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Abstract: In this paper, we studied a solving method for minimization problem arising in bibliometric mapping of science. We proved 
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1. Introduction 

Bibliometrics is the scientific field that quantitatively 
studies all kinds of bibliographic data such as titles, 
keywords, authors, and cited references of papers and 
booklets. Bibliometric mapping of science is a quantitative 
method for visually representing scientific literatures based 
on bibliographic data[9]. 

The general aim of a bibliometric map is to provide an
overview of the structure of the scientific literatures 
belonging to a certain domain or a certain topic. 

Let n items to be mapped be 1, 2, … , n. The items may be
authors, literatures, or technical terms.  

The number of concurrence of items i and j is denoted as

ijc , )(,,1, jinji  . 

Here for any ,, ji jiij cc  and the total number of

concurrence of item i is denoted as ci= ij
j i

c


 . 

Let ijs be a similarity measure of items i  and j . 
Relatedness, cosine index, inclusion index and Jaccard 
index can be used as similarity measures [9]. 

The quantity 
c c

ij
ij

i j

c
s  is called relatedness between 

item i and j. For the definitions of other similarity measures,
see [9].
For bibliometric mapping in 2-dimensional plane, let 

1 2( , )i i ix x x be the vector that represents the 
coordinate of the ith item on the plane. 

Bibliometric mapping is to locate the items on plane so that 
more similar items may be closer geometrically one 
another but otherwise items farther one another in 2D
plane. 

The problem of bibliometric mapping can be modelled as

the following optimum problem [9]. 
2
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
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 

 



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       (1)

The solution to this problem is obtained from the solution of
the following unconditioned optimum problem: 

1min ( ,..., )nx x = 
2

, 2 mini j i j i j
i j i j

s x x x x
 

           (2) 

Let ),...,( **
1

*
nxxx  be the solution of the problem (2) and 

assume 








ji
ji xx

nnc
**2

)1(
 Then U*=cx* is the solution of

the problem (1). 

In this paper, we proposed one solving algorithm for the 
problem (2). 

Generally,  
min F(x), x X                    (3), 

gradient or subgradient descent methods are used frequently 
in solving nonlinear optimization problems. The general 
forms are as follows: 

1 ( ) ,k k k
X kx x g   α  k=0, 1, 2, …      (4) 

Here kg is gradient or subgradient of the objective 

function F(x) at the point kx , and X is the projection on
X. 
Now let objective function is consist of the sum of several 
functions. That is, 





m

i
i xfxF

1
)()(                  (5) 

In this case, the gradient of F(x) is the sum of the gradients of
all member functions )(xfi . The calculations of the 
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gradients or subgradients of F(x) are very expensive when 
m is large.  

For overcoming this difficulty, several researchers 
suggested the methods using the gradient or subgradients 
of individual member function if  instead of kg gk in
each iteration of algorithm (4) [3-8].These methods are 
called incremental gradient or incremental subgradient 
methods. 

In the paper[2] author proved the convergence of the 
incremental subgradient algorithm for minimizing the 
non-differentiable convex functions. In the paper[6] author 
proved the convergence of the incremental subgradient 
algorithm in the problem of convex programming method, 
Kiwiel[5] proved the convergence of the incremental 
proximal subgradient method in convex programming 
problems and Blatt, Hero and Gauchman analyzed the 
convergence of the method using constant step length in
unconditioned minimization problem of convex function. 
[3]. The authors of [4] suggested ε-subgradient methods 
and described unified method which analyses the 
convergence of the incremental subgradient methods. 

Summarizing the results in previous literatures, the 
convergence of incremental gradient or subgradient 
methods was proved only in convex programming 
problems.  

In this paper, we are going to suggest the incremental 
subgradient method for minimizing the weak-convex 
functions, one type of non-convex function. And then we
analyse the convergence of it.

The objective function of optimization problem (2) for 
bibliometric mapping of science has the form of sum of
several functions just like (5). 

We show the main results of the paper in Section 2.

2. Incremental Subgradient Method for 
Minimizing Weak-Convex Functions 

Definition ([10]): Suppose F(x): 1RRn  . 
The function ( )F x is called weak-convex function in

nR  if for any vector nRx  there exists a nonempty set 

G(x) of vectors xF


 satisfying the following condition; 

for any nRZ  and )(xFx


)(xG , 

( ) ( ) ( ( ), ) ( , )xF z F x F x z x r z x   


 (6), 

where 
1( , )r x y x y 

  converges to 0 uniformly under 
xy  in any closed 

bounded set. 

Any vector xF


)(xG is called subgradient of

weak-convex function F at x and ( )G x is called 
subdifferetial. Differentiable functions and convex 
functions are weak-convex functions. 

The objective function 1( ,..., )nx x of the problem (2) is
neither a convex function nor a differentiable function. But 
we can prove that it is a weak-convex function. 

Theorem 1. The function 1( ,..., )nx x is a weak-convex 

function in nR2 . 

Proof. That will be sufficient if author proves that the 
function ji xx  is a weak-convex. The function 

ji xx  is differentiable at the remaining points except for 

the points where i jx x ; so it satisfies the weak-convexity 
condition. 

In the case of ji xx  let G(x)={0} and ( , ) 0r z x  , then the 
weak- convexity condition is clearly satisfied at x .  

From now on we consider the problem (3) with the objective 
function (5), where we arising X is a convex closed set and 
each ( )if x is a weak-convex function. 

We consider the following algorithm proposed in [2]: 

km
k zx ,

1   (7a) 

   )(,)( ,1,,,1, kiikikikkixki zfggzz 

mi ,,1 

22
,1,

2
,1 )(2 ikki

T
kikki Cyzgyz αα   (7b) 

k
k xz ,0  (7c) 

Here )( ,1 kii zf  is subdifferential at the point kiz ,1 of

function if . 
Each step is a subgradient projection iteration for one 
component function if , and there is one step per 
component function. Thus, an iteration can be viewed as a 
cycle of m subiterations. If kx is the vector obtained after k 
cycles, the vector 1kx  is km

k zx ,
1   obtained after one 

further cycle. 

The data obtained by (7b) are referred to as the subiterations 
of the kth cycle. 

Assumption 1.
,,...,, 21 mCCC )()(, ,1 kii

k
ii zfxfgCg 

,...1,0,,1  kmi

Since each component if is taken as real-value and 

weak-convex over the entire space 
nR , the partial 

differential )(xfi is nonempty and compact for all x and 

i . If the set X is compact or the sequences  ,i kz are 

bounded, then Assumption 1 is satisfied because the set 
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( )x B if x  is bounded for any bounded set B. 
Assumption 2.
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1
 and iC is as the same as in assumption 1. 

Proof. For any Xy , from the property of projection, 

and weak-convexity of if of Assumption 1 and 2,  
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By adding this inequalities in relation to mi ,1 , we lets 
have, for any , 0,1,2,...,y X k  . 
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where )( ,1,1 kiiki zfg   . As showing above we used the 
facts that X is convex closed set and the inequality  

( ) ( ) , , n
X Xa b a b a b R      holds.  

Theorem 2. Let assumption 1 and 2 be satisfied and 
kk  ,αα . 

Suppose that *x is the solution of the problem (3), (5), then 

2
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1

2
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α . 

Proof. Suppose that the result does not hold. Then there 
exists an ε>0 so that  

2 *
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2 2
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Since *x is the global minimum of this problem  
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If k is large enough, then right side of this inequality 
becomes negative. This is contradiction.  
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The following theorem shows the result in the case that 
step length converges to 0.

Theorem 3. Let the assumption 1 and 2 be satisfied . If for 
step lengths kα  the condition 

 



 0

,0lim,0
k

kkkk ααα

hold, then  
*

* 1( )liminf ( )
2

k

k

c xf x f


   . 

3. Conclusions 

We have analyzed convergence properties of an 
incremental subgradient method for optimization problems 
with weak convex objective functions. The methods that 
employ the constant and the dynamic step size rules are 
analyzed. 

Several incremental gradient, subgradient methods and 
incremental proximal methods [2] for optimization 
problems with weak convex objective functions remains 
open. 
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