
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 5 Issue 12, December 2016 
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Improvement in the Quality of the Object-Oriented 
System 

Vijay Kumar Tiwari 

Department of CSE, Kamla Nehru Institute of Technology, Sultanpur-228118, U.P., India 

Abstract: This research seeks to describe concepts and techniques to improve the quality of the object-oriented System. Object-oriented 
design is a popular concept in today’s system development. Many metrics relating to product quality have proved their value for system 
maintenance and modification. The paper introduces the use of three traditional metrics and presents six additional metrics specifically 
for object-oriented systems. The object-oriented metrics criteria selected are used to evaluate the system attributes. A brief description of 
the object-oriented structure is given. Each metric is then described, interpretation guidelines given, and the applicable quality attributes 
listed. Future work will be to define criteria for the metrics. Acceptable ranges for each metric will have to developed based on the effect 
of the metric on desirable system qualities. 

Keywords: Object-oriented design, object-oriented system, system metric, system. 

1. Introduction 

With today’s system development, object-oriented design is 
a popular concept. It has proved its value for system that 
maintained and modified. Object-oriented system 
development requires a different approach from more 
traditional functional decomposition and data flow 
development methods [1]. It uses the system metrics to 
evaluate the Quality of the object-oriented system. With 
object-oriented analysis and design methodologies gaining 
popularity, it is time to start investigating object-oriented 
metrics with respect to system quality. 
1) Complexity: The systems can be used more effectively 

to decrease the architectural complexity. 
2) Efficiency: The systems are efficiently designed. 
3) Reusability: The design quality supports possible reuse. 
4) Testability/Maintainability: The systems support ease 

of testing and changes. 
5) Understandability: The design increases the 

psychological complexity. 

The former approach to identify a set of object-oriented 
metrics was to focus on the primary, critical constructs of 
object-oriented design and to select metrics that apply to 
those areas [4]. The metrics are supported by most literature 
and some object-oriented tools. The metrics evaluate the 
object-oriented concepts: methods, classes, coupling, and 
inheritance. The metrics focus on internal object structure, 
external measures of the interactions among entities, 
measures of the efficiency of an algorithm and the use of 
machine resources, as well as psychological measures that 
affect the ability of a programmer to create, comprehend, 
modify and maintain system [5]. 

The paper supports the use of three traditional metrics and 
presents six additional metrics specifically for object-
oriented systems. Some researchers and practitioners 
contend traditional metrics are inappropriate for object-
oriented systems. There are valid reasons for applying 
traditional metrics, however, if it can be done. The 
traditional metrics have been widely used, they are well 
understood by researchers and practitioners, and their 

relationships to system quality attributes have been validated 
[6]. 

2. Traditional Metrics for Object-Oriented 
System 

Metrics or the Evaluation Criteria 
This paper takes the radical approach to completely replace 
the While metrics for the traditional functional 
decomposition and data analysis design approach measure 
the design structure and data structure independently, object-
oriented metrics must be able to focus on the combination of 
function and data as an integrated object [2]. The evaluation 
of the utility of a metric as a quantitative measure of system 
quality was based on the measurement of a system quality 
attribute. The object-oriented metric criteria are to be used to
evaluate the following attributes [3]: 

In an object-oriented system, traditional metrics are 
generally applied to the methods that comprise the 
operations of a class. A method is a component of an object 
that operates on data in response to a message and is defined 
as part of the declaration of a class. Three traditional metrics 
are discussed here: cycloramic complexity, size (line counts) 
and comment percentage [7]. 

Metric 1: Cycloramic Complexity (CC) 
Cycloramic complexity is used to evaluate the complexity of 
an algorithm in a method. A method with a low cycloramic 
complexity is generally better, although it may mean that 
decisions are deferred through message passing, not that the 
method is not complex. Cycloramic complexity cannot be 
used to measure the complexity of a class because of 
inheritance, but the cycloramic complexity of individual 
methods can be combined with other measures to evaluate 
the complexity of the class. In general, the cycloramic 
complexity for a method should be below ten, indicating 
decisions are deferred through message passing. Although 
this metric is specifically applicable to the evaluation of 
quality attribute Complexity, it also is related to all of the 
other attributes [8]. 

Paper ID: ART20163416 230



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 5 Issue 12, December 2016 
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Metric 2: Size 
Size of a method is used to evaluate the ease of 
understandability of the code by developers and maintainers. 
Size can be measured in a variety of ways. These include 
counting all physical lines of code, the number of statements 
and the number of blank lines. Thresholds for evaluating the 
size measures vary depending on the coding language used 
and the complexity of the method. However, since size 
affects ease of understanding, routines of large size will 
always pose a higher risk in the attributes of 
Understandability, Reusability, and Maintainability [9]. 

Metric 3: Comment Percentage 
The line counts done to compute the Size metric can be 
expanded to include a count of the number of comments, 
both on-line (with code) and stand-alone. The comment 
percentage is calculated by the total number of comments 
divided by the total lines of code less the number of blank 
lines. The SATC has found a comment percentage of about 
30%. Since comments assist developers and maintainers, 
this metric is used to evaluate the attributes of 
Understandability, Reusability, and Maintainability [10]. 

3. Specific Metrics for Object-Oriented System 

As we know, many different metrics have been proposed for 
object-oriented systems. The object-oriented metrics that 
were chosen by the SATC measure principle structures that, 
if improperly designed, negatively affect the design and 
code quality attributes. The selected object-oriented metrics 
are primarily applied to the concepts of classes, coupling, 
and inheritance. For some of the object-oriented metrics 
discussed here, multiple definitions are given, since 
researchers and practitioners have not reached a common 
definition or counting methodology. In some cases, the 
counting method for a metric is determined by the system 
analysis package being used to collect the metrics [11]. 

A. Class 
A class is a template from which objects can be created. 
This set of objects share a common structure and a common 
behaviour manifested by the set of methods. Three class 
metrics described here measure the complexity of a class 
using the class’s methods, messages and cohesion. 

1) Method 
A method is an operation upon an object and is defined in 
the class declaration. 

Metric 4: Weighted Methods per Class (WMC) 
The WMC is a count of the methods implemented within a 
class or the sum of the complexities of the methods (method 
complexity is measured by cycloramic complexity). The 
second measurement is difficult to implement since not all 
methods are accessible within the class hierarchy due to 
inheritance. The number of methods and the complexity of 
the methods involved is a predictor of how much time and 
effort is required to develop and maintain the class. The 
larger the number of methods in a class, the greater the 
potential impact on children since children inherit all of the 
methods defined in a class. Classes with large numbers of 
methods are likely to be more application specific, limiting 

the possibility of reuse. This metric measures 
understandability, maintainability, and reusability. 

2) Message 
A message is a request that an object makes of another 
object to perform an operation. The operation executed as a 
result of receiving a message is called a method. The next 
metric looks at methods and messages within a class. 

Metric 5: Response for a Class (RFC) 
The RFC is the carnality of the set of all methods that can be 
invoked in response to a message to an object of the class or 
by some method in the class. This includes all methods 
accessible within the class hierarchy. This metric looks at 
the combination of the complexity of a class through the 
number of methods and the amount of communication with 
other classes. The larger the number of methods that can be 
invoked from a class through messages, the greater the 
complexity of the class. If a large number of methods can be 
invoked in response to a message, the testing and debugging 
of the class becomes complicated since it requires a greater 
level of understanding on the part of the tester. A worst case 
value for possible responses will assist in the appropriate 
allocation of testing time. This metric evaluates 
Understandability, Maintainability, and Testability [12]. 

3) Cohesion 
Cohesion is the degree to which methods within a class are 
related to one another and work together to provide well-
bounded behaviour. Effective object-oriented designs 
maximize cohesion since it promotes encapsulation. The 
third class metrics investigates cohesion. 

Metric 6: Lack of Cohesion of Methods (LCOM) 
LCOM measures the degree of similarity of methods by data 
input variables or attributes (structural properties of classes). 
Any measure of separateness of methods helps identify 
flaws in the design of classes. There are at least two 
different ways of measuring cohesion: 
1) Calculate for each data field in a class what percentage 

of the methods use that data field. Average the 
percentages then subtract from 100%. Lower 
percentages mean greater cohesion of data and methods 
in the class. 

2) Methods are more similar if they operate on the same 
attributes. Count the number of disjoint sets produced 
from the intersection of the sets of attributes used by the 
methods. 

High cohesion indicates good class subdivision. Lack of 
cohesion or low cohesion increases complexity, thereby 
increasing the likelihood of errors during the development 
process. Classes with low cohesion could probably be 
subdivided into two or more subclasses with increased 
cohesion. This metric evaluates Efficiency and Reusability. 

4) Coupling 
Coupling is a measure of the strength of association 
established by a connection from one entity to another. 
Classes (objects) are coupled three ways: 
1) When a message is passed between objects, the objects 

are said to be coupled. 

Paper ID: ART20163416 231



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 5 Issue 12, December 2016 
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

2) Classes are coupled when methods declared in one class 
use methods or attributes of the other classes. 

3) Inheritance introduces significant tight coupling between 
superclasses and their subclasses. Since good object-
oriented design requires a balance between coupling and 
inheritance, coupling measures focus on non-inheritance 
coupling. 

Metric 7: Coupling Between Object Classes (CBO) 
CBO is a count of the number of other classes to which a 
class is coupled. It is measured by counting the number of 
distinct non-inheritance related class hierarchies on which a 
class depends. Excessive coupling is detrimental to modular 
design and prevents reuse. The more independent a class is, 
the easier it is reuse in another application. The larger the 
number of couples, the higher the sensitivity to changes in 
other parts of the design and therefore maintenance is more 
difficult. Strong coupling complicates a system since a 
module is harder to understand, change or correct by itself if 
it is interrelated with other modules. Complexity can be 
reduced by designing systems with the weakest possible 
coupling between modules. This improves modularity and 
promotes encapsulation. CBO evaluates Efficiency and 
Reusability. 

B. Inheritance 
Another design abstraction in object-oriented systems is the 
use of inheritance. Inheritance is a type of relationship 
among classes that enables programmers to reuse previously 
defined objects including variables and operators. 
Inheritance decreases complexity by reducing the number of 
operations and operators, but this abstraction of objects can 
make maintenance and design difficult. The two metrics 
used to measure the amount of inheritance are the depth and 
breadth of the inheritance hierarchy [13]. 

Metric 8: Depth of Inheritance Tree (DIT) 
The depth of a class within the inheritance hierarchy is the 
maximum length from the class node to the root of the tree 
and is measured by the number of ancestor classes. The 
deeper a class is within the hierarchy, the greater the number 
methods it is likely to inherit making it more complex to 
predict its behavior. Deeper trees constitute greater design 
complexity, since more methods and classes are involved, 
but the greater the potential for reuse of inherited methods. 
A support metric for DIT is the number of methods inherited 
(NMI). This metric primarily evaluates Efficiency and 
Reuse but also relates to Understandability and Testability. 

Metric 9: Number of Children (NOC) 
The number of children is the number of immediate 
subclasses subordinate to a class in the hierarchy. It is an 
indicator of the potential influence a class can have on the 
design and on the system. The greater the number of 
children, the greater the likelihood of improper abstraction 
of the parent and may be a case of misuse of subclassing. 
But the greater the number of children, the greater the 
reusability since inheritance is a form of reuse. If a class has 
a large number of children, it may require more testing of 
the methods of that class, thus increase the testing time. 
NOC, therefore, primarily evaluates Efficiency, Reusability, 
and Testability [14]. 

4. Conclusion 

Product Quality for code and design has five attributes. 
These are Efficiency, Complexity, Understandability, 
Reusability, and Testability/Maintainability. The SATC has 
proposed nine metrics for object-oriented systems. They 
cover the key concepts for object-oriented designs: methods, 
classes (cohesion), coupling, and inheritance. For each 
metric, threshold values can be adopted, depending on the 
applicable quality attributes and the application objectives. 
Future work will be to define criteria for the metrics. That is, 
acceptable ranges for each metric will have to developed, 
based on the effect of the metric on desirable software 
qualities. 

References 

[1] R. Hudli, C. Hoskins, and A. Hudli, “Software Metrics 

for Object-oriented Designs,” IEEE Trans. Electron 
Devices, vol. 2, pp. 314-319, Jan. 1993. 

[2] Y. Lee, B. Liang, and F. Wang, “Some Complexity 
Metrics for Object-Oriented Programs Based on 
Information Flow,” in Proc. CompEuro, March, 1993, 
pp. 302-310.

[3] M. Lorenz and J. Kidd, Object-Oriented Software 
Metrics, Prentice Hall Publishing, 1994, ch. 2, pp. 425-
427.

[4] D. Tegarden, S. Sheetz, and D. Monarchi, 
“Effectiveness of Traditional Software Metrics for 

Object-Oriented Systems,” in Proc. 25th Hawaii
International Conference on System Sciences, January, 
1992, pp. 359-368.

[5] H.-Y. Song, F. Hao, M. Kodialam, and T. V. 
Lakshman, “IPv6 lookups using Distributed and Load 
Balanced Bloom Filter for 100Gbps Core Router Line 
Cards,” INFOCOM, 2009, pp. 425-447. 

[6] G. Millar, E. Panaousis, and C. Politis, “Robust: 

Reliable overlay based utilisation of services and 
topology for emergency manets,” in Proc. IEEE Future 
Network and MobileSummit, Florence, Italy, June 
2010,
pp. 75-82.

[7] Z.-Q. Xia, Z.-G. Chen, and X.-H. Deng, “An 

Enforceable Incentive Scheme in Wireless Multi-path 
Inter-session Network Coding Game,” Journal of 
Networks, ISSN 1796-2056, vol. 7, issue 2, 2012, pp.
351-355.

[8] I. Christian, G. Lorenza, and A. Sateesh, “Distributed 

Multiple Access and Flow Control for Wireless 
Network Coding,” Vehicular Technology Conference 
(VTC 2010-Spring), 16-19 May 2010, pp. 1–6,
Location: Taipei. 

[9] V. Reddy, S. Shakkottai, A. Sprintson, and N. Gautam. 
“Multipath wireless network coding: a population game 

perspective,” in Proc. IEEE INFOCOM 2010, San 
Diego, March 2010, pp. 1-9.

[10] T. T. Chen and S. Zhong. “INPAC: An enforceable 

incentive scheme for wireless networks using network 
coding,” IEEE INFOCOM 2010, San Diego, March 
2010, pp. 1828-1836. 

[11] Z. Q. Xia and Z. G. Chen. “Wireless Multi-path Inter-
session Network Coding Game,” Journal of 

Paper ID: ART20163416 232



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 5 Issue 12, December 2016 
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Information and Computational Science, vol. 7, no. 13, 
December 2010, pp. 2763-2770. 

[12] K. Kim and N. Venkatasubramanian. “Assessing the 

impact of geographically correlated failures on overlay-
based data dissemination,” IEEE GLOBECOM 2010,
December 2010, pp. 1–5.

[13] F. Bernhard, E. Alireza, V. D. V. Dimitri, and M. 
Torsten, “Efficient volume rendering on the body 
centered cubic lattice using box splines,” Computers & 
Graphics, 2010, vol. 3, pp. 409-423.

[14] B. Csebfalvi, “An Evaluation of Prefiltered B-Spline 
Reconstruction for Quasi-Interpolation on the Body-
Centered Cubic Lattice,” IEEE Transactions on 
Visualization and Computer Graphics, 2010, vol. 16, 
pp. 499 – 512. 

Paper ID: ART20163416 233




