
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 12, December 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Analysis of Various Page Replacement Algorithms
in Operating System

Bhagyashree A. Tingare1, Vaishali L. Kolhe2

1, 2D.Y. Patil College of Engineering Akurdi, Pune, Savitribai Phule Pune University, India

Abstract: Page replacement algorithms were a sincere topic of research and debate in the 1960s and 1970s. In a computer operating
system that uses paging for virtual memory management, page replacement algorithms resolve which memory pages to page out (swap
out, write to disk) when a page of memory needs to be allocated. Paging occurs when a page fault occurs and a free page cannot be used
to gratify the allocation, either because there are none, or because the number of free pages i lower than some threshold. The page
replacing problem is a typical online problem from the competitive analysis view in the intelligence that the optimal deterministic
algorithm is known [11]. This paper is analysis on various page replacement algorithms like Optimal replacement, Random replacement,
Not Recently Used (NRU), First-In, First-Out (FIFO), Least Recently Used (LRU), Second Change and CLOCK, Not Frequently Used
(NFU), and some approaches like Aging, Two Queue (2Q), SEQ, Adaptive Replacement Cache (ARC), CLOCK with Adaptive
Replacement (CAR), CAR with Temporal filtering (CART),Token-ordered LRU, CLOCK-Pro.

Keywords: Optimal replacement, Random replacement, NRU, Aging, ARC, CART, Token-ordered LRU

1. Introduction

Page replacement is an important component of a modern
operating system. When a page containing a desired datum
or instruction is searched in translation look aside buffers or
page tables and found missing from main memory, a page
fault is said to occur. As the size of main memory is limited
and is much smaller than the size of permanent storage, the
role of page replacement is to identify the best page to evict
from main memory as a result of a page fault and replace it
by the a new page from disk that contains the requested
datum or instruction. The problem is very similar to the
block replacement in cache memories except that the page
replacement is more critical as page transfers from disk to
memory are orders of magnitudes slower than block
transfers from main memory to the cache memory.[1] Many
page replacement algorithms are used. Some of them have
taken here for our comparison study. They are First-In-First-
Out (FIFO), Least Recently Used (LRU), Least Recently
Used with K references (LRU-K), Random, Clock with
Adaptive Replacement (CAR), Adaptive Replacement
Cache (ARC) and at last the most efficient rather impractical
Optimal algorithm. Good replacement can reduce the page
fault cost resulting in higher performance, since the more
page faults the operating system encounters, the more
resources are wasted on paging in/out instead of doing
useful work, resulting ultimately in serious thrashing
problems. In simple words we can say that-When the
processor need to execute a particular page and main
memory does not contain that page, this situation is known
as PAGE FAULT. As each and every process has its own
virtual address space, the operating system must keep track
of all pages and the location of each page used by each
process. When the processor needs to read or write a
location in main memory, it first checks for a corresponding
entry in the cache. The cache checks for the contents of the
requested memory location in any cache lines that might
contain that address. If the processor finds that the memory
location is in the cache, a cache hit has occurred. However,
if the processor does not find the memory location in the
cache, a cache miss has occurred. In the case of:

1) A cache hit, the processor immediately reads or writes
the data in the cache line

2) A cache miss, the cache allocates a new entry, and copies
in data from main memory; then, the request is fulfilled
from the contents of the cache.
Hit ratio = Total number of Hit Counts / Total number of
Reference Counts
To represent it as a percentage:
Hit % = Hit ratio * 100 .[11]

2. Literature Survey

1) Optimal replacement
The Optimal page replacement algorithm is easy to describe.
When memory is full, you always evict a page that will be
unreferenced for the longest time [2]. This scheme, of course,
is possible to implement only in the second identical run, by
recording page usage on the first run. But generally the
operating system does not know which pages will be used,
especially in applications receiving external input. The
content and the exact time of the input may greatly change
the order and timing in which the pages are accessed. But
nevertheless it gives us a reference point for comparing
practical page replacement algorithms. This algorithm is
often called OPT or MIN.

Using the formal model specified earlier, the optimal page
replacement algorithm can be defined as

 (S, t), if r t+1 ∈ S ∪ {∅},
g(S, t, rt+1) =
 (S ∪ {rt+1} \ {y}, t + 1), if rt+1∉ S,
where y has the longest time to the next reference for all
pages in S. The page replacement decision depends only on
the time of reference and the control state is fully described
as t. In this algorithm and following algorithms, the size of S
is m pages [10].

2) Random replacement
Probably the simplest page replacement algorithm is the
replacement of a random page. If a frequently used page is

Paper ID: ART20163405 578

file:///D:/IJSR%20Website/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 12, December 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

evicted, the performance may suffer. For example, some
page, that contains program initialization code which may
never be needed again during the program execution, could
be evicted instead. So there are performance benefits
available with choosing the right page [2].

Using the formal model specified earlier, the random page
replacement algorithm can be defined as

 (S, q0), if r t+1∈ S ∪ {∅},
g(S, q0, rt+1) =

 (S ∪ {rt+1} \ {y}, q0), if rt+1∉ S,
where y is selected randomly from all pages in S. The
algorithm has only one control state as the replacement
decision is done identically every time [10].

3) Not Recently Used (NRU)
In the NRU algorithm [3], pages in main memory are
classified based on usage during the last clock tick (See
figure 1).

Figure 1: In NRU, the page to be evicted is selected from
lowest class that contains pages

Class 0 contains pages that are not referenced nor modified,
Class 1 pages that are not referenced but modified, Class 2
pages that are referenced but not modified, and Class 3
contains pages that are both referenced and modified. When
a page must be evicted, NRU evicts a random page from the
lowest class that contains pages.

Using the formal model specified earlier, NRU page
replacement can be defined as

 (S, qt+1), if r t+1∈ S ∪ {∅},
g(S, qt, rt+1) =

 (S ∪ {rt+1} \ {y}, qt + 1), if rt+1∉S,
where y is a random page from the lowest class that has
pages. The control state is defined as collection of classes qt
= {C0t, C1t, C2t, C3t}. So if C0 t = Ø and C1t ≠Ø page y Є
C1t and qt+1 = {C0t+1, C1t+1, C2t, C3t}, where C0t+1 = {rt+1}
and C1t+1 = C1t U r t+1 {y}.

NRU is relatively simple to understand and implement.
Implementation has a relatively low overhead, although the
reference bit needs to be cleared after every clock tick.
Performance is significantly better compared to pure random
selection in general usage [10].

4) First-In, First-Out (FIFO)
The simple First-In, First-Out (FIFO) algorithm [3] is also
applicable to page replacement. All pages in main memory
are kept in a list where the newest page is in head and the
oldest in tail. When a page needs to be evicted, the oldest
page is selected (page Z in figure 2), and the new page is
inserted to head of the list (page A in figure 2). Using the
formal model specified earlier, FIFO page replacement can
be defined as The control state is defined as qt = (y1, y2,...,
ym).

Figure 2: FIFO
Implementation of FIFO is very simple and it has a low
overhead, but it is not very efficient. FIFO does not take
advantage of page access patterns or frequency. Most
applications do not use memory, and subsequently the pages
that hold it, uniformly, causing heavily used pages to be
swapped out more often than necessary [10].

5) Least Recently Used (LRU)
The Least Recently Used (LRU) [3] algorithm is based on
generally noted memory usage patterns of many programs.
A page that is just used will probably be used again very
soon, and a page that has not been used for a long time, will
probably remain unused. LRU can be implemented by
keeping a sorted list of all pages in memory. The list is
sorted by time when the page was last used. This list is also
called LRU stack [4]. In practice this means that on every
clock tick the position of the pages, used during that tick,
must be updated. As a consequence, the implementation is
very expensive, and not practical in its pure form. Updating
on every clock tick is also an approximation, as it does not
differentiate between two pages that were referenced to
during the same clock tick [3].

Using the formal model specified earlier, LRU page
replacement can be defined as

 (S, qt+1), if r t+1 ∈ S ∪ {∅},
g(S, qt, rt+1) =

 (S ∪ {rt+1} \ {ym}, qt + 1), if rt+1 ∉ S,
where ym is least recently used page in S. Control state is
defined as

qt = (y1, y2, y3..., ym),
where resident pages are ordered by their most recent
reference, y1 being the most recently referenced and ym the
least recently referenced [10].

6) Second Change and CLOCK
The second change [3] algorithm makes slight modification
to FIFO algorithm. Instead of swapping out the last page, the
referenced bit is checked. If the bit is set, the page is then
moved to the head of the list as if it had just arrived and the

Paper ID: ART20163405 579

file:///D:/IJSR%20Website/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 12, December 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

search continues (See figure 3). If all pages are referenced
then the oldest page is evicted like in FIFO.

Figure 3: Second Change

The CLOCK algorithm deserves a note as an
implementation detail. CLOCK implements the second
change so that pages are kept in a circular list with a pointer
to the oldest page. When evicting, only the pointer needs to
be updated and there is no need to move pages around (See
figure 4). As mentioned earlier, CLOCK and its variants
have been dominant in general purpose operating systems
for a long time [5]. Using the formal model specified earlier,
the second change algorithm can be defined as

 (S, qt+1), if r t+1 ∈ S ∪ {∅},
g(S, q, rt+1) =

 (S ∪ {rt+1} \ {y}, qt + 1), if rt+1 ∉ S,
where yj is the first of the maintained circular FIFO list,
which does not have the referenced bit set. The control state
is defined as a circular FIFO list qt = (y1, y2, ..., yi..., ym),
where yi is ith most recently referenced page and pages
processed before the evicted page yj are placed to the head
of the list. Second change algorithm tackles the basic
problem of FIFO by literally giving the page a second
change before swapping it out. It can also be though as a
one-bit approximation of LRU. The second change removes
the problem of keeping LRU list updated, but it also shares
the rest of the problems of LRU [5], [6], [10].

Figure 4: CLOCK in Operation

7) Not Frequently Used (NFU)
Not Frequently Used (NFU) [3] is another approximation of
LRU. In NFU, every page has an associated usage counter
which is incremented on every clock tick the page is used.
When a page needs to be evicted, the page with the lowest
counter value is selected. The downside of this approach is

that once some process uses some pages heavily, they tend
to stay there for a while, even if they are not actively used
anymore. This program model of doing computation in
distinct phases is very common. Also programs, that have
just been started, do not get much space in the main memory
as the counters start from zero.

Using the formal model specified earlier, NFU algorithm
can be defined as

 (S, qt+1), if r t+1 ∈ S ∪ {∅},
g(S, qt, rt+1) =

 (S ∪ {rt+1} \ {ym}, qt + 1), if rt+1∉ S,
where ym is the least frequently used page in S. Control state
is defined as

qt = ((y1, c1), (y2, c2), (y3, c3)..., (ym, cm)),

where y1 are resident pages ordered by the usage counters, ci,
and y1 being the most frequently referenced page and y1 the
least frequently referenced page [10].

8) Aging
With few modifications to NFU we get an aging algorithm
that is a much better approximation of LRU. Instead of
incrementing an integer counter, a bit presentation of
unsigned integer can be used. On every clock tick the
counter value of each page is bit shifted to right, and the
referenced bit of the page is inserted at the left. While the
integer value of the counter is still used to make the
selection of the page to be evicted, the counter value
behaviour favours pages that are referenced recently, and
pages that were heavily used few seconds ago, but not
anymore, will get evicted sooner. The downside in this is
that as the counter decrements to zero quickly, and we have
no way of knowing when two pages, with zero as counter
value, have been used. The other might have just been
decremented to zero, while the other may have been unused
for a long time. In this case a random selection, with its
performance implications, is performed [3], [10].

9) Two Queue (2Q)
The two Queue, or 2Q, algorithm [7] tries to improve the
detection of real hot pages and remove cold pages faster
from the main memory. 2Q works by maintaining two
separate lists. One is maintained as an LRU list, Hot, and the
other as FIFO, F. The list F is further partitioned in to two
parts Fin and Fout. The Fin list contains pages in main
memory, while the Fout list contains only information of
pages, not the actual contents. When page is first accessed, it
is placed on the head of the Fin list. The position of the page,
in the Fin list, is left untouched while it remains there. As
new pages are used, Fin list will become full. When this
happens the last page in Fin list is reclaimed next, but the
information of the page is inserted to the head of the Fout
list (page X in figure 5). If the page, now on the Fout list, is
used, space is reclaimed for it and it is inserted to the head of
the Hot list (page Y in figure 5). When the Fin list is not full,
reclaiming is done from the tail of the Hot list. The page
reclaimed from the Hot list is not inserted to any list, as it
has not been used for a while (page Z in figure 5).
Remember, that the Hot list is maintained as an LRU list.

Paper ID: ART20163405 580

file:///D:/IJSR%20Website/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 12, December 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

The 2Q algorithm has two parameters, Kin and Kout. Kin is
the maximum size of Fin and Kout is the maximum size of
Fout. Authors note that setting these parameters is
potentially a tuning target, but recommend reasonable values
25 % and

Figure 5: Operation in 2Q

50 %, of page frame count, for Kin and Kout, respectively.
Using the formal model specified earlier, 2Q algorithm can
be defined as

 (S, qt+1), if r t+1 ∈ S ∪ {∅},
g(S, qt, rt+1) =

 (S ∪ {rt+1} \ {y}, qt + 1), if rt+1 ∉ S,
where y is the last page on either the Hot list or the Fin list.
The control state is defined as qt = {Hot, Fin, Fout}, and
each list is maintained like described earlier [10].

10) SEQ
The SEQ algorithm [8] by Gideon Glass and Pei Cao attacks
rather directly against sequential memory access, an LRU
unfriendly memory access pattern. SEQ works by detecting
sequences of page faults within single processes address
space and performs pseudo Most Recently Used (MRU)
replacement. MRU tries to approximate optimal replacement
algorithm. When no appropriate sequences are detected,
SEQ falls back to LRU replacement. A sequence is defined
by four values: PID, low, high and dir. High and low are
pages with highest and lowest virtual addresses, respectively.
PID identifies the process and dir identifies which direction
the sequence is. When a page fault occurs, SEQ checks if the
faulted page is adjacent to a sequence, with appropriate
direction, belonging to the process. If so, the page is
catenated to that sequence. If the extended sequence
overlaps an existing sequence, the overlapped sequence is
deleted. If the faulted page is in the middle of a sequence,
the sequence is broken into two sequences. One sequence
includes pages from the low of the sequence to page before
faulted page, if direction is up, and from the page next to the
faulted page, when the direction is down. The other
sequence consists only of the faulted page without direction.
Finally, if none of the above apply, the faulted page forms a
directionless sequence by itself.

Figure 6: Sequence Detection in SEQ.

A sequence detection is shown in figure 6. The first three
faulted pages are detected as a sequence, where 1 is low, 3 is
high and the direction is up. The fourth page faulted is a
directionless sequence. SEQ uses the detected sequences to
find pages suitable for eviction. First, SEQ

Figure 7: SEQ: Selecting a page to evict

chooses a sequence, among sequences longer than L pages,
that has most recent time of the Nth most recent fault in the
sequence. For example, if L is 3, N is 2 and there are two
sequences presented in figure 7, sequence A is selected,
because the second page of the sequence has timestamp 220
and the second page of sequence A has 200. From the
selected sequence, SEQ evicts the first resident page that is
at least M pages from the head of the sequence. The head of
a sequence is the direction of the sequence, usually the most
recent page faulted to the sequence. If M is 2, the third page
from the head of sequence A is evicted (the slightly darker
page in figure 7), in previous example, because the second
page is already swapped out. If no suitable sequences are
found, SEQ performs LRU replacement. Authors of the
algorithm suggest that appropriate values for L, N and M are
20, 5 and 20, respectively [8].
Using the formal model specified earlier, SEQ algorithm can
be defined as

 (S, qt+1), if r t+1 ∈ S ∪ {∅},
g(S, qt, rt+1) =

 (S ∪ {rt+1} \ {y}, qt + 1), if rt+1∉ S,
where the state q can be defined as collection of sequences
and an LRU list for fall handling, {lru, seq1, seq2, ...}. The
page y is selected as described above [10].

11) Adaptive Replacement Cache
The Adaptive Replacement Cache (ARC) [4] algorithm,
designed by Nimrod Megiddo and Dharmendra S. Modha,
provides an improvement over LRU based algorithms

Paper ID: ART20163405 581

file:///D:/IJSR%20Website/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 12, December 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 8: ARC: Lists (i.e. the cache directory)

by taking both recency and frequency into account. This is
accomplished by maintaining two lists, L1 and L2 and
remembering the history of the pages. The two lists together
are called the cache directory. The list L1 is used to capture
the recency and the list L2 to capture the frequency. Both L1
and L2 are kept at roughly the size of the number of page
frames in the main memory (=c), so the history of at most c
pages, not in the main memory, is remembered. The lists L1
and L2 are partitioned into two lists, T1, B1, and T2, B2,
respectively (See figure 8). T1 contains in-cache pages that
have been accessed only once, and T2 pages that have been
accessed more than once, while on lists. Consistently, list B1
stores the history of pages evicted from the list T1, and B2
stores the history of pages evicted from the list T2. The
algorithm has one integer parameter, p, which is the target
size for T1. As the size of the main memory is c, the target
size of the list T2 is implicitly defined as c - p. This
parameter p is the balance between recently used and
frequently used pages. It is desirable for the algorithm to
perform well under various, changing workloads and
therefore ARC includes automatic adaptation of the balance
between the recency and the frequency by varying the
parameter p. The eviction policy in ARC is simple. If |T1| >
p, the least recently used page in T1 is evicted, and if |T1| < p,
the least recently used page in T2 is evicted. The eviction of
a page, when |T1|= p, is little more complex and, as the
authors note, somewhat arbitrary. This situation is divided
into three cases and it uses information of the page that
caused the eviction. If the page is in B1 or not found in B1 U
B2, the least recently used page in T2 is evicted. If the page is
in B2, the least recently used page in T1 is evicted. The
placement policy is even simpler. If the page is found in the
lists, it is placed to head of list T2, otherwise it is placed to
the head of the list T1. When swapping in a new page (i.e.
not in the lists), some history page needs to be removed. If |
T1 U B1 | = c and B1 is not empty, the least recently used
page in B1 is removed and if B1 is empty, the least recently
used page in T1 is swapped out and removed from the list. If
|T1 U B1 | < c and the history is full (i.e.| T1 |+ | B1 | + | T2 | +
|B2 | = 2c), the least recently used page in B2 is removed. The
T1 target size parameter, p, is continuously adapted to better
serve the current workload. The basic idea of the adaption is
to favour either recently used pages or frequently used pages.
Adaptation is automatic and the direction is based on the
cache hits to lists B1 and B2, while the amount of adaptation
is based on the relative size of lists B1 and B2. If the
requested page is found in B1, the parameter p is increased.
Likewise, if the requested page is found in B2, the parameter
p is decreased. The amount of increase is 1.if |B1|≥|B2|, and
|B2|/|B1| otherwise. Similarly, the amount of decrease is 1, if
|B2|≥|B1|, and |B1|/|B2|.

Using the formal model specified earlier, ARC algorithm
can be defined as otherwise. Natural y, p is limited to the
range [0 - c]. Increasing p means that more main memory is
reserved for recently used pages, thus favouring them, while
decreasing p favours frequently used pages.

 (S, qt+1), if r t+1 ∈ S ∪ {∅},
g(S, qt, rt+1) =

 (S ∪ {rt+1} \ {y}, qt + 1), if rt+1∉S,
where y is the least recently used page of the list T1 or the
list T2. The state q can be defined simply as set of four lists
and the target size parameter {T1, B1, T2, B2, p} which are all
maintained as described before [10].

12) CLOCK with Adaptive Replacement
CLOCK with Adaptive Replacement (CAR) [6] algorithm,
and its variation CAR with Temporal filtering (CART) [6],
As in ARC, cache directory of 2c pages is kept, when the
main memory can hold c pages. The directory is also
partitioned to two lists L1 and L2, which are further
partitioned to T1 and B1, and T2 and B2, respectively. The
lists are maintained much in the same fashion as in ARC, but
there is one big difference to ARC. The strict LRU ordering
of pages in T1 and T2 is changed to a second change (or
more precisely CLOCK, see figure 9). This gives the
advantage of requiring only the referenced bit to be set on a
page access, which is already handled by MMU, and thus
action is only needed on page fault.

On page fault, the list T1 is scanned until a page ꞌwith the
referenced bit unset is found. Let T ꞌ1 be the pages that the
scan passed. Now, the eviction policy of CAR is as follows.
If |T1\ T ꞌ1| ≥ p, a page from T1 is evicted. Otherwise, a page
from Tꞌ1 U T2 is evicted. The placement policy is exactly as
in ARC; if the page is not found in the history (i.e. B1 U B2)
it is placed to T1, otherwise it is placed to T2. The history is
managed by removing a page from B1, if | T1 U B1| = c, and
from B2 otherwise. CAR is rather straightforward adaption
of ARC for a high throughput environment, as it removes
the overhead of maintaining strict LRU lists. The formal
model for CAR is very similar to ARC and can be defined as

 (S, qt+1), if r t+1 ∈ S ∪ {∅},
g(S, qt, rt+1) =

 (S ∪ {rt+1} \ {y}, qt + 1), if rt+1∉S,

where y is the least recently used page of the list T1 or the
list T2. The state q can be defined simply as a set of four lists
and the target size parameter {T1, B1, T2, B2, p} which are all
maintained as described above [10].

13) CART
CAR with Temporal filtering (CART) [6] is a variation of
CAR. To CAR, CART adds a filter to better handle
correlated accesses, which are typical in virtual memory. In
CAR, a page is moved from T1 to T2 if it has been used
while on T1. CART changes this by requiring, that either
|T1|≥ min(p + 1, |B1|) or the page must first enter B1, before
it can be put to T2. This means, that a frequently used page
will stay on the ”recently used” list, if it is used often
enough. This prevents pages with few correlated accesses to
enter T2, where it would possibly be much longer than
necessary (for example, a scan that uses each page more
than once). Another major difference is, that a page from T2

Paper ID: ART20163405 582

file:///D:/IJSR%20Website/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 12, December 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

is moved back to T1, if it has the referenced bit set. These
combined mean that the list T1 acts as a temporal locality
window. CART implements filtering by marking each page
in the cache directory as either S, for short-term utility, or L,
for long-term utility (See figure 10). Every page in B1 is
marked as S and every page in T2 U B2 is marked as L. Pages
in T1 can be marked as S or L. When a page enters the cache
directory for the first time, it is marked as S. The page stays
in T1 as long as it has the referenced bit set when processed.
While on T1, the page is changed from S to L if |T1 | ≥ min(p
+ 1, |B1 |) . A page marked as L is moved to T2 if it has the
referenced bit unset when processed. Pages in T2 are moved
to T1, if they have the referenced bit set. If the page is found
in B1 U B2, it is marked as L and placed to T1. Naturally,
every time a page is processed, the referenced bit is unset.
The history page from B1 or B2 is removed when |B1| + |B2|
= c + 1. If |B1| >

Figure 10: CART style clocks

max(0, q) or B2 is empty, the least recently used page from
B1 is removed. Otherwise, the least recently used page from
B2 is removed. The adaption in CART is done by
maintaining a target size p for T1, and additionally a target
size q for B1. Also the number of pages marked as S and as L
are maintained by nS and nL, respectively. Like in CAR and
ARC, p is increased when the requested page is found in B1
and decreased when it is found in B2. The amount of
increase is nS/|B1|, if nS > |B1|, and 1 otherwise. Similarly,
the amount of decrease is nL/|B2|, if nL > |B2|, and i
otherwise. Again, the value of p is limited to the range [0 -
c]. Target size q for the list B1 is maintained as follows. If
the requested page is found in B2 and |T2| + |B2| + |T1| - nS ≥
c, the value of q is set as q = min(q +1, 2c - |T1|). When
moving a page from T1 to T2, the value of of q is set as q =
max(q - 1, c - |T1|). The formal model for CART is very
similar to ARC and can be defined as

 (S, qt+1), if r t+1 ∈ S ∪ {∅},
g(S, qt, rt+1) =

 (S ∪ {rt+1} \ {y}, qt + 1), if rt+1 ∉ S,
where y is the least recently used page of list T1 or list T2.
The state q can be defined simply as a set of four lists and
the target size parameters {T1, B1, T2, B2, p} which are all
maintained as described above [10].

14) Token-ordered LRU
Song Jiang and Xiaodong Zhang [9] noticed one significant
problem in the global LRU replacement policy. A process
may not be using pages belonging to its working set just
because it is page faulting. A single page fault may cause

one IO operation for reading a page from the secondary
memory and another for writing a dirty page to it. This can
lead to a significant delay in the execution of the process and
to marking real working set pages of the process as
candidates for eviction. Situation gets worse, if these pages
are then actually evicted, as the process is effectively
causing its own memory to be evicted. These working set
pages, that are marked as candidates because the process is
page faulting, are called false LRU pages. Eviction of these
false LRU pages can cause serious trashing in the system.
Token-ordered LRU [11] uses a system wide token to
prevent false LRU pages from being evicted. When no main
memory is available and a process tries to allocate more
memory, the process grabs a token before pages for eviction
are searched. Now, that candidates for eviction are searched,
the pages, belonging to the process holding the token, are
excluded. The pages of the token holder are strongly
protected from eviction, and thus allows it to be executed
with working set in main memory. This guarantees that at
least one process continues to execute efficiently and
prevents trashing in momentarily memory demand peaks,
which are typical when, for example, system maintenance
operations are performed. The token is always first taken by
the process that caused the page fault. As the execution
continues, the process holding the token is monitored and
other processes can compete for the token. If no pages from
any other process can be evicted, pages from the process
holding the token are evicted and the process may lose the
token. Also, if the process holds the token for too long, it is
released. Overall, the target is to give the token to a short
lived process or to a process that holds lots of resources in
the hope that it will finish execution and release all the
resources it holds. Token-ordered LRU is not actually an
algorithm itself, but an addition to LRU based algorithms to
prevent trashing caused by program interaction.
Implementation of token-ordered LRU was officially
adopted in the Linux kernel 2.6.10 [10].

Figure 11: CLOCK-Pro style clock (The graphical style
used in this thesis is adapted from [5])

15) CLOCK-Pro
CLOCK-Pro replacement algorithm [5] attacks weaknesses
of LRU by changing the criteria of selecting pages for
eviction, while maintaining the simple single circular list
approach of CLOCK algorithm. Instead of using recency as
the main criteria, as LRU does, CLOCK-Pro uses reuse
distance. As discussed earlier, reuse distance is defined as
the number of distinct page accesses between current access
and previous access of a page. CLOCK-Pro was inspired by

Paper ID: ART20163405 583

file:///D:/IJSR%20Website/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 12, December 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

LIRS [10] I/O buffer cache replacement algorithm. Using
the same strategy as other algorithms, such as 2Q, ARC,
CAR and CART, CLOCK-Pro keeps information of
swapped out pages for some time. It uses that information to
detect the reuse distance of the swapped out pages. However,
instead of maintaining separate lists of resident and non-
resident pages, like 2Q does, CLOCK-Pro keeps all pages in
the same clock. CLOCK-Pro keeps track of all pages in the
main memory and the same amount of pages that are
swapped out. The resident pages are divided to two types,
hot pages and cold pages. The number of hot pages is mh
and the number of resident cold pages is mc. The size of the
total main memory, in pages, is m, which is equal to mh +
mc. Additionally, information of m non-resident pages is
kept for the reuse detection. Instead of one clock hand,
CLOCK Pro has three hands (figure 11): hot, cold and test.

Figure 12: CLOCK-Pro page fault handling

CLOCK-Pro can be made adaptive by dynamically adjusting
the balance of mc and mh. Adaption is based on current
reuse distance distribution. When a cold page, whether
resident or not, is accessed in its test period, the value of mc
is incremented by one. When a test period of a cold page,
again whether resident or not, is terminated, the value of mc
is decremented by one.
 Using the formal model specified earlier, CLOCK-Pro
algorithm can be defined As [10]:

 (S, qt+1), if r t+1∈ S ∪ {∅},
g(S, qt, rt+1) =

 (S ∪{rt+1} \ {y}, qt + 1), if rt+1 ∉S,

3. Conclusions

The Detail study of 15 Page replacement algorithms is been
done in this paper. The growth of replacement algorithms
shows the analyses and proof of better performance has
moved from mathematical analysis to testing against real
world program traces. This inclination shows how difficult it
is to mathematically model the memory behaviour of
programs. An important factor is also the large amount and
easy convenience of important programs. The other clear
trend is the awareness of the need for workload adaption.
The simple traces used in this thesis support the inferences
of the authors. Page replacement plays only a small part in
overall performance of applications, but studies, have shown
that the assistances are real [11].

References

[1] Development of a Virtual Memory Simulator to
Analyze the Goodness of Page Replacement Algorithms
Fadi N. Sibai, Maria Ma, David A. Lill

[2] L. A. Belady, A study of replacement algorithms for a
virtual-storage computer, IBM Systems Journal,
Volume 5, Issue 2, pp. 78–101 (1966).

[3] Andrew S. Tanenbaum and Albert S. Woodhull,
Operating Systems: Design and Implementation, Third
Edition, Prentice Hall, 2006.

[4] Nimrod Megiddo and Dharmendra S. Modha ARC: A
Self-tuning, Low Overhead Replacement Cache
USENIX File and Storage Technologies Conference
(FAST), San Francisco, CA, 2003

[5] Song Jiang, Feng Chen and Xiaodong Zhang, CLOCK-
Pro: An Effective Improvement of the CLOCK
Replacement, USENIX Annual Technical Conference,
2005.

[6] Sorav Bansal and Dharmendra S. Modha CAR: Clock
with Adaptive Replacement FAST’04 - 3rd USENIX
Conference on File and Storage Technologies, 2004

[7] Theodore Johnson and Dennis Shasha. 2q: a low
overhead high performance buffer management
replacement algorithm In Proceedings of the Twentieth
International Conference on very Large Databases, pp.
439-450, Santiago, Chile, 1994.

[8] G. Glass and P. Cao, Adaptive Page Replacement Based
on Memory Reference Behavior, Proceedings of 1997
ACM SIG- METRICS Conference, May 1997, pp. 115-
126.

[9] Song Jiang and Xiaodong Zhang, Token-ordered LRU:
an effective page replacement policy and its
implementation in Linux systems, Performance
Evaluation 60 5–29, 2005.

[10] Heikki Paajanen, ‘Page Replacement In Operating
System Memory Management’, Master’s Thesis In

Information Technology October 23, 2007
[11] M.Saktheeswari, K.Sridharan, ‘A STUDY ON PAGE

REPLACEMENT ALGORITHMS’ Sri Vidya Mandir

Arts & Science College Katteri, Uthangarai,
International Journal of Technology and Engineering
System.

Paper ID: ART20163405 584

file:///D:/IJSR%20Website/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

