered web server architecture, the web server
receives HTTP requests from user clients and then issues
SQL queries to the database server to retrieve and update
data. These SQL queries are causally dependent on the web
request hitting the web server. We want to model such causal
mapping relationships of all legitimate traffic so as to detect
abnormal/attack traffic.

Figure 3: Web server instances running in containers

In practice, we are unable to build such mapping under a
classic three-tier setup. Although the web server can
distinguish sessions from different clients, the SQL queries

Paper ID: SUB154548 442

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 12, December 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

are mixed and all from the same web server. It is impossible
for a database server to determine which SQL queries are the
results of which web requests, much less to find out the
relationship between them. Even if we knew the application
logic of the web server and were to build a correct model, it
would be impossible to use such a model to detect attacks
within huge amounts of concurrent real traffic unless we had
a mechanism to identify the pair of the HTTP request and
SQL queries that are causally generated by the HTTP
request. However, within our container-based web servers, it
is a straightforward matter to identify the causal pairs of web
requests and resulting SQL queries in a given session.
Moreover, as traffic can easily be separated by session, it
becomes possible for us to compare and analyze the request
and queries across different sessions. Section 4 further
discusses how to build the mapping by profiling session
traffics.

To that end, we put sensors at both sides of the servers. At
the web server, our sensors are deployed on the host system
and cannot be attacked directly since only the virtualized
containers are exposed to attackers. Our sensors will not be
attacked at the database server either, as we assume that the
attacker cannot completely take control of the database
server. In fact, we assume that our sensors cannot be attacked
and can always capture correct traffic information at both
ends. Figure 3 shows the locations of our sensors. Once we
build the mapping model, it can be used to detect abnormal
behaviors. Both the web request and the database queries
within each session should be in accordance with the model.
If there exists any request or query that violates the normality
model within a session, then the session will be treated as a
possible attack.

3.5 Attack Scenarios

Our system is effective at capturing the following types of
attacks

3.5.1 Privilege Escalation Attack:
Let’s assume that the website serves both regular users and
administrators. For a regular user, the web request ru will
trigger the set of SQL queries Qu; for an administrator, the
request ra will trigger the set of admin level queries Qa. Now
suppose that an attacker logs into the web server as a normal
user, upgrades his/her privileges, and triggers admin queries
so as to obtain an administrator’s data. This attack can never
be detected by either the web server IDS or the database IDS
since both ru and Qa are legitimate requests and queries. Our
approach, however, can detect this type of attack since the
DB query Qa does not match the request ru, according to our
mapping model. Figure 4 shows how a normal user may use
admin queries to obtain privileged information.

Figure 4: Privilege escalation attack

3.5.2 Hijack Future Session Attack:
This class of attacks is mainly aimed at the webserver side.
An attacker usually takes over the webserver and therefore
hijacks all subsequent legitimate user sessions to launch
attacks. For instance, by hijacking other user sessions, the
attacker can eavesdrop, send spoofed replies, and/or drop
user requests. A session-hijacking attack can be further
categorized as a Spoofing/Man-in-the-Middle attack, an Ex
filtration Attack, a Denial-of-Service/Packet Drop attack, or
a Replay attack. Figure 5 illustrates a scenario wherein a
compromised webserver can harm all the Hijack Future
Sessions by not generating any DB queries for normal-user
requests. According to the mapping model, the web request
should invoke some database queries, then the abnormal
situation can be detected. However, neither a conventional
webserver IDS nor a database IDS can detect such an attack
by itself. Fortunately, the isolation property of our container
based webserver architecture can also prevent this type of
attack. As each user’s web requests are isolated into a
separate container, an attacker can never break into other
users’ sessions.

Figure 5: Hijack Future Session Attack

3.5.3 Injection Attack
Attacks such as SQL injection do not require compromising
the webserver. Attackers can use existing vulnerabilities in
the webserver logic to inject the data or string content that
contains the exploits and then use the webserver to relay
these exploits to attack the back-end database. Since our
approach provides a two-tier detection, even if the exploits
are accepted by the webserver, the relayed contents to the
DB server would not be able to take on the expected
structure for the given webserver request. For instance, since
the SQL injection attack changes the structure of the SQL
queries, even if the injected data were to go through the
webserver side, it would generate SQL queries in a different
structure that could be detected as a deviation from the SQL
query structure that would normally follow such a web
request. Figure 6 illustrates the scenario of a SQL injection
attack.

Figure 6: Injection Attack

3.5.4 Direct DB Attack
It is possible for an attacker to bypass the web server or
firewalls and connect directly to the database. An attacker
could also have already taken over the web server and be
submitting such queries from the web server without sending
web requests. Without matched web requests for such

Paper ID: SUB154548 443

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 12, December 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

queries, a web server IDS could detect neither. Furthermore,
if these DB queries were within the set of allowed queries,
then the database IDS itself would not detect it either.
However, this type of attack can be caught with our approach
since we cannot match any web requests with these queries.
Figure 7 illustrates the scenario wherein an attacker bypasses
the web server to directly query the database.

Figure 7: Direct DB Attack

3.6 Limitations

In this section, we discuss the operational and detection
limitations of container based intrusion detection system.

1. Vulnerabilities Due To Improper Input Processing
Cross Site Scripting is a typical attack method where in
attackers embedding malicious client scripts via legitimate
user inputs. In this system, the entire user input values are
normalized so as to build a mapping model based on the
structures of HTTP requests and DB queries. Once the
malicious user inputs are normalized, it cannot detect attacks
hidden in the values. These attacks can occur even without
the databases. It offers a complementary approach to those
research approaches of detecting web attacks based on the
characterization of input values.

3.7 Mapping Relations

In this system, it is classified into four possible mapping
patterns. Since the request is at the origin of the data treat
each request as the mapping source. In other word, the
mappings in the model are always in the form of one request
to a query set TO Qn.

3.7.1 Deterministic Mapping
This is the most common and perfectly matched pattern. That
is to say that web request rm appears in all with the SQL
queries set Qn. For any session in the testing phase with the
request rm, the absence of a query set Qn matching the
request indicates a possible intrusion. On the other hand, if
Qn is present in the session without the corresponding rm,
this may also be the sign of an intrusion. In websites this
type of mapping comprises the majority of cases since the
same results should be returned for each time a user visits the
same link.

3.7.2 Empty Query Set
In special cases, the SQL query set may be the empty set.
This implies that the web request neither causes nor
generates any database queries. For example, when a web
request for retrieving an image GIF from the same web
server is made, a mapping relationship does not exist because
only the web requests are observed. This type of mapping is
called rm assign empty. During the testing phase, we keep
these web requests together in the set EQS.

3.7.3 No Matched Request
In some cases, the web server may periodically submit
queries to the database server in order to conduct some
scheduled tasks, such as jobs for archiving or backup. This is
not driven by any web request, similar to the reverse case of
the Empty Query Set mapping pattern. These queries can’t
match up with any web requests, and we keep these
unmatched queries in a set NMR. During the testing phase,
any query within set NMR is considered legitimate. The size
depends on web server logic, but it is typically small.

3.7.4 Non Deterministic Mapping
The same web request may result in different SQL query sets
based on input parameters or the status of the webpage at the
time the web request is received. In fact, these different SQL
query sets do not appear randomly, and there exists a
candidate pool of query sets. Each time that the same type of
web request arrives, it always matches up with one (and only
one) of the query sets in the pool. It is difficult to identify
that matches this pattern. This happens only within dynamic
websites.

Figure 8: Overall Representation of mapping patterns

3.8 Performance Evaluation

We implemented a prototype by using a Webserver with a
back-end DB. We also set up two testing websites, one static
and the other dynamic. To evaluate the detection results for
our system, we analyzed four classes of attacks and
measured the false positive rate for each of the two websites.

3.9 Implementation

Initially, we deployed a static testing website using the
Joomla [10] Content Management System. In this static
website, updates can only be made via the back end
management interface. This was deployed as part of our
center website in production environment and served 52
unique web pages. For our analysis, we collected real traffic
to this website for more than two weeks and obtained 1,172
user sessions. To test our system in a dynamic website
scenario, we set up a dynamic Blog using the Word press [3]
blogging software. In our deployment, site visitors were
allowed to read, post, and comment on articles. All models
for the received frontend and back-end traffic were generated
using these data. We discuss performance overhead, which is
common for both static and dynamic models, in the

Paper ID: SUB154548 444

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 12, December 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

following section. In our analysis, we did not take into
consideration the potential for caching expensive requests to
further reduce the end-to-end latency; this we left for future
study.

4. Conclusion

We presented an Intrusion Detection System that builds
models of normal behavior for multitier web applications
from both front-end web (HTTP) requests and back-end
database (SQL) queries. It forms container based IDS with
multiple input streams to produce alerts. We have shown that
such correlation of input streams provides a better
characterization of the system for anomaly detection because
the intrusion sensor has a more precise normality model that
detects a wider range of threats. Furthermore, we quantified
the detection accuracy of our approach when we attempted to
model static and dynamic web requests with the back-end
file system and database queries.

References

[1] Meixing Le, Angelos Stavrou, Brent ByungHoon
Kang,”Double Guard: Detecting Intrusions in Multitier
Web Applications”, IEEE Transactions on dependable
and secure computing, vol. 9, no. 4, July/august 2012.

[2] Manoj E. Patil, Rakesh D. More, “Survey of Intrusion
Detection System in Multitier Web Application”,
International Journal of Emerging Technology and
Advanced Engineering, vol. 2, Issue 10, October 2012.

[3] http: //www.omnisecu.com/security/infrastructure-and-
emailsecurity/types-of-intrusion- detection-systems.html.

[4] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna,
“Swaddler: An Approach for the Anomaly-Based
Detection of State Violations in Web Applications,” Proc.
Int’l Symp. Recent Advances in Intrusion Detection
(RAID ’07), 2007.

[5] H. Debar, M. Dacier, and A. Wespi, “Towards a
Taxonomy of Intrusion-Detection Systems,” Computer
Networks, vol. 31, no. 9, pp. 805-822, 1999.

[6] B. Parno, J.M. McCune, D. Wendlandt, D.G. Andersen,
and A. Perrig, “CLAMP: Practical Prevention of Large-
Scale Data Leaks,” Proc. IEEE Symp. Security and
Privacy, 2009.

[7] Openvz, http://wiki.openvz.org, 2011.

Paper ID: SUB154548 445

http://www.omnisecu.com/security/infrastructure-and-emailsecurity/types-of-intrusion-detection-systems.html
http://www.omnisecu.com/security/infrastructure-and-emailsecurity/types-of-intrusion-detection-systems.html

