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1. Introduction 

In 1992, a new structure of a generalized metric space was 
introduced by Dhage  on the line of ordinary metric space 
defined as under: 

Let R denoted the real line and X denoted a nonempty set. 
Let    D : XxXxX → R be a function satisfying properties: 

(D1) D(x, y ,z)  0 for all x, y, z  X, equality holds if and 
only if      x = y = z. 

(D2) D(x, y ,z) = D(x, z, y) = …………..  x, y, z  X,
(D3)  D(x, y, z)  D(x, y, u) + D(x, u ,z) + D(u, y ,z)   x, y, 

z, u  X , 

The function D is called a D-metric for the space X and (X, 
D) denotes a D-metric space. Generally the usual ordinary 
metric is called the distance function. D-metric is called 
diameter function of the points of X ( Daghe)  

In the last three decades, a number of authors have studied 
the aspects of fixed point theory in the setting of  D-metric 
spaces. They have been motivated by various concepts 
already known for metric space and have thus introduced 
analogous of various concepts in the framework of the D-
metric spaces. Khan, Murthy-Chang-Cho-Sharma  and 
Naidu-Prasad  introduced the concepts of weakly 
commuting pairs of self mappings, compatible pairs of self 
mapping of type (A) in a D-metric space and notion of weak 
continuity of a D-metric, respectively, and they have proved 
several common fixed point theorems by using the weakly 
commuting pairs of self-mappings, compatible pairs of self-
mappings of type (A) in a D-metric space and the weak 
continuity of a D-metric. 

In this paper , we use the concept of compatible mappings of 
type (P) and compare these mappings with compatible 
mappings and compatible mappings of type (A) in D-metric 
spaces. In the sequel, we drive some relations between these 
mappings. Also, we prove a coincidence point a common 
fixed point theorem for compatible mappings of type (P) in 
D-metric spaces.  

Definitions [1]: A sequence {xn} in a D-metric space ( X, 
D) is said to be convergent to a point x  X, denoted by 
limnxn = x, if limnD(xn,x,z) =  0 for all z  X. The point 
x is said to be limit of sequence {xn} in X. 

Definition [2]: A sequence {xn} in a D-metric space (X,D) 
is called a Cauchy sequence if  D(xm,xn,z)   as      n, m 
 for all z  X.  

Definition [3]: A D-metric space in which every Cauchy 
sequence is convergent is called complete. 

Remark [1]: In a D-metric space (X, D) a convergent 
sequence need not be a Cauchy sequence, but every 
convergent sequence is a Cauchy sequence when the D-
metric D is continuous on X.    

Definition [4]: Let S and T be mappings from a D-metric 
space (X,D) into itself. The mappings  S and  T are said to 
be compatible if  limn D(STxn, TSxn,z ) = 0 for all z  X, 
whenever {xn} is a sequence in X such that limnSxn =
limn Txn = t for some t  X.

Definition [5]: Let S and T be mappings from a D-metric 
space ( X,D) into itself. The mappings  S and  T are said to 
be compatible of type (A) if  limn D(STxn, TTxn,z ) = 0
  and  limn D(STxn, SSxn,z ) = 0  for all z  X, 
whenever {xn} is a sequence in X such that      limnSxn =
limn Txn = t for some t  X.

Definition [6]: Let S and T be mappings from a D-metric 
space     ( X,D) into itself. The mappings  S and  T are said 
to be compatible of type (P)  if   limn D(SSxn, TTxn,z 
) = 0 for all z  X, whenever {xn} is a sequence in X 
such that limnSxn = limn Txn = t for some t  X.

The following propositions show that Definition  [3.5] & 
[3.6]  are equivalent under some conditions: 
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Proposition [1]: Let S and T be compatible mappings of 
type(P) from a D-metric space      ( X, D) into itself. If  St = 
Tt for some t in X, Then STt = SSt = TTt = TSt. 

Proof:  Suppose that {xn} is a sequence in X defined by xn

= t ,  n = 1,2,3,... and St = Tt . Then we have    linn Sxn = 
limn Txn  = St. Since S and T are compatible mappings of 
type (P), we have  
D( SSt, TTt, z)  =  limn D(SSxn, TTxn, z)  = 0. 

Hence we have SSt = TTt. Therefore, STt = SSt = TTt = 
TSt. 

Let R+ denote the set of all non-negative real numbers and F 
be the family of mappings    : (R+)5

R+ such that each 
is upper-semi-continuous, non-decreasing in each coordinate 
variable, and for any t > 0,  (t) = (t,t,a1t,a2t,t) < t, where  :
R+

 R+ is a mapping with (0) = 0 and a1+ a2 = 3. 

We have prove the following theorems: 

Theorem [1.1]: Let A, B, S and T be mappings from a 
complete   D-metric space (X, D) into itself , satisfying the  
following conditions: 
[1.1] A(X)  T(X) and B(X)  S(X), 
[1.2]  S(X)  T(X) is a complete subspace of X. 
[1.3]    [1+p{D(Ax,Sx,z) + D(By,Ty,z)}] D(Ax,By,z)  
 p[D2(Ax,Sx,z) +D2(By,Ty,z)] +  ( D(Sx,Ty,z),  
D(Ax,Sx,z),  
D(By,Ty,z), (Ax,Ty,z), D(By,Sx,z)) 
for all x,y,z  X, where   F. Then the pairs  A, S and B, T 
have a coincidence point in X. 

For our theorems, we need the following LEMMAS: 

Lemma [1]: For every t > 0, (t) < t  if and only if limn


n(t) = 0, where  n denotes the n-times composition of . 

Lemma [2]: Let A, B, S and T be mappings from a 
complete D-metric space (X, D) into itself , satisfying the  
conditions [3.1.1], [3.4.3]. Then we have the following : 
(a) For every n  N0, D(yn,yn+1,yn+2) = 0, 
(b) For every i, j, k  N0, D( yi, yj, yk) = 0, where {yn} is the 

sequence in X defined by [1.4]. 

Proof of the Lemma: (a) By(3.1.1) since A(X)  T(X), for 
any arbitrary point x0  X, there exists a point x1  X such 
that         Ax0 =  Tx1. Since B(X)  S(X), for any arbitrary 
point x1  X, there exists a point  x2 X such that Bx1 =
Sx2 and so on. Inductively, we can define a sequence {yn} in 
X such that  
[1.4] y2n = Tx2n+1 = Ax2n and y2n+1 = Sx2n+2 = Bx2n+1 for n = 
0,1,2, …

In [1.3], taking  x = x2n+2,  y = x2n+1 ,  z = x2n
we have, 
[1+p{D(Ax2n+2,Sx2n+2,y2n) + D(Bx2n+1,Tx2n+1,y2n)}] 
D(Ax2n+2,Bx2n+1,y2n)
p[D2(Ax2n+2,Sx2n+2,y2n) +D2(Bx2n+1,Tx2n+1,y2n)]
+( D(Sx2n+2,Tx2n+1,y2n), D(Ax2n+2,Sx2n+2,y2n),  
D(Bx2n+1,Tx2n+1,y2n), D(Ax2n+2,Tx2n+1,y2n),  
D(Bx2n+1,Sx2n+2,y2n))
[1+p{D(y2n+2,y2n+1,y2n) + D(y2n+1,y2n,y2n)}] D(y2n+2,y2n+1,y2n)

 p[D2(y2n+2,y2n+1,y2n) +D2(y2n+1,y2n,y2n)]
+ (D(y2n+1,y2n,y2n), D(y2n+2,y2n+1,y2n),  D(y2n+1,y2n,y2n),  

D(y2n+2,y2n,y2n), D(y2n+1,y2n+1,y2n))
[1+p{D(y2n+2,y2n+1,y2n) + 0}] D(y2n+2,y2n+1,y2n)
 p[D2(y2n+2,y2n+1,y2n) + 0] + (0, D(y2n+2,y2n+1,y2n), 0, 0, 0)  
D(y2n+2,y2n+1,y2n)    (0, D(y2n+2,y2n+1,y2n), 0, 0, 0) 
<  D(y2n+2,y2n+1,y2n).

which is a contradiction. Thus we have D(y2n+2,y2n+1,y2n) = 0,  
similarly , we have D(y2n+1,y2n,y2n-1) = 0.  
Hence , for n = 0,1,2 …., we have [1.4] D(yn+2,yn+1,yn)
= 0. 
(b) For all z  X, let dn(z) = D(yn, yn+1,z) for n = 0,1,2,….. . 

By (a), we have 
D(yn, yn+2,z)   D(yn, yn+2, yn+1) + D(yn,
yn+1,z) + D(yn+1, yn+2,z) 

D(yn, yn+2,z)  D(yn, yn+1,z) + D(yn+1, yn+2,z) 
D(yn, yn+2,z)  dn(z) + dn+1(z)   

Taking x = x2n+2 and y = x2n+1 in [3.1.3], we have 
[1+p{D(Ax2n+2,Sx2n+2,z) + D(Bx2n+1,Tx2n+1,z)}] 
D(Ax2n+2,Bx2n+1,z)    

  
 p[D2(Ax2n+2,Sx2n+2,z) +D2(Bx2n+1,Tx2n+1,z)]  +(
D(Sx2n+2,Tx2n+1,z),  
D(Ax2n+2,Sx2n+2,z),   
D(Bx2n+1,Tx2n+1,z),D(Ax2n+2,Tx2n+1,z),   
D(Bx2n+1,Sx2n+2,z)) 
[1+p{D(y2n+2,y2n+1,z) + D(y2n+1,y2n,z)}] D(y2n+2,y2n+1,z)  
 p[D2(y2n+2,y2n+1,z) +D2(y2n+1,y2n,z)]    + ( D(y2n+1,y2n,z), 
D(y2n+2,y2n+1,z),   
D(y2n+1,y2n,z), D(y2n+2,y2n,z), D(y2n+1,y2n+1,z)) 
[1.5]   [1+p{d2n+1(z) + d2n(z)}] d2n+1(z) 

 p[D2
2n+1(z) +D2

2n(z)] + (d2n(z),d2n+1(z),    
d2n(z), {d2n(z)+d2n+1(z)}, 0) 
Now, we shall show that { dn(z)} is a non increasing 
sequence in R+ . In fact, let dn+1(z)  > dn(z) for some n. 
By [ 1.5] we have, d2n+1(z) < d2n+1(z), which is a 
contradiction in R+. 
Now, we claim that dn(ym) = 0 for all non negative integers 
m, n. 
Case 1. n  m. Then we have 0 = dm(ym)  dn(ym).
Case 2. n < m. By ( M4), we have     
 dn(ym)  dn(ym-1) +dm-1(yn)  dn(ym-1) + dn(yn) = 
dn(ym-1) 
By using the above inequality repeatedly, we have 
  dn(ym)  dn(ym-1)   dn(ym-2)  …… dn(yn) = 0, 
which completes the proof of our claim. 

Finally, let i, j, and k be arbitrary non-negative integers. We 
may assume that  i < j. By ( M4), we have  
D(yi,yj,yk)  di(yj) + di(yk) + D(yi+1, yj, yk) = D(yi+1,yj, yk).

Therefore, by repetitions of the above inequality, we have 
D(yi,yj,yk)  D(yi+1,yj, yk)  ……  D(yi,yj, yk) = 0. 
This completes the proof. 

Lemma [3]: Let A, B, S and T be mappings from a D-metric 
space (X, D) into itself satisfying the following conditions 
[1.1] and [1.3]. Then the sequence {yn} defined by [1.4] is a 
Cauchy sequence in X.

Proof of the Lemma: In the proof of LEMMA [2], since 
dn(z) is a non increasing sequence in R+ , by [1.3], we have , 
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[1+p{D(Ax2,Sx2,z) + D(Bx1,Tx1,z)}] D(Ax2,Bx1,z)  
 p[d2(Ax2,Sx2,z) +d2(Bx1,Tx1,z)] + ( D(Sx2,Tx1,z), 
D(Ax2,Sx2,z),D(Bx1,Tx1,z), 
D(Ax2,Tx1,z), D(Bx1,Sx2,z)) 
[1+p{D(y2,y1,z) + D(y1,y0,z)}] D(y2,y1,z) 
p[d2(y2,y1,z) +d2(y1,y0,z)]+ ( D(y1,y0,z), D(y2,y1,z),  
D(y1,y0,z),  
 D(y2,y0,z),D(y1,y1,z)) 
[1+p{d1(z) + d0(z)}] d1(z)  p[d2

1(z) +d2
0(z)] + (d0(z), 

d1(z), d0(z), {d0(z)+d1(z)}, 0) 
d1(z)   (d0(z), d0(z), d0(z), {d0(z)+d0(z)}, 0) 
d1(z)   (d0(z)) 
and d2(z)  (d1(z))    ((d0(z)) = 2(d0(z)).  
In general, we have  dn(z)  n(d0(z)).  

Thus, if  d0(z) > 0, by LEMMA [3.1] limndn(z) = 0. If 
d0(z) = 0, we have clearly lim n dn(z) = 0 since dn(z) = 0 
for n = 1,2, …

Now, we shall prove that { yn} is a Cauchy sequence in X. 
Since limndn(z) = 0, it is sufficient to show that a 
subsequence  { y2n} of     { yn } is a Cauchy sequence in X. 
Suppose that the sequence { y2n} is not a Cauchy sequence 
in X. Then there exist a point z  X, an  > 0 and strictly 
increasing sequences {m(k)}, {n(k)} of positive integers 
such that  k  n(k) < m(k), 

[1.6] (y2n(k),y2m(k),z)   and  D(y2n(k),y(2m-2)(k), z) < 
for all k = 1,2,….. By LEMMA[3.2] anD(M4), we have     
D(y2n(k), y2m(k), z) – D(y2n(k), y2m(k-2), z)  D(y2m(k-2),y2m(k), z)
 d2m(k-2)(z) + d2m(k-1)(z) 
Since {D(y2n(k), y2m(k), z) -  } and {  - D(y2n(k), y2m(k-2), z)} 
are sequences in R+ and limn dn(z) = 0, we have  

[1.7]     limk D(y2n(k),y2m(k), z) =  and limk D(y2n(k),
y2mk-2, z) = 
Note that, by (M4), we have 

[1.8] | D(x,y,a) – D(x,y,b)|   D(a,b,x) + D(a,b,y) 
for all x, y, a, b  X. Taking  x  = y2n(k), y = a, a = y2m(k-1) and 
b = y2m(k) in [1..8] and using lemma [2] and [1.7], we have  
[1.9] limk D(y2n(k), y2m(k-1), z) = . 
Once again, by using lemma [2], [1..7] and [1.8], we have 
[1.10] limk D(y2n(k)+1, y2m(k), z) =   and   limk

D(y2n(k-1), y2m(k-1), z) = . 
Thus, by [1.3], we have,  
[1.11]      
[1+p{D(Ax2m(k),Sx2m(k),z)+D(Bx2n(k+1),Tx2n(k+1),z)}]D(Ax2m(k)
,Bx2n(k+1),z)  
 p[d2(Ax2m(k),Sx2m(k),z) +d2(Bx2n(k+1),Tx2n(k+1),z)]  
 + ( D(Sx2m(k),Tx2n(k+1),z), D(Ax2m(k),Sx2m(k),z),  
 D(Bx2n(k+1),Tx2n(k+1),z), 
 D(Ax2m(k),Tx2n(k+1),z), D(Bx2n(k+1),Sx2m(k),z)) 

[1+p{D(y2m(k),y2m(k-1),z) + D(y2n(k+1),y2n(k),z)}] 
D(y2m(k),y2n(k+1),z)  
 p[d2(y2m(k),y2m(k-1),z) +d2(y2n(k+1),y2n(k),z)]   + ( D(y2m(k-

1),y2n(k),z),  
 D(y2m(k),y2m(k-1),z),  D(y2n(k+1),y2n(k),z),D(y2m(k),y2n(k),z), 
 D(y2n(k+1),y2m(k-1),z)) 

As k  in [1.11] and noting that d is continuous, we have 
  ( , 0, 0, ,  ) < ()  < 
which is a contradiction. Therefore, { y2n} is a Cauchy 
sequence in X and so the sequence { yn} is a Cauchy 
sequence in X. This completes the proof. 

Proof of the Theorem: By lemma[3], the sequence  { yn}
defined by [1.2] is a Cauchy sequence in  S(X)  T(X). 
Since S(X)  T(X) is a complete subspace of X, {yn}
converges to a point w in S(X)  T(X). On the other hand, 
since the subsequences { y2n} and { y2n+1} of {yn} are also 
Cauchy sequences in S(X)  T(X), they also converge to the 
same limit w. Hence there exist two points u, v in X such 
that Su = w and Tv = w, respectively.  

By [1.3], we have  
[1+p{D(Au,Su,z) + D(Bx2n+1,Tx2n+1,z)}] D(Au,Bx2n+1,z)  
 p[d2(Au,Su,z) +d2(Bx2n+1,Tx2n+1,z)]   + (
D(Su,Tx2n+1,z),  
             D(Au,Su,z), 
D(Bx2n+1,Tx2n+1,z),D(Au,Tx2n+1,z),D(Bx2n+1,Su,z)) 
[1+p{D(Au,Su,z) + D(y2n+1,y2n,z)}] D(Au,y2n+1,z)  
 p[d2(Au,Su,z) + d2(y2n+1,y2n,z)] + (D(Su,y2n,z), 
D(Au, Su,z),  
              D(y2n+1,y2n,z), D(Au,y2n,z),D(y2n+1,Su,z)) 
Since limndn(z) = 0 in the proof of Lemma2, letting n,
we have 
[1+p{D(Au, w,z) + D(w, w,z)}] D(Au, w,z)  
 p[d2(Au, w,z) +d2(w, w, z)] + ( D(w, w,z), D(Au, 
w,z),D(w ,w,z), 

D(Au, w,z), D(w, w,z)) 
D(Au, w,z)   ( 0, D(Au, w,z), 0,D(Au, w,z),0)
<  (D(Au, w,z)) < D(Au, w,z) 
which is contradiction . Hence Au = w = Sw, that is  u is a 
coincidence of  A and S.  
Similarly, we can show that v is a coincidence point of B 
and T. 
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