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Abstract: In this paper, we have considered the  MHD flow of an electrically conducting non-Newtonian fluid past a vertical stretching 
sheet. Convective boundary conditions, thermophoresis and thermal radiation are taken into account. The governing equations reduced 
into a dimensionless form making use of similarity transformations. The confined similarity equations are originated and solved using 
shooting method together with Runge–Kutta sixth order system. The flow characteristics are discussed through graphs and tables. The 
investigation walk around that, the fluid velocity and temperature in the boundary layer region get higher significantly for increasing 
the values of thermal radiation parameter. The Nusselt number enhances with increasing the values of the surface convection 
parameter. 
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1. Introduction 

Non-Newtonian fluid flows generated by a stretching sheet 
have been widely analyzed for the importance in several 
manufacturing processes such as extrusion of molten 
polymers through a slit die for the production of plastic 
sheets, processing of food stuffs, paper production, and wire 
and fiber coating. On the other hand, convective heat 
transfer plays a vital role during the handling and processing 
of non-Newtonian fluid flows. Mechanics of non-Newtonian 
fluid flows present a special challenge to engineers,
physicists, and mathematicians. Because of the complexity 
of these fluids, there is not a single constitutive equation 
which exhibits all properties of such non Newtonian fluids. 
In the process, a number of nonNewtonian fluid models 
have been proposed. The vast majority of non-Newtonian 
fluid are concerned of the types, e.g., like the power-law and 
grade two or three (Serdar and Salih Dokuz (2006), 
Andersson and Dandapat (1992), Sadeghy and Sharifi 
(2004), Hassanien (1996), Sajid et al. (2007, 2009), 
Keimanesha et al. (2011), Rashidi et al. (2012)). These 
simple fluid models have the shortcomings that render 
results that are not in accordance with the fluid flows in 
reality. Power-law fluids are by far the most widely used 
model to express nonNewtonian behavior in fluids. The 
model predicts shear thinning and shear thickening behavior. 
However, it is inadequate in expressing normal stress 
behavior as observed in die swelling and rod climbing 
behavior in some non-Newtonian fluids. In order to obtain a 
thorough cognition of nonNewtonian fluids and their various 
applications, it is necessary to study their flow behaviors. 
Due to their application in industry and technology, few 
problems in fluid mechanics have enjoyed the attention that 
has been accorded to the flow which involves non-
Newtonian fluids. The non-linearity can manifest itself in a 
variety of ways in many fields, such as food, drilling 
operations and bioengineering. The Navier–Stokes theory is 
inadequate for such fluids, and no single constitutive 
equation is available in the literature which exhibits the 
properties of all fluids. Because of the complexity of these 
fluids, there is not a single constitutive equation which 
exhibits all properties of such non-Newtonian fluids. Thus, a 
number of non-Newtonian fluid models have been proposed. 

The Casson model is a well-known rheological model for 
describing the nonNewtonian flow behavior of fluids with a 
yield stress as Casson (1959). The model was developed for 
viscous suspensions of cylindrical particles by Reher et al. 
(1969). Regardless of the form or type of suspension, some 
fluids are particularly well described by this model because 
of their nonlinear yield-stress-pseudoplastic nature. 
Examples are blood as Cokelet et al. (1963), chocolate by 
Chevalley (1991), xanthan gum solutions by Garcia-Ochoa 
and Casas (1994). The Casson model fits the flow data better 
than the more general Herschel–Bulkley model by Joye 
(1998) and Kirsanov, and Remizo (1999), which is a power-
law formulation with yield stress as Bird et al. (1960). For 
chocolate and blood, the Casson model is the preferred 
rheological model. It seems increasingly that the Casson 
model fits the nonlinear behavior of yield-stress-
pseudoplastic fluids rather well and it has therefore gained in 
popularity since its introduction in 1959. It is relatively 
simple to use, and it is closely related to the Bingham model 
Bird et al. (1960), which is very widely used to describe the 
flow of slurries, suspensions, sludge, and other rheologically 
complex fluids as Churchill (1988). Eldabe and Salwa 
(1995) have studied the Casson fluid for the flow between 
two rotating cylinders, and Boyd et al. (2007) investigated 
the Casson fluid flow for the steady and oscillatory blood 
flow. Boundary layer flow of Casson fluid over different 
geometries is considered by many authors in recent years. 
Nadeem et al. (2012) presented MHD flow of a Casson fluid 
over an exponentially shrinking sheet. Kumari et al. (2011) 
analyzed peristaltic pumping of a MHD Casson fluid in an 
inclined channel. Sreenadh et al. (2011) studied the flow of a 
Casson fluid through an inclined tube of non uniform cross-
section with multiple stenoses. Mernone and Mazumdar 
(2002) discussed the peristaltic transport of a Casson fluid. 
Porwal and Badshah (2012) work on steady blood flow with 
Casson fluid along an inclined plane influenced by the 
gravity force. Mukhopadhyay et. al. (2013) studied the 
unsteady two-dimensional flow of a non-Newtonian fluid 
over a stretching surface having a prescribed surface 
temperature, the Casson fluid model is used to characterize 
the nonNewtonian fluid behavior. Abolbashari et al. (2015) 
have been reported an analytical investigation of the fluid 
flow, heat and mass transfer and entropy generation for the 
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steady laminar non-Newtonian nano-fluid flow induced by a 
stretching sheet in the presence of velocity slip and 
convective surface boundary conditions using optimal 
homotopy analysis method (HAM). Suction or blowing 
process has also have their importance in many engineering 
activities, for example, in the design of thrust bearing and 
radial diffusers, and thermal oil recovery. Suction is applied 
to chemical processes to remove reactants. Blowing is used 
to add reactants, which cool the surface, prevent corrosion or 
scaling and reduce the drag. In mass transfer cooling, can 
significantly change the flow field and, as a consequence, 
affects the heat transfer rate from the plate (see Shridan et al. 
(2006), Chamkha et al. (2010), Yih (1998), Tsai et al. 
(2008), Ishak et al. (2009)). In addition, a combined free and 
forced convection flow of an electrically conducting fluid in 
the presence of a transverse magnetic field is of special 
technical significance because of its frequent occurrence in 
many industrial applications such as geothermal reservoirs, 
cooling of nuclear reactors, thermal insulation, petroleum 
reservoirs, etc. This type of problem also arises in electronic 
packages, microelectronic devices during their operations. In 
recent years, several convection heat transfer and fluid flow 
problems have received new attention within the more 
general context of MHD.  
  
In this present paper, the heat and mass transfer on MHD 
flow of an electrically conducting non-Newtonian fluid over 
a semi-infinite vertical stretching sheet.  

2. Formulation and Solution of the Problem 

Consider the steady boundary layer flow of an 
incompressible and electrically conducting non-Newtonian 
(Visco-elastic) fluid past a stretching sheet coinciding with 
the plane 0y   and the flow being confined to 0y   in 

the presence of viscous dissipation and joule heating. The 
flow is generated, due to the stretching of the sheet caused 
by the simultaneous action of two equal and opposite forces 
along the x-axis. The sheet is then stretched with a velocity 

( )wu x ax , where a is a constant and x is the coordinate 
measured along the stretching surface from the slit. The 
thermal radiation is taking place in the flow and the effect of 
thermophoresis is being taken into account to help in 
understanding of the mass deposition variation on the 
surface. A uniform transverse magnetic field of strength B0
is applied parallel to the y-axis. The applied magnetic field 
and magnetic Reynolds number are assumed to be very 
small so that the induced magnetic field and the Hall effect 
are negligible. It is assumed that there is no applied voltage 
which implies the absence of an electric field. The stretching 
surface is maintained at constant temperature wT  higher 

than the constant temperature T  of the ambient fluid. Due 
to the boundary layer behavior the temperature gradient 
along y-direction is much more than that along x-direction 
and hence only the thermophoretic velocity component 
which is normal to the surface is of importance. Under these 
assumptions, the governing boundary layer equations for a 
non-Newtonian fluid flow can be written as [18, 36] 
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Where all the physical quantities are of their usual meaning. 
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  the thermophoretic velocity, We assume 

the bottom surface of the plate is heated by convection from 

a hot fluid at temperature wT  which provides a heat transfer 

coefficient wh . The boundary conditions of the present 
model are  
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Where, 0v  is the suction/injection velocity.   

Using the Rosseland approximation, the radiative heat flux 
term is given by [34] 

* 4
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k y
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 


                       (7) 

Assuming that the differences in the temperature within the 
flow are such that 4T  can be expressed as a linear 
combination of the temperature, we expand 4T in Taylor’s 

series about T  and neglecting higher order terms, we get  
4 4 44 3T T T T              (8) 

Thus we have 
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Where, *  is the Stefan–Boltzmann constant and *k is the 
mean absorption coefficient. the similarity transformations 
as given below are introduced: 

1 2
1 2, '( ), ( ) ( ), ( ) , ( )

w w

T T C Cc y u cxf v cv f
T T C C

      


 

 

  
      

  
                 (10) 

Eq. (1) is automatically satisfied. Using Eq. (9) in (3) and applying transformation (10), Eqs. (2) – (4) reduce to the ordinary 
differential equations: 
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The boundary conditions (5, 6) then turn into  
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  is the surface convection parameter.  

The physical quantities of practical and engineering primary 
interest are the skin friction coefficient, Nusselt number and 
Sherwood number. The equation defining the wall shear 
stress is  
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The local dimensionsless skin friction coefficient is given by 
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Knowing the temperature field, it is interesting to study the 
effect of the free convection and thermal radiation on the 
rate of heat transfer wq , is given by 
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So the rate of heat transfer in terms of dimensionless Nusselt 
number (Nu) is defined as follows: 

  1 2 'Re 1 (0)Nu Nr      (19) 
Or

 * '1 (0)Nu Nr        (20)

 Where, * 1 2ReNu Nu
The rate of mass transfer in terms of dimensionless 
Sherwood number (Sh) is given by  

1 2 'Re (0)Sh      (21) 
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Where, * 1 2ReSh Sh  

3. Results and Discussion 

The numerical computations are performed using the 
method described in the previous section for various values 
of parameters that describe the flow characteristics of a 
second grade fluid over a convectively heated stretching 
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sheet. The set of Eqs. (11)–(13) under the boundary 
conditions (14) – (15) are solved numerically by applying 
the Shooting iteration technique together with Runge- Kutta 
sixth-order integration scheme. The following algorithm is 
used to solve the non-linear ordinary differential Eqs. (11)–
(13) along with the boundary conditions (14): Reduce Eqs. 
(11)–(13) to a system of first order equations. Set the 
boundary conditions and initial values. Shooting technique 
to guess initial values. Repeat the step 3 until far filled 
boundary conditions are satisfied. Solve the reduced system 
of first order equations by Runge-Kutta method. Repeat 
these steps until the convergence criterion of 10-6 holds 
good.  

The results are illustrated graphically in Figs. (2–4) and in 
Table 2. There are many parameters involved in the final 
form of the model.  The problem can be protracted on many 
directions, but the first one seems to consider the effects of
surface convection parameter, radiation parameter, second 
grade parameter and thermophoretic parameter. The default 
values of material parameters are considered in the 
simulation as M=2, Sr=0.5, Sc=0.64, λ1=1.5, Kr=0.2, γ=0.1, 
Gr=5, Gm=5, Pr=0.71, Nr=0.4, Ec=0.02 and τ=0.2 unless 
otherwise specified.  

Figs. 1 displayed the behaviour of the velocity distribution 
for various values of thermal radiation parameter Nr. Fig. 1 
shows that an increase in radiation parameter tends to 
increase the fluid velocity in the boundary layer region. The 
physics behind the results is that the thermal radiation 
increases the thickness of momentum boundary layer, which 
ultimately enhances the velocity. The effect of second grade 
parameter λ1 on the fluid velocity distribution is illustrated 
in Figs. 2. The velocity component across the boundary 
layer reduces with an increase in the second grade parameter 
and also decreases asymptotically to zero at the edge of the 
hydro dynamic boundary layer. The effect of surface 
convection parameter γ on the stream wise velocity 

component is shown in Fig. 2. As the value of γ increases, 

the flow rate enhances and thereby giving rise to an increase 
in the velocity profiles as depicted in Fig. 3. Figs. 4 illustrate 
the variation of the velocity distribution for various values of 
thermophoretic parameter τ. The fluid velocity decreases 

with increase in the thermophoretic parameter and so the 
momentum boundary layer thickness decreases. The fluid 
velocity reduces with increasing the intensity of the 
magnetic field M or Pr or Sc. Increase the chemical reaction 
parameter Kr diminishes the velocity profile as shown the 
same figure. Likewise the magnitude of the velocity 
enhances with increasing Gr or Gm. 

From Fig. 5, it is also observed that the temperature 
distribution increases uniformly with increasing thermal 
radiation parameter Nr. Thus, by escalating Nr, thermal 
boundary layer thickness enhances. The impact of surface 
convection parameter γ on fluid temperature in presence of 

thermal radiation is demonstrated in Fig. 6. It is observed 
from the figure that the fluid temperature increases with 
increase in γ in the boundary layer region. It is observed that 

with increase in the second grade parameter or second grade 
fluid parameter λ1 (Figure 7), the temperature profiles 
increase and hence thickness of thermal boundary layer 
increases. From the figure (8), the temperature reduce 

reduces with increase in Pr, and hence thickness of thermal 
boundary layer decreases. 

The concentration of the fluid decreases with increasing the 
values of Sc, Kr and thermophoretic parameter τ, and 

increases with Sr as presented in Fig. (9-12).  
  
It is found from Table 2 that an increase in τ leads to an 
increase in both the values of the wall shear stress (in 
magnitude), Nusselt number and Sherwood number. It is
observed that with increasing the values of λ1, the reduced 
skinfriction coefficient (in absolute sense), Nusselt number 
diminishes whereas the Sherwood number increases. It can 
be seen from Table2 that the magnitude of the reduced skin 
friction coefficient decreases with increase in the radiation 
parameter Nr where as the thermal radiation increases the 
rate of heat transfer. It is observed that the heat transfer rate 
at the plate increases with increasing the values of γ whereas 

the effect is opposite for the wall shear stress (in magnitude) 
at the plate i.e. the reduced skin friction coefficient (in 
magnitude) decreases with increasing the surface convection 
parameter. The skin friction coefficient reduces with Kr and 
enhances with increasing M. 

Figure 1: Velocity Profiles against M and γ

Figure 2: Velocity Profiles against τ , λ1, Kr
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Figure 3: Velocity Profiles against Pr and Sc  

Figure 4: Velocity Profiles against Gr, Gm and Nr 

Figure 5: Temperature Profiles against Pr 

Figure 6: Temperature Profiles against λ1

Figure 7: Temperature Profiles against Nr  

Figure 8: Temperature Profiles against γ

Figure 9: Concentration Profiles against Sc 

Figure 10: Concentration Profiles against Kr 
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Figure 11: Concentration Profiles against Sr Figure 12: Concentration Profiles against  τ

Table 2: Effects of various parameters on stress, Nusselt and Sherwood numbers 
M Nr γ τ λ1 Kr stress Nusselt 

number
Sherwood 

number
2 0.5 0.5 0.5 1 1 -3.588745 1.058554 1.701452
3 0.5 0.5 0.5 1 1 -3.568885 1.041788
4 0.5 0.5 0.5 1 1 -3.510088 1.032256
2 0.8 0.5 0.5 1 1 -2.554496 1.144527
2 1.0 0.5 0.5 1 1 -2.112578 1.255478
2 0.5 1.0 0.5 1 1 -4.588456 1.322562
2 0.5 1.5 0.5 1 1 -5.188778 1.855479
2 0.5 0.5 1.0 1 1 -6.878545 1.801452
2 0.5 0.5 1.5 1 1 -9.785985 1.851452
2 0.5 0.5 0.5 2 1 -2.588777 1.038775 1.928556
2 0.5 0.5 0.5 3 1 -1.122063 1.014445 2.118554
2 0.5 0.5 0.5 1 2 -1.885456 1.858547
2 0.5 0.5 0.5 1 3 -1.041789 1.980985

4. Conclusions 

The effect of thermal radiation on MHD boundary layer 
flow of a non-Newtonian fluid past a stretching sheet with 
convective surface heat flux in the presence of
thermophoresis have been studied. The conclusions are 
made as the following. 
1) The fluid velocity in the boundary layer region increases 

for increasing the values of thermal radiation parameter 
and surface convection parameter but the effect is reverse 
for Hartmann number, thermophoretic parameter and 
second grade fluid parameter.  

2) The temperature profile enhances with increase in the 
thermal radiation parameter, second grade parameter and 
surface convection parameter.  

3) The chemical species concentration decreases in
presence of thermophoresis. Consequently, the rate of
mass transfer increases as thermophoretic parameter  

4) The skin friction coefficient (in magnitude) decreases 
with increase of thermal radiation parameter, second 
grade parameter and surface convection parameter but 
effect is reverse for thermophoretic parameter.  

5) The rate of heat transfer increases for increasing the 
values of the surface convection parameter and thermal 
radiation parameter while it decreases with increase in
the values of second grade parameter.
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