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Abstract: Page replacement algorithms were a sincere topic of research and debate in the 1960s and 1970s. In a computer operating 
system that uses paging for virtual memory management, page replacement algorithms resolve which memory pages to page out (swap
out, write to disk) when a page of memory needs to be allocated. Paging occurs when a page fault occurs and a free page cannot be used 
to gratify the allocation, either because there are none, or because the number of free pages i lower than some threshold. The page 
replacing problem is a typical online problem from the competitive analysis view in the intelligence that the optimal deterministic 
algorithm is known [11]. This paper is analysis on various page replacement algorithms like Optimal replacement, Random replacement, 
Not Recently Used (NRU), First-In, First-Out (FIFO), Least Recently Used (LRU), Second Change and CLOCK, Not Frequently Used 
(NFU), and some approaches like Aging, Two Queue (2Q), SEQ, Adaptive Replacement Cache (ARC), CLOCK with Adaptive 
Replacement (CAR), CAR with Temporal filtering (CART),Token-ordered LRU, CLOCK-Pro. 
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1. Introduction  

Page replacement is an important component of a modern 
operating system. When a page containing a desired datum 
or instruction is searched in translation look aside buffers or
page tables and found missing from main memory, a page 
fault is said to occur. As the size of main memory is limited 
and is much smaller than the size of permanent storage, the 
role of page replacement is to identify the best page to evict 
from main memory as a result of a page fault and replace it
by the a new page from disk that contains the requested 
datum or instruction. The problem is very similar to the 
block replacement in cache memories except that the page 
replacement is more critical as page transfers from disk to
memory are orders of magnitudes slower than block 
transfers from main memory to the cache memory.[1] Many 
page replacement algorithms are used. Some of them have 
taken here for our comparison study. They are First-In-First-
Out (FIFO), Least Recently Used (LRU), Least Recently 
Used with K references (LRU-K), Random, Clock with 
Adaptive Replacement (CAR), Adaptive Replacement 
Cache (ARC) and at last the most efficient rather impractical 
Optimal algorithm. Good replacement can reduce the page 
fault cost resulting in higher performance, since the more 
page faults the operating system encounters, the more 
resources are wasted on paging in/out instead of doing 
useful work, resulting ultimately in serious thrashing 
problems. In simple words we can say that-When the 
processor need to execute a particular page and main 
memory does not contain that page, this situation is known 
as PAGE FAULT. As each and every process has its own 
virtual address space, the operating system must keep track 
of all pages and the location of each page used by each 
process. When the processor needs to read or write a 
location in main memory, it first checks for a corresponding 
entry in the cache. The cache checks for the contents of the 
requested memory location in any cache lines that might 
contain that address. If the processor finds that the memory 
location is in the cache, a cache hit has occurred. However, 
if the processor does not find the memory location in the 
cache, a cache miss has occurred. In the case of: 

1) A cache hit, the processor immediately reads or writes 
the data in the cache line 

2) A cache miss, the cache allocates a new entry, and copies 
in data from main memory; then, the request is fulfilled 
from the contents of the cache. 
Hit ratio = Total number of Hit Counts / Total number of
Reference Counts 
To represent it as a percentage: 
Hit % = Hit ratio * 100 .[11] 

2. Literature Survey 

1) Optimal replacement 
The Optimal page replacement algorithm is easy to describe. 
When memory is full, you always evict a page that will be
unreferenced for the longest time [2]. This scheme, of course, 
is possible to implement only in the second identical run, by
recording page usage on the first run. But generally the 
operating system does not know which pages will be used, 
especially in applications receiving external input. The 
content and the exact time of the input may greatly change 
the order and timing in which the pages are accessed. But 
nevertheless it gives us a reference point for comparing 
practical page replacement algorithms. This algorithm is
often called OPT or MIN. 

Using the formal model specified earlier, the optimal page 
replacement algorithm can be defined as

          (S, t),                 if r t+1 ∈ S ∪ {∅}, 
g(S, t, rt+1) =   
                            (S ∪ {rt+1} \ {y}, t + 1),          if rt+1∉ S,
where y has the longest time to the next reference for all 
pages in S. The page replacement decision depends only on 
the time of reference and the control state is fully described 
as t. In this algorithm and following algorithms, the size of S 
is m pages [10]. 

2) Random replacement 
Probably the simplest page replacement algorithm is the 
replacement of a random page. If a frequently used page is
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evicted, the performance may suffer. For example, some 
page, that contains program initialization code which may 
never be needed again during the program execution, could 
be evicted instead. So there are performance benefits 
available with choosing the right page [2].  

Using the formal model specified earlier, the random page 
replacement algorithm can be defined as

          (S, q0),            if r t+1∈ S ∪ {∅}, 
g(S, q0, rt+1) =  

           (S ∪ {rt+1} \ {y}, q0),                       if rt+1∉ S,
where y is selected randomly from all pages in S. The 
algorithm has only one control state as the replacement 
decision is done identically every time [10]. 

3) Not Recently Used (NRU) 
In the NRU algorithm [3], pages in main memory are 
classified based on usage during the last clock tick (See 
figure 1).  

Figure 1: In NRU, the page to be evicted is selected from 
lowest class that contains pages 

Class 0 contains pages that are not referenced nor modified, 
Class 1 pages that are not referenced but modified, Class 2 
pages that are referenced but not modified, and Class 3 
contains pages that are both referenced and modified. When 
a page must be evicted, NRU evicts a random page from the 
lowest class that contains pages. 

Using the formal model specified earlier, NRU page 
replacement can be defined as

            (S, qt+1),            if r t+1∈ S ∪ {∅}, 
g(S, qt, rt+1) =  

            (S ∪ {rt+1} \ {y}, qt + 1),                    if rt+1∉S,
where y is a random page from the lowest class that has 
pages. The control state is defined as collection of classes qt
= {C0t, C1t, C2t, C3t}. So if C0 t = Ø and C1t ≠Ø page y Є
C1t and qt+1 = {C0t+1, C1t+1, C2t, C3t}, where C0t+1 = {rt+1} 
and C1t+1 = C1t U r t+1 {y}.

NRU is relatively simple to understand and implement. 
Implementation has a relatively low overhead, although the 
reference bit needs to be cleared after every clock tick. 
Performance is significantly better compared to pure random 
selection in general usage [10]. 

4) First-In, First-Out (FIFO) 
The simple First-In, First-Out (FIFO) algorithm [3] is also 
applicable to page replacement. All pages in main memory 
are kept in a list where the newest page is in head and the 
oldest in tail. When a page needs to be evicted, the oldest 
page is selected (page Z in figure 2), and the new page is
inserted to head of the list (page A in figure 2). Using the 
formal model specified earlier, FIFO page replacement can 
be defined as The control state is defined as qt = (y1, y2,..., 
ym).

Figure 2: FIFO 
Implementation of FIFO is very simple and it has a low 
overhead, but it is not very efficient. FIFO does not take 
advantage of page access patterns or frequency. Most 
applications do not use memory, and subsequently the pages 
that hold it, uniformly, causing heavily used pages to be
swapped out more often than necessary [10]. 

5) Least Recently Used (LRU) 
The Least Recently Used (LRU) [3] algorithm is based on
generally noted memory usage patterns of many programs. 
A page that is just used will probably be used again very 
soon, and a page that has not been used for a long time, will 
probably remain unused. LRU can be implemented by
keeping a sorted list of all pages in memory. The list is
sorted by time when the page was last used. This list is also 
called LRU stack [4]. In practice this means that on every 
clock tick the position of the pages, used during that tick, 
must be updated. As a consequence, the implementation is
very expensive, and not practical in its pure form. Updating 
on every clock tick is also an approximation, as it does not 
differentiate between two pages that were referenced to 
during the same clock tick [3].  

Using the formal model specified earlier, LRU page 
replacement can be defined as

           (S, qt+1),  if r t+1 ∈ S ∪ {∅}, 
g(S, qt, rt+1) =  

            (S ∪ {rt+1} \ {ym}, qt + 1),          if rt+1 ∉ S,
where ym is least recently used page in S. Control state is
defined as

qt = (y1, y2, y3..., ym), 
where resident pages are ordered by their most recent 
reference, y1 being the most recently referenced and ym the 
least recently referenced [10]. 

6) Second Change and CLOCK 
The second change [3] algorithm makes slight modification 
to FIFO algorithm. Instead of swapping out the last page, the 
referenced bit is checked. If the bit is set, the page is then 
moved to the head of the list as if it had just arrived and the 
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search continues (See figure 3). If all pages are referenced 
then the oldest page is evicted like in FIFO. 

Figure 3: Second Change 

The CLOCK algorithm deserves a note as an
implementation detail. CLOCK implements the second 
change so that pages are kept in a circular list with a pointer 
to the oldest page. When evicting, only the pointer needs to
be updated and there is no need to move pages around (See 
figure 4). As mentioned earlier, CLOCK and its variants 
have been dominant in general purpose operating systems 
for a long time [5]. Using the formal model specified earlier, 
the second change algorithm can be defined as  

           (S, qt+1),  if r t+1 ∈ S ∪ {∅}, 
g(S, q, rt+1) =  

           (S ∪ {rt+1} \ {y}, qt + 1),           if rt+1 ∉ S,
where yj is the first of the maintained circular FIFO list, 
which does not have the referenced bit set. The control state 
is defined as a circular FIFO list qt = (y1, y2, ..., yi..., ym), 
where yi is ith most recently referenced page and pages 
processed before the evicted page yj are placed to the head 
of the list. Second change algorithm tackles the basic 
problem of FIFO by literally giving the page a second 
change before swapping it out. It can also be though as a 
one-bit approximation of LRU. The second change removes 
the problem of keeping LRU list updated, but it also shares 
the rest of the problems of LRU [5], [6], [10]. 

Figure 4: CLOCK in Operation 

7) Not Frequently Used (NFU) 
Not Frequently Used (NFU) [3] is another approximation of
LRU. In NFU, every page has an associated usage counter 
which is incremented on every clock tick the page is used. 
When a page needs to be evicted, the page with the lowest
counter value is selected. The downside of this approach is

that once some process uses some pages heavily, they tend 
to stay there for a while, even if they are not actively used 
anymore. This program model of doing computation in
distinct phases is very common. Also programs, that have 
just been started, do not get much space in the main memory 
as the counters start from zero.  

Using the formal model specified earlier, NFU algorithm 
can be defined as

           (S, qt+1),  if r t+1 ∈ S ∪ {∅}, 
g(S, qt, rt+1) =  

           (S ∪ {rt+1} \ {ym}, qt + 1),        if rt+1∉ S,
where ym is the least frequently used page in S. Control state 
is defined as

qt = ((y1, c1), (y2, c2), (y3, c3)..., (ym, cm)), 

where y1 are resident pages ordered by the usage counters, ci, 
and y1 being the most frequently referenced page and y1 the 
least frequently referenced page [10]. 

8) Aging 
With few modifications to NFU we get an aging algorithm 
that is a much better approximation of LRU. Instead of
incrementing an integer counter, a bit presentation of
unsigned integer can be used. On every clock tick the 
counter value of each page is bit shifted to right, and the 
referenced bit of the page is inserted at the left. While the 
integer value of the counter is still used to make the 
selection of the page to be evicted, the counter value 
behaviour favours pages that are referenced recently, and 
pages that were heavily used few seconds ago, but not 
anymore, will get evicted sooner. The downside in this is
that as the counter decrements to zero quickly, and we have 
no way of knowing when two pages, with zero as counter 
value, have been used. The other might have just been 
decremented to zero, while the other may have been unused 
for a long time. In this case a random selection, with its 
performance implications, is performed [3], [10]. 

9) Two Queue (2Q) 
The two Queue, or 2Q, algorithm [7] tries to improve the 
detection of real hot pages and remove cold pages faster 
from the main memory. 2Q works by maintaining two 
separate lists. One is maintained as an LRU list, Hot, and the 
other as FIFO, F. The list F is further partitioned in to two 
parts Fin and Fout. The Fin list contains pages in main 
memory, while the Fout list contains only information of
pages, not the actual contents. When page is first accessed, it
is placed on the head of the Fin list. The position of the page, 
in the Fin list, is left untouched while it remains there. As
new pages are used, Fin list will become full. When this 
happens the last page in Fin list is reclaimed next, but the 
information of the page is inserted to the head of the Fout 
list (page X in figure 5). If the page, now on the Fout list, is
used, space is reclaimed for it and it is inserted to the head of
the Hot list (page Y in figure 5). When the Fin list is not full, 
reclaiming is done from the tail of the Hot list. The page 
reclaimed from the Hot list is not inserted to any list, as it
has not been used for a while (page Z in figure 5). 
Remember, that the Hot list is maintained as an LRU list. 

Paper ID: ART20163405 580

file:///D:/IJSR%20Website/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 5 Issue 12, December 2016 
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

The 2Q algorithm has two parameters, Kin and Kout. Kin is
the maximum size of Fin and Kout is the maximum size of
Fout. Authors note that setting these parameters is
potentially a tuning target, but recommend reasonable values 
25 % and 

Figure 5: Operation in 2Q

50 %, of page frame count, for Kin and Kout, respectively. 
Using the formal model specified earlier, 2Q algorithm can 
be defined as

           (S, qt+1),  if r t+1 ∈ S ∪ {∅}, 
g(S, qt, rt+1) =  

           (S ∪ {rt+1} \ {y}, qt + 1),           if rt+1 ∉ S,
where y is the last page on either the Hot list or the Fin list. 
The control state is defined as qt = {Hot, Fin, Fout}, and
each list is maintained like described earlier [10]. 

10) SEQ 
The SEQ algorithm [8] by Gideon Glass and Pei Cao attacks 
rather directly against sequential memory access, an LRU 
unfriendly memory access pattern. SEQ works by detecting 
sequences of page faults within single processes address 
space and performs pseudo Most Recently Used (MRU) 
replacement. MRU tries to approximate optimal replacement 
algorithm. When no appropriate sequences are detected, 
SEQ falls back to LRU replacement. A sequence is defined 
by four values: PID, low, high and dir. High and low are 
pages with highest and lowest virtual addresses, respectively. 
PID identifies the process and dir identifies which direction 
the sequence is. When a page fault occurs, SEQ checks if the 
faulted page is adjacent to a sequence, with appropriate 
direction, belonging to the process. If so, the page is
catenated to that sequence. If the extended sequence 
overlaps an existing sequence, the overlapped sequence is
deleted. If the faulted page is in the middle of a sequence, 
the sequence is broken into two sequences. One sequence 
includes pages from the low of the sequence to page before 
faulted page, if direction is up, and from the page next to the 
faulted page, when the direction is down. The other 
sequence consists only of the faulted page without direction. 
Finally, if none of the above apply, the faulted page forms a 
directionless sequence by itself. 

Figure 6: Sequence Detection in SEQ. 

A sequence detection is shown in figure 6. The first three 
faulted pages are detected as a sequence, where 1 is low, 3 is
high and the direction is up. The fourth page faulted is a 
directionless sequence. SEQ uses the detected sequences to
find pages suitable for eviction. First, SEQ 

Figure 7: SEQ: Selecting a page to evict 

chooses a sequence, among sequences longer than L pages, 
that has most recent time of the Nth most recent fault in the 
sequence. For example, if L is 3, N is 2 and there are two 
sequences presented in figure 7, sequence A is selected, 
because the second page of the sequence has timestamp 220
and the second page of sequence A has 200. From the 
selected sequence, SEQ evicts the first resident page that is
at least M pages from the head of the sequence. The head of
a sequence is the direction of the sequence, usually the most 
recent page faulted to the sequence. If M is 2, the third page 
from the head of sequence A is evicted (the slightly darker 
page in figure 7), in previous example, because the second 
page is already swapped out. If no suitable sequences are 
found, SEQ performs LRU replacement. Authors of the 
algorithm suggest that appropriate values for L, N and M are 
20, 5 and 20, respectively [8].  
Using the formal model specified earlier, SEQ algorithm can 
be defined as

           (S, qt+1),  if r t+1 ∈ S ∪ {∅}, 
g(S, qt, rt+1) =  

           (S ∪ {rt+1} \ {y}, qt + 1),           if rt+1∉ S,
where the state q can be defined as collection of sequences 
and an LRU list for fall handling, {lru, seq1, seq2, ...}. The 
page y is selected as described above [10]. 

11) Adaptive Replacement Cache 
The Adaptive Replacement Cache (ARC) [4] algorithm, 
designed by Nimrod Megiddo and Dharmendra S. Modha, 
provides an improvement over LRU based algorithms 
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Figure 8: ARC: Lists (i.e. the cache directory) 

by taking both recency and frequency into account. This is
accomplished by maintaining two lists, L1 and L2 and 
remembering the history of the pages. The two lists together 
are called the cache directory. The list L1 is used to capture 
the recency and the list L2 to capture the frequency. Both L1
and L2 are kept at roughly the size of the number of page 
frames in the main memory (=c), so the history of at most c 
pages, not in the main memory, is remembered. The lists L1
and L2 are partitioned into two lists, T1, B1, and T2, B2,
respectively (See figure 8). T1 contains in-cache pages that 
have been accessed only once, and T2 pages that have been 
accessed more than once, while on lists. Consistently, list B1
stores the history of pages evicted from the list T1, and B2
stores the history of pages evicted from the list T2. The 
algorithm has one integer parameter, p, which is the target 
size for T1. As the size of the main memory is c, the target 
size of the list T2 is implicitly defined as c - p. This 
parameter p is the balance between recently used and 
frequently used pages. It is desirable for the algorithm to
perform well under various, changing workloads and 
therefore ARC includes automatic adaptation of the balance 
between the recency and the frequency by varying the 
parameter p. The eviction policy in ARC is simple. If |T1| > 
p, the least recently used page in T1 is evicted, and if |T1| < p, 
the least recently used page in T2 is evicted. The eviction of
a page, when |T1|= p, is little more complex and, as the 
authors note, somewhat arbitrary. This situation is divided 
into three cases and it uses information of the page that 
caused the eviction. If the page is in B1 or not found in B1 U 
B2, the least recently used page in T2 is evicted. If the page is
in B2, the least recently used page in T1 is evicted. The 
placement policy is even simpler. If the page is found in the 
lists, it is placed to head of list T2, otherwise it is placed to
the head of the list T1. When swapping in a new page (i.e. 
not in the lists), some history page needs to be removed. If | 
T1 U B1 | = c and B1 is not empty, the least recently used 
page in B1 is removed and if B1 is empty, the least recently 
used page in T1 is swapped out and removed from the list. If
|T1 U B1 | < c and the history is full (i.e.| T1 |+ | B1 | + | T2 | + 
|B2 | = 2c), the least recently used page in B2 is removed. The 
T1 target size parameter, p, is continuously adapted to better 
serve the current workload. The basic idea of the adaption is
to favour either recently used pages or frequently used pages. 
Adaptation is automatic and the direction is based on the 
cache hits to lists B1 and B2, while the amount of adaptation 
is based on the relative size of lists B1 and B2. If the 
requested page is found in B1, the parameter p is increased.
Likewise, if the requested page is found in B2, the parameter 
p is decreased. The amount of increase is 1.if |B1|≥|B2|, and 
|B2|/|B1| otherwise. Similarly, the amount of decrease is 1, if
|B2|≥|B1|, and |B1|/|B2|.

Using the formal model specified earlier, ARC algorithm 
can be defined as otherwise. Natural y, p is limited to the 
range [0 - c]. Increasing p means that more main memory is
reserved for recently used pages, thus favouring them, while 
decreasing p favours frequently used pages. 

           (S, qt+1),  if r t+1 ∈ S ∪ {∅}, 
g(S, qt, rt+1) =  

           (S ∪ {rt+1} \ {y}, qt + 1),           if rt+1∉S,
where y is the least recently used page of the list T1 or the 
list T2. The state q can be defined simply as set of four lists 
and the target size parameter {T1, B1, T2, B2, p} which are all 
maintained as described before [10]. 

12) CLOCK with Adaptive Replacement 
CLOCK with Adaptive Replacement (CAR) [6] algorithm, 
and its variation CAR with Temporal filtering (CART) [6], 
As in ARC, cache directory of 2c pages is kept, when the 
main memory can hold c pages. The directory is also 
partitioned to two lists L1 and L2, which are further 
partitioned to T1 and B1, and T2 and B2, respectively. The 
lists are maintained much in the same fashion as in ARC, but 
there is one big difference to ARC. The strict LRU ordering 
of pages in T1 and T2 is changed to a second change (or 
more precisely CLOCK, see figure 9). This gives the 
advantage of requiring only the referenced bit to be set on a 
page access, which is already handled by MMU, and thus 
action is only needed on page fault.  

On page fault, the list T1 is scanned until a page ꞌwith the 
referenced bit unset is found. Let T ꞌ1 be the pages that the 
scan passed. Now, the eviction policy of CAR is as follows. 
If |T1\ T ꞌ1| ≥ p, a page from T1 is evicted. Otherwise, a page 
from Tꞌ1 U T2 is evicted. The placement policy is exactly as
in ARC; if the page is not found in the history (i.e. B1 U B2) 
it is placed to T1, otherwise it is placed to T2. The history is
managed by removing a page from B1, if | T1 U B1| = c, and 
from B2 otherwise. CAR is rather straightforward adaption 
of ARC for a high throughput environment, as it removes 
the overhead of maintaining strict LRU lists. The formal 
model for CAR is very similar to ARC and can be defined as

           (S, qt+1),  if r t+1 ∈ S ∪ {∅}, 
g(S, qt, rt+1) =  

           (S ∪ {rt+1} \ {y}, qt + 1),           if rt+1∉S,

where y is the least recently used page of the list T1 or the 
list T2. The state q can be defined simply as a set of four lists 
and the target size parameter {T1, B1, T2, B2, p} which are all 
maintained as described above [10]. 

13) CART
CAR with Temporal filtering (CART) [6] is a variation of
CAR. To CAR, CART adds a filter to better handle 
correlated accesses, which are typical in virtual memory. In
CAR, a page is moved from T1 to T2 if it has been used 
while on T1. CART changes this by requiring, that either 
|T1|≥ min(p + 1, |B1|) or the page must first enter B1, before 
it can be put to T2. This means, that a frequently used page 
will stay on the ”recently used” list, if it is used often 
enough. This prevents pages with few correlated accesses to
enter T2, where it would possibly be much longer than 
necessary (for example, a scan that uses each page more 
than once). Another major difference is, that a page from T2
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is moved back to T1, if it has the referenced bit set. These 
combined mean that the list T1 acts as a temporal locality 
window. CART implements filtering by marking each page 
in the cache directory as either S, for short-term utility, or L, 
for long-term utility (See figure 10). Every page in B1 is
marked as S and every page in T2 U B2 is marked as L. Pages 
in T1 can be marked as S or L. When a page enters the cache 
directory for the first time, it is marked as S. The page stays 
in T1 as long as it has the referenced bit set when processed. 
While on T1, the page is changed from S to L if |T1 | ≥ min(p 
+ 1, |B1 |) . A page marked as L is moved to T2 if it has the 
referenced bit unset when processed. Pages in T2 are moved 
to T1, if they have the referenced bit set. If the page is found 
in B1 U B2, it is marked as L and placed to T1. Naturally, 
every time a page is processed, the referenced bit is unset. 
The history page from B1 or B2 is removed when |B1| + |B2| 
= c + 1. If |B1| > 

Figure 10: CART style clocks 

max(0, q) or B2 is empty, the least recently used page from 
B1 is removed. Otherwise, the least recently used page from 
B2 is removed. The adaption in CART is done by
maintaining a target size p for T1, and additionally a target 
size q for B1. Also the number of pages marked as S and as L
are maintained by nS and nL, respectively. Like in CAR and 
ARC, p is increased when the requested page is found in B1
and decreased when it is found in B2. The amount of
increase is nS/|B1|, if nS > |B1|, and 1 otherwise. Similarly, 
the amount of decrease is nL/|B2|, if nL > |B2|, and i 
otherwise. Again, the value of p is limited to the range [0 - 
c]. Target size q for the list B1 is maintained as follows. If
the requested page is found in B2 and |T2| + |B2| + |T1| - nS ≥
c, the value of q is set as q = min(q +1, 2c - |T1|). When 
moving a page from T1 to T2, the value of of q is set as q = 
max(q - 1, c - |T1|). The formal model for CART is very 
similar to ARC and can be defined as

            (S, qt+1),  if r t+1 ∈ S ∪ {∅}, 
g(S, qt, rt+1) =  

            (S ∪ {rt+1} \ {y}, qt + 1),          if rt+1 ∉ S,
where y is the least recently used page of list T1 or list T2. 
The state q can be defined simply as a set of four lists and 
the target size parameters {T1, B1, T2, B2, p} which are all 
maintained as described above [10]. 

14) Token-ordered LRU 
Song Jiang and Xiaodong Zhang [9] noticed one significant 
problem in the global LRU replacement policy. A process 
may not be using pages belonging to its working set just 
because it is page faulting. A single page fault may cause 

one IO operation for reading a page from the secondary 
memory and another for writing a dirty page to it. This can
lead to a significant delay in the execution of the process and 
to marking real working set pages of the process as
candidates for eviction. Situation gets worse, if these pages 
are then actually evicted, as the process is effectively 
causing its own memory to be evicted. These working set 
pages, that are marked as candidates because the process is
page faulting, are called false LRU pages. Eviction of these 
false LRU pages can cause serious trashing in the system. 
Token-ordered LRU [11] uses a system wide token to
prevent false LRU pages from being evicted. When no main 
memory is available and a process tries to allocate more 
memory, the process grabs a token before pages for eviction 
are searched. Now, that candidates for eviction are searched, 
the pages, belonging to the process holding the token, are 
excluded. The pages of the token holder are strongly 
protected from eviction, and thus allows it to be executed 
with working set in main memory. This guarantees that at
least one process continues to execute efficiently and 
prevents trashing in momentarily memory demand peaks, 
which are typical when, for example, system maintenance 
operations are performed. The token is always first taken by
the process that caused the page fault. As the execution 
continues, the process holding the token is monitored and 
other processes can compete for the token. If no pages from 
any other process can be evicted, pages from the process 
holding the token are evicted and the process may lose the 
token. Also, if the process holds the token for too long, it is
released. Overall, the target is to give the token to a short 
lived process or to a process that holds lots of resources in
the hope that it will finish execution and release all the 
resources it holds. Token-ordered LRU is not actually an
algorithm itself, but an addition to LRU based algorithms to
prevent trashing caused by program interaction. 
Implementation of token-ordered LRU was officially 
adopted in the Linux kernel 2.6.10 [10]. 

Figure 11: CLOCK-Pro style clock (The graphical style 
used in this thesis is adapted from [5]) 

15) CLOCK-Pro 
CLOCK-Pro replacement algorithm [5] attacks weaknesses 
of LRU by changing the criteria of selecting pages for 
eviction, while maintaining the simple single circular list 
approach of CLOCK algorithm. Instead of using recency as
the main criteria, as LRU does, CLOCK-Pro uses reuse 
distance. As discussed earlier, reuse distance is defined as
the number of distinct page accesses between current access 
and previous access of a page. CLOCK-Pro was inspired by
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LIRS [10] I/O buffer cache replacement algorithm. Using 
the same strategy as other algorithms, such as 2Q, ARC, 
CAR and CART, CLOCK-Pro keeps information of
swapped out pages for some time. It uses that information to
detect the reuse distance of the swapped out pages. However, 
instead of maintaining separate lists of resident and non-
resident pages, like 2Q does, CLOCK-Pro keeps all pages in
the same clock. CLOCK-Pro keeps track of all pages in the 
main memory and the same amount of pages that are 
swapped out. The resident pages are divided to two types, 
hot pages and cold pages. The number of hot pages is mh
and the number of resident cold pages is mc. The size of the 
total main memory, in pages, is m, which is equal to mh + 
mc. Additionally, information of m non-resident pages is
kept for the reuse detection. Instead of one clock hand, 
CLOCK Pro has three hands (figure 11): hot, cold and test. 

Figure 12: CLOCK-Pro page fault handling 

CLOCK-Pro can be made adaptive by dynamically adjusting 
the balance of mc and mh. Adaption is based on current 
reuse distance distribution. When a cold page, whether 
resident or not, is accessed in its test period, the value of mc
is incremented by one. When a test period of a cold page, 
again whether resident or not, is terminated, the value of mc
is decremented by one. 
 Using the formal model specified earlier, CLOCK-Pro 
algorithm can be defined As [10]: 

           (S, qt+1),  if r t+1∈ S ∪ {∅}, 
g(S, qt, rt+1) =  

           (S ∪{rt+1} \ {y}, qt + 1),          if rt+1 ∉S,

3. Conclusions 

The Detail study of 15 Page replacement algorithms is been 
done in this paper. The growth of replacement algorithms 
shows the analyses and proof of better performance has 
moved from mathematical analysis to testing against real 
world program traces. This inclination shows how difficult it 
is to mathematically model the memory behaviour of 
programs. An important factor is also the large amount and 
easy convenience of important programs. The other clear 
trend is the awareness of the need for workload adaption. 
The simple traces used in this thesis support the inferences 
of the authors. Page replacement plays only a small part in 
overall performance of applications, but studies, have shown 
that the assistances are real [11].  
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