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Abstract: The common bean (Phaseolus vulgaris L.) a warm season legume, is considered the most important food legume for humans 
globally because it provides 30% of the protein and calories of diets in many countries. However, drought is considered a major issue 
affecting the world’s production of P. vulgaris. Therefore, there has been a growing demand recently for improving common beans so 
that they become more tolerant to drought stress. Drought-adaptation mechanisms in common beans include deep root systems, 
increased water use efficiency (WUE), ratio between photosynthesis and transpiration, and transfer of photosynthate to seed via efficient 

mobilisation. WUE contributes to increasing yield under drought, and is associated with physiological processes of the plant such as leaf 
gas exchange, stomatal conductance, osmotic adjustment and root characteristics. Recently, breeding crops to make more efficient use 
of water is one of the most important strategies that has become an urgent necessity. Phaseolus beans are being proposed as a potential 
alternative legume crop for mild winter, rain-fed cropping seasons and the current research aims to assess their water use efficiency and 
drought tolerance under cool temperatures in comparison to already adapted cool-seasons legumes such as lupin.
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1. Introduction  

The common bean (Phaseolus vulgaris L.) (2n = 2x = 22) is 
considered the most important food legume for humans 
globally (Guzmán-Maldonado et al. 2000, Schwartz and 
Corrales 1989, van Schoonhaven and Voysest 1991). It 
provides more than 30% of the protein (García-Hernández et 
al. 2010, Shellie-Dessert and Bliss 1991, Vance et al. 2000) 
and 30% of the daily calories in many countries (McConnell 
et al. 2010), and is a good source of complex carbohydrates 
(Reyes-Moreno et al. 1993). Moreover, it is produced as a 
major product in world trade and is widely consumed, 
especially by the poor of Latin America and Africa (Evans 
1986, Singh 1999). It was domesticated in central and 
southern America more than 7,000 years ago (Gepts and 
Debouck 1991, Kaplan 1965, Kaplan and Kaplan 1988).  

Legumes are grown in 12–15% of the world’s arable land, 

and they constitute 27% of the production of the world’s 

staple crops (Graham and Vance 2003). The total production 
of dry beans in Australia in 2010 was 43,500 tons while 
global production was 22,923,401 tons. In addition, the total 
production of green beans in Australia in the same year was 
28,000 tons of the global production of 19,834,297 tons 
(FAOSTAT 2010). Grain legume crops in Western and 
Eastern Australia have been adopted as an important 
component of field crop rations in Australia (Brinsmead et
al. 1991, Delane et al. 1989, Hamblin 1987, Marsh et al.
2000).  

Further, legume break crops play an active role in achieving 
many positive aspects such as minimising the appearance of 
weeds, insects and diseases (Bezdicek and Granatstein 1989,
Delaneet et al. 1989, Nemecek et al. 2008, Stevenson and 
van Kessel 1996, Unkovich et al. 1997). In Western 
Australia, some concerted efforts have been made to 
increase the number of crops that can be used in rotation 

with cereals according to the type of soil and climate in the 
Western Australia Wheatbelt (Robertson et al. 2010).  

Beans are grown in many different environments (Laing et
al. 1984; Schwartz and Corrales 1989) although they are 
best adapted to tropical and subtropical climates, or growing 
in the warm seasons in temperate regions. Moreover, beans 
have slow germination and therefore growth will be slow
(Kooistra, 1971). Consequently, low temperatures can affect 
the genotypes. The minimum during germination 
temperature for the common bean is 12 °C, but there are 
some varieties that can germinate at less than 8 °C (Nleya et
al. 2005). Otherwise, Kotowski (1926) has stated that bean 
seed germination under 15 °C is poor. 
  
Drought is one of the greatest issues affecting the world’s 

production of grain crops, especially on P. vulgaris (Lizana 
et al. 2006, Singh and Terán 2002) because the bean is 
particularly sensitive to climate changes (Konsens et al.
1991, Piha and Munns 1987). It is also because about 60% 
of bean production is in regions that are suffering from water 
shortage (CIAT 1980, Grajales et al. 2008, Lizana et al.
2006). Significantly, the common bean has a low tolerance 
to drought (Souza 2003). Therefore, brief periods of water 
deficiency have negative effects on both the quality and 
yield of common beans (Haterlein 1983, Konsens et al. 
1991, Laing et al. 1984, Wallace 1980). Drought also causes 
a reduced amount of production. For example, Africa loses 
about 300,000 tones of beans annually because of drought 
(Wortmann et al. 1988). 

The development of common bean cultivars that are tolerant 
to drought is a practical and economical approach to 
reducing the negative effects of drought on crop production 
(Ramirez-Vallejo and Kelly 1998, Xiong et al. 2006). Many 
studies have reported that drought tolerance in crops is a 
complex physiological process (Araus et al. 2002, Bohnert 
et al. 1995, Bruce et al. 2002, Ludlow and Muchow 1990). 
Finally, beans have been proposed as an alternative crop for 
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mild winter growing seasons in Western Australia and 
potentially for other regions to increase food security 
(Jacobsen et al. 2012; Kharkwal and Shu 2009; van 
Schoonhaven and Voysest 1991). Water use efficiency and 
drought tolerance of beans and winter-adapted crops has not 
been compared before. 

2. Common bean 

Common bean (Phaseolus vulgaris L.) (2n= 2x= 22) is 
considered one of the most important food grains because its 
high protein (18 to 32%) and high levels of minerals, such as 
potassium, calcium and phosphorus (Ariza-Nieto et al. 2007;
Papa et al. 2006; Tajini et al. 2012). It is also an important 
source of calories (Ariza-Nieto et al. 2007, Paredes‐ Lopez 
et al. 1989, Singh and Singh 1992). It represents 50% of the 
grain legumes consumed worldwide and is the most 
important food legume (McClean et al. 2004, Ramirez-
Vallejo and Kelly 1998, Yan et al. 2004). In addition, it has 
an ability to fix atmospheric nitrogen, which is important in 
many cropping systems (van Schoonhoven and Voysest 
1991, Wakrim et al. 2005). 

Moreover, common beans are an inexpensive display of 
macronutrients and micronutrients for low-income earners 
(Broughton et al. 2003, Doria et al. 2012). Malnutrition in 
several poor countries is a serious health issue that consider 
as an important factor for diseases such as HIV-AIDS and 
tuberculosis. Common bean contains high level of zinc and 
iron, which are minimizing individuals with AIDS (McClean 
et al. 2012). Moreover, Common bean is a low fat and it is a 
good source of the important vitamins and "minerals 
soluble-iber starch, phytochemicals" (Meiners et al. 1976,
Messina 1999, Reyes-Moreno et al. 1993).

P. vulgaris has an active role in cropping system because it 
is normally self-fertilized  (Graham and Vance 2003). 
Furthermore, there is high ability to hybridized many of 
Phaseolus to common beans (Smartt 1976), although the 
hybrid seeds have an ability to survive when "embryo-
cultured on synthetic media" (Graham and Vance 2003). 
However, common bean is widespread in developing 
countries, and 60% of its production occurs under drought 
stress conditions (Graham and Ranalli 1997, Martinez et al.
2007, Munoz-Perea et al. 2006).

3. Drought tolerance of common bean under 
Cool Conditions 

Drought is a major constraint to P. vulgaris production in 
the world (Singh and Terán 2002), because the bean is 
particularly sensitive to climate changes (Konsens et al.
1991, Piha and Munns 1987). Therefore, brief periods of 
water deficiency have negative effects on both the quality 
and yield of common beans (Halterlein 1983, Konsens et al.
1991, Laing et al. 1984, Wallace 1980). However, the 
development of common bean cultivars that are more 
tolerant to drought is a practical and economical approach to 
reduce the negative effects of drought on crop production 
(Ramirez-Vallejo and Kelly 1998, Xiong et al. 2006).

Many studies reported that drought tolerance in crops is a 
complex physiological process involving (Araus et al. 2002, 
Bohnert et al. 1995, Bruce et al. 2002, Ludlow and Muchow 
1990). However, differences have been reported in water-
use efficiency among common bean cultivars (Comstock 
and Ehleringer 1993, Ehleringer 1990, Ehleringer et a1.
1991). Water use efficiency under cool temperatures has not 
been studied. There is scope to introduce beans to mild 
winter growing seasons. The current project aims to 
determine the water use efficiency of bean genotypes under 
cool temperatures relative to the cool season legume, 
Lupinus angustifolius. 

Adaptation to drought
Drought tolerance in plant aims to promote and sustain the 
production under water-limited rain-fed conditions (Ashraf 
and Harris 2005). Watts et al. (1984) explained that some 
genotypes reduce 14–26% of the canopy photosynthesis 
when exposed to drought stress in order to retain water by 
reducing leaf area rather than on the response of stomata. In 
addition, roots may increase water absorption by adjusting 
the pattern of allocation (Chaves et al. 2003).

Drought-adaptation mechanisms in common beans include, 
as a minimum, (1) a deep root system with a suitable 
architecture that increases soil moisture and has a greater 
ability to extract water from the depths of the soil; (2) 
increased WUE in the plant for photosynthesis, development 
and growth; and (3) increased transfer of photosynthate to 
seed via efficient mobilisation (Grajales et al. 2008, Rao 
2001, Sponchiado et al. 1989, White et al. 1994). According 
to Acosta-Diaz et al. (2009), loss of leaf area can be a result 
of reducing the size of younger leaves and inhibition of the 
expansion of the old leaves, which is considered from the 
mechanisms that can be adapted to drought.

Many physiological and biochemical responses such as 
‘tissue water retention, osmotic adjustment and integrity of 

membranes can be associated with the variation in seed yield 
of common beans (Costa Franca et al. 2000, Hieng et al.
2004, Lizana et al. 2006). Biochemical mechanisms 
occasionally have adverse effects under different stresses. 
Therefore, tolerance to a specific stress may contribute to 
sensitivity to other stresses (Fleury et al. 2010). For 
example, some plants use evaporative cooling through 
‘stomatal conductance’ to avoid heat stress. Consequently, 

the closing of stomata increases the ability of plants to retain 
water in drought conditions.

Demand has been growing recently for improvements to 
common beans so that they become more tolerant to drought 
stress (Lizana et al. 2006); adaptive mechanisms include 
modifications to growth habit, early flowering, root 
architecture and shoot biomass accumulation (Rosales-Serna 
et al. 2004, Terán and Singh 2002). According to Terán and 
Singh (2002), seed production is main factor used to a 
screen genotypes drought tolerance. Pimentel et al. (1999) 
have stated that there are two main mechanisms for drought 
tolerance in Phaseolus vulgaris: stomatal control (Laffray 
and Louguet 1990) and root development (Kuruvadi and 
Aguilera 1990). Generally, the progress in breeding to adapt 
crop varieties to drought stress has been successful 
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(Acevedo and Ceccarelli 1989, Blum 1996, Condon et al.
2002). 

Pareek et al. (2009) have agreed with many studies that 
explain the methods that could improve plants’ resistance to 

drought. They stated that there are four approaches to 
improving plants for drought tolerance: high root mass, 
smaller leaf area, osmotic adjustment (OA) and early-
maturing short-duration varieties of plants. In summary،

drought tolerance contributes to continue crop to produce 
under water deficiency conditions through specific 
mechanisms have a correlation with roots and 
photosynthesis. Beans respond to drought stress by leaf 
weak, stomatal closure, and shedding of leaves, flowers and 
young pods (Adams et al. 1985).

Tolerance mechanisms and selection criteria
According to van Schoonhaven and Voysest (1991), studies 
of mechanisms of drought tolerance have suggested a wide 
range of selection criteria, but not one of these has proved to 
be practical for beans. They also stated that there are many 
problems facing the studies of mechanisms. For example, 
drought causes the accumulation of the amino acid proline in 
plant tissue, so the tolerance can be examined by measuring 
proline levels (Singh 1972, Stewart 1972). However, one 
study showed that, despite the accumulation of amino acids 
caused by drought, there is no correlation with tolerance 
(Stewart and Hanson 1980).

Otherwise, there are some strategies, such as drought escape, 
that could lead plants to be more resistant to drought. 
‘Classically, plant resistance to drought has been divided 

into escape, avoidance and tolerance strategies’ (Turner 

1986). Fukai and Cooper (1995) added a fourth division of 
plant resistance to drought, which is drought recovery. This 
is an important mechanism when drought occurs early in 
crop development.

Escaping drought is very important, especially in arid areas, 
because plants that escape drought show a high degree of 
developmental plasticity and are able to complete their life 
cycle before physiological water deficits occur (Chaves et 
al. 2003, Martinez et al. 2007, Turner 1986). Moreover, 
these are important features that can reduce the negative 
effect of drought on crop production in the Mediterranean 
area, which has short growing seasons and high drought 
stress (Rajaram et al. 1996). Ashraf and Harris (2005) have 
stated that drought escape could reduce the risk of crop 
failure and increase yields by manipulating sowing dates and 
reducing the period of maturity according to the amount of 
rainfall in the region.

According to Chaves et al. (2003), breeders should examine 
plant phenology, because plants can avoid drought stress by 
completing their life cycles before they are affected by water 
shortage situations. A short life cycle is better than a long 
life cycle because plants can avert physical and chemical 
barriers that can inhibit the growth of roots (Fleury et al.
2010). The short life cycle strategy has been extremely 
successful in Mediterranean conditions (Araus et al. 2002). 
In addition, data indicates that reduced water potential can 
be avoided through minimising the turgor-loss volume of 
plants by shrinkage associated with adjustment of the cell 

walls (Fan et al. 1994, Marshall et al. 1999, Tyree and Jarvis 
1982). 

Ashraf and Harris (2005) cited that drought avoidance 
occurs by maximising the use of water when there is soil 
moisture by incorporating traits such as ‘fast growth and 
well-developed root systems, rapid leaf-area expansion, and 
physiological efficiency’. In addition, plants can tolerate 

drought by avoiding dry tissue by maintaining tissue water 
or carrying low tissue water. In common beans, drought 
avoidance mechanisms principally include the development 
of an extensive root system, an efficient stomatal closure and 

increase of the tricoma density, leaf movements and leaf 
chlorophyllic pigmentation (Barradas et al. 1994, Trejo and 
Davis 1991). Further, drought avoidance and drought 
tolerance are the main ingredients for drought resistance in 
the common bean (Levitt 1980, Turner 1991). 

4. Water use efficiency in common bean 

Water use efficiency (WUE) is defined as the ratio between 
photosynthesis and transpiration (Caldwell et al. 1983; Jones 
2004; Ramirez et al. 2011; Wright 1993). WUE is also 
referred to as evapotranspiration (ET) efficiency (Tanner 
and Sinclair 1983), which includes water loss by soil 
evaporation (E) (Wright 1993), while De Costa and 
Ariyawansha (1996) have defined WUE as the biomass 
increase per unit of water transpired. Figure (1) shows WUE 
in some cowpea cultivars under well-watered and water-
stressed conditions. 

According to Sun et al. (2006), WUE can be increased either 
by the transpiration being less than photosynthesis or it 
being greater in the intrinsic photosynthetic capacity. WUE 
depends on the water used for the production of biomass and 
growth (Liu and Stutzel 2004, Wu et al. 2008). WUE is 
considered a good trait that contributes to increasing yield 
under drought (Prasad et al. 2008). Moreover, it may be 
higher during drought periods (De Costa and Ariyawansha 
1996). In addition, WUE in the common bean has a strong 
association with specific plant characteristics and soil type, 
which is explained in the following section. 

Leaf area 
Leaf area (LA) is an important part of plant that affects light 
interception, gas exchange, evaporation, and the growth rate 
(Ramirez-Builes et al. 2008, Boote et al. 1988). There is a 
strong relationship between WUE and leaf area. A reduced 
leaf area leads to reducing the rate of transpiration and water 
loss. Therefore, decreased leaf area is one of the most 
important mechanisms to moderate water loss from the 
canopy and minimise plant exposure to drought (Prasad et
al. 2008). However, the minimisation of drought effect by 
reducing leaf area cannot sustain greater yields (Blum 2005). 
Leaf temperature is an important element in the rate of 
transpiration, so WUE can be affected by lower leaf 
temperature (Prasad et al. 2008, Tambussi et al. 2007). In 
fact, there are many morphological traits associated with 
lower leaf temperature, such as ‘epicuticular wax, 

chlorophyll content, and leaf position (erect leaves)’ (Prasad 

et al. 2008). 
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Moreover, several morphological traits in common beans 
were negatively affected by moisture stress these include 
leaf area loss which lead to declined the number of leaves, 
size of younger leaves and inhibition of the developing 
foliage expansion (Acosta-Gallegos 1988). Husain et al.
(1990) have found that crop responds to drought stress 
through reducing leaf area expansion rate slightly and 
producing smaller leaves. Singer et al. (1996) have exposed 
common bean to drought stress by 50% of field capacity. 
The results were reduction of leaf area, which supports many 
previous studies such as Soja and Soja (1989); Husain et al.
(1990) and Nunez-Barrios (1991). Leaf area of common 
bean tends to be low under rainfed conditions, and hence the 
levels of photosynthetic rates in a single leaf area are more 
important than determine of production rates (White et al.
1990). 

WUE can be increased by a higher specific leaf weight 
(SLW) (the ratio of leaf weight to area) (Boote et al. 1996, 
Peng et al. 1993, Poorter 1990), because the increased SLW 
leads to increased photosynthesis in the leaf area (Tambussi 
et al. 2007). Correlation between WUE and SLW is present 
but it seemed to be low (Morgan and LeCain 1991). 
Moreover, there are several traits that may increase WUE in 
the common bean such as early vigour, osmoregulation and 
smaller photosynthetic surfaces when exposed to drought 
stress (Araus et al. 2002). In addition, Liang et al. (2002) 
demonstrated that transpiration can be reduced and WUE 
increased significantly via alternate drying and rewatering 

under drought conditions. 

Further, specific leaf area (SLA), or leaf area per unit leaf 
dry mass (Evans and Poorter 2001), has a strong relationship 
with WUE (Nautiyal et al. 2002). It was suggested that SLA 
be used as an economical alternative tool to select WUE 
(Wright et al. 1994, 1996). Wu et al. (2008) have found in 
their experiment that reducing the number and leaf area with 
SLA and leaf area ratio (LAR) was a dehydration avoidance 
strategy for seedlings by reducing transpiration. 

Leaf gas exchange  
The measurement of leaf gas exchange (A/T) is very 
important because it provides a great deal of information 
about the activity of photosynthesis and the determination of 
related parameters, for example, stomatal conductance 
(Guidi et al. 1997). Therefore, the measurement of A/T can 
detect many processes that occur during photosynthesis, 
which may contribute to improving plants. In addition, it has 
been found that there is a high correlation between greater 
biomass production and higher A/T (Nautiyal et al. 2002, 
Wright et al. 1993). Consequently, many scientists have 
found that rising CO2 contributes to rising biomass 
production in water-stressed plants (Centritto et al. 1999, 
Gifford 1979, Morison and Gifford 1984), which leads to 
increased WUE (Centritto et al. 1999, Eamus 1991). 
  
Further, several studies have shown that the CO2 
concentration in plants and ecosystems is very important and 
leads to higher crop yields (Curtis and Wang 1998, Drake et
al. 1997, Norby et al. 1999). Therefore, elevated CO2 leads 
to reducing the negative effect of drought stress on plants by 
31% (Centritto et al. 2002). However, Davies et al. (2002) 
mentioned that WUE could be improved by minimising gas 

exchange during the period of regulated deficit irrigation 

(RDI). 

Stomatal conductance
Stomatal conductance defined as a function of both guard 
cell turgor pressure and its epidermis  (Raschke et al. 1972, 
Franks and Farquhar 2002). Stomatal conductance controls 
both the rates of transpiration and CO2 entry into the cell. 
There is some evidence to show that the initial reduction in 
stomatal conductance is higher than the reduction in carbon 
assimilation (Webber et al. 2006), resulting in an increase in 
the values of WUE (Chaves and Oliveira 2004). WUE is 
sensitive to many environmental and plant factors, which 
can affect stomatal conductance (De Costa and Ariyawansha 
1996).

According to Tambussi et al. (2007), higher mesophyll 
conductance is associated with an increase in the rates of 
photosynthesis, without increasing stomatal conductance. 
Thus, WUE will be increased. Stomatal conductance can 
conserve growth and yield through control in a 
photosynthetically which decrease in leaf transpiration 
(Ehleringer 1990). In general, the characteristics of a plant’s 

hydraulic architecture can determine the flux of transpiration 
through a plant. Therefore, any change in these 
characteristics will lead to a change in response of stomatal 
transpiration rate and WUE (Bacon 2004). Figure (2) shows 
that the responses of stomatal conductance to increase 
vapour pressure deficit.

The method is thought to work via a reduction in stomatal
conductance in that there are chemical signals synthesised 
from the root when exposed to drought (Webber et al. 2006), 
which are transferred to the transpiration stream in leaves, 
leading to the reduction in stomatal conductance and 
increased WUE (Davies and Zhang 1991, Davies et al. 2000,
de Souza et al. 2003, Düring et al. 1996, Liu et al. 2001,
Martinez et al. 2003). Moreover, it is known that mild water 
deficit leads to partially closing the stomata, thus improving 
WUE (Ashraf and Bashir 2003, Chaves 1991, Davies et al.
2002, Flexas et al. 2004, Boogaard et al. 1997).

The partial closure of stomata during mild drought stress 
leads to an increase in the concentration gradient of CO2 
from the air to the leaf more than it increases concentration 
gradient of water vapour from the leaf to the air, resulting 
decrease WUE (Grimmer et al. 2012). Studies showed that 
when beans are exposed to drought there are increases the 
resistance of stomata and respiratory rate, and reduction in
the rate of photosynthesis, plant height and leaf area (Costa 
et al. 1991). Mencuccini et al. (2001) found that small 
changes in leaf water are caused by pressurization affect 
stomatal aperture even when exposed to adequate water and 
‘relatively mild leaf-to air vapour pressure gradients’. They 

also found that, during constant environmental conditions, 
there are diurnal changes in stomatal opening and 
assimilation rate of Phaseolus vulgaris L.

Osmotic adjustment
OA includes the solutes accumulation within a cell in 
response to a decline in water potential of the cell’s 

environment, resulting reduces the osmotic potential of the 
cell, which attracts water into the cell and conserves turgor 
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pressure (Lidon and Cebola 2012). OA is an adaptive 
process that contributes to reducing the negative effects of 
water deficits (Lilley et al. 1996) and supports yield under 
drought stress (Blum 2005). OA is the most important 
component of drought resistance (Ludlow and Muchow 
1990, Zhang et al. 1999). According to Zhang et al. (1999), 
OA is a key mechanism for improving WUE and yield of 
grain that is exposed to drought stress. In addition, OA 
provides two of the main tasks in the production of the plant 
under drought stress: (a) it leads leaf turgor maintenance for 
the same leaf water potential (LWP), which encourages 
stomatal conductance under lower leaf water status (Ali et 
al. 1999, Sellin 2001); and (b) it improves the ability of the 
roots for water uptake (Chimenti et al. 2006, Jones and 
Sutherland 1991, Tangpremsri et al. 1991). 

Recently, OA has drawn much attention because its 
importance as physiological adaptation character that is 
associated with drought tolerance. Moreover, it includes the 
net accumulation of solutes in the cell in response to falls in 
water potential of the cell environment (Hessini et al. 2009). 
As a result, there is a diminished likelihood of an osmotic 
cell, which in turn attracts water into the cell by tending to 
keep the swelling pressure (Blum et al. 1996). Martínez et
al. (2004, 2007) stated that these contents benefit stressed 

cells in two ways: (1) they work as cytoplasmic osmolytes, 
which facilitates the absorption and water conservation, and 
(2) they protect the stability of the molecules and structure 
from damage that is caused by stress conditions. However, 
OA has an energy cost that may affect plant production and 
WUE (Turner and Jones 1980). 

The analysis of pressure-volume (PV), in one study which 
occurred on beans, showed an active OA in the leaves, in 
response to drought stress imposed slowly, ‘at a rate of 

about 0.15 MPa day-1
’ (Zlatev 2005). Generally, there is no 

difference in the effective of OA in crops. Bourgault and 
Smith (2010) suggested that do not investigate the difference 
in the OA in crops, because they did not find a difference 
between common bean and mungbean. 

Root characterisation 
Root system characterisation is important for exploring the 
soil and the acquisition of resources, so it is strongly 
associated with plant adaptation under abiotic conditions 
such as drought (Ludlow and Muchow 1990, Manschadi et 
al. 2006). In addition, root characteristics include 
morphology, root system size and root hydraulic 
conductivity (Sanders and Markhart 1992). The slowly dried 
root is one of the positive characteristics that is found in P. 
vulgaris (Trejo and Davies 1991). 
  
In addition, roots may increase WUE through water 
absorption by adjusting the pattern of allocation (Chaves et 
al. 2003). Moreover, WUE has a strong relationship with 
biomass and root length because water uptake efficiency 

primarily depends on the quantity and length of fine roots 

(Wu et al. 2008). Root characteristics are the fundamental 
characteristics of the drought response in the common bean, 
while shoot characteristics are less important (White and 
Castillo 1989). According to Manschadi et al. (2006), root 
architectures and vertical distribution appear to be the basic 

characteristics of water for improved adaptation in such 
environments. 

Root vigour and architecture is a trait that relates to faster 
root growth, which leads to an increase in root size 
colonisation in the soil to obtain more water and nutrients 
(Palta and Watt 2009). This trait has been successful in 
wheat: roots grew faster by about 40% compared with 
conventional cultivars (Watt et al. 2005). In addition, the 
extraction of water from the soil through improved root 
efficiency is one of the most important goals for genetic 
analysis (Fleury et al. 2010). According to Manschadi et al.
(2006), the analysis of modified roots shows that an increase 
of 10 mm of water extracted during grain filling increases 
yields by around 500 kg/ha, which is equivalent to 25% of 
the increase in Australian wheat yield (2,000 kg/ha). 
  
Several individual qualities in the roots can be contributed 
into the increase of grain production under the circumstance 
of water shortages by the pattern of development of water 
stress in the target production environments (Manschadi et 
al. 2006). For example, in environments in which crops are 
grown widely, such as in the north-eastern Australian 
Wheatbelt, water may run out before the completion of grain 
filling. Consequently, minimising water use during pre-
anthesis by reducing the diameter of xylem vessels will lead 
to greater grain yield due to improved post-anthesis water 
availability (Passioura 1972). 

5. Breeding for high water use efficiency 

Improved WUE in irrigated and rain-fed land has become an 
urgent necessity (Hamdy et al. 2003), which requires several 
strategies (Wang et al. 2002). Breeding crops to be more 
efficient in use of water is one of the most important of these 
strategies (Condon et al. 2004). Breeding for high WUE 
includes three key processes: (i) transferring more of the 
water available through the crop rather than it being lost by 
evaporation or drainage beyond the root zone;, (ii) acquiring 
more biomass ‘in exchange for the water transpired by the 

crop’; and (iii) dividing more of the biomass that has been 

achieved into the harvested product (Abberton et al. 2008; 
Condon et al. 2004).  

Water use efficiency as a breeding target 
To achieve specific objectives by breeding, the first step is 
to identify those objectives well, and then determine 
inherited traits. WUE as a target in breeding depends on 
many characteristics such as the size and measurement units 
of exchange that are being considered (Condon et al. 2004). 
According to Fischer (1981), improving agronomic traits by 
raising WUE in the leaves is one of the most attractive 
methods. Bourgault and Smith (2010) have been 
recommending several traits that could be used as a breeding
target to improve WUE, for example, low leaf area at flower 

initiation, SLW when it is related to higher transpiration 
efficiency (TE) and using other breeding to achieve higher 
yields under the condition of water deficiency. 

Lowering the gradient in water vapour concentration 
Lowering the gradient in water vapour concentration during 
the crop growth is one of the simplest and the most 
influential means in crop breeding to improve the TE of 
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biomass by raising gas exchange (Tanner and Sinclair 1983, 
Richards et al. 2002). Many breeders in the past century 
relied on the exploitation of genetic variation associated with 
‘intrinsic earliness, response to photoperiod, and 

vernalization requirement’ to generate a wide variation in 

crop phenology. Therefore, the higher the level of gas 
exchange leads to increased crop yields due to phonological 
variation, which has allowed crops to be grown successfully 
in areas and times of the year that lower the prevailing 
evaporative demand (Condon et al. 2004). 

Improve WUE using biotechnology 
Selection traits under drought stress may increase selection 
efficiency, value adjustment, high heritability and 
measurements. In addition, it leads to increased ‘relative 

stem and leaf elongation’, delayed aging and a reduced 

‘anthesis silking interval (ASI)’ to increase the efficiency of 

the selection of cereal crops (Bolanos et al. 1993). The 
changes in tissue elasticity under water stress could lead to 
drought tolerance, as observed in common bean (Zlatev 
2005; Martiınez et al. 2007). Richards et al. (2010) 
summarised the most important traits recommended for 
improving cereal crops in water deficient conditions. These 
traits may not all be important in global rain-fed 
environments, and some may have a greater effect in 
specific environments. The most important traits are: 

Seedling establishment 
Mostly dry environments are characterised by short growing 
seasons, so the effective use of a full growing season is 
necessary to enhance the yield. This is important for wheat 
when the establishment is poor if the seeds of ‘Green 

Revolution varieties containing the GA-insensitive dwarfing 
genes Rht-B1b and Rht-D1b’ are deep (Jones et al. 1998). 
These varieties contain short ‘coleoptiles’, but they will not 

establish if they are very deep. Otherwise, there are many 
dwarfing genes that respond to the application of GA and 
that contain longer coleoptiles. Currently, these genes are 
not available in contemporary crop varieties (Richards et al.
2010). 

Shoot vigour 
This is a complex trait in which the interest is mainly in 
specific leaf areas and embryo sizes (Cooper et al. 1987). 
Generally, faster leaf growth above the ground increases 
plants’ biomass in order to reduce the evaporation of 

moisture from the soil’s surface and make the most of 

available water in the soil for growth and transpiration 
(Richards et al. 2010). 

Root vigour and architecture 
This relates to faster root growth, which leads to an increase 
in root size colonisation in the soil to obtain more water and 
nutrients (Palta and Watt 2009). When wheat was developed 
using this trait, the roots grew faster by about 40 per cent 
compared with conventional cultivars (Watt et al. 2005). 

Transpiration efficiency (TE) (carbon isotope 
discrimination) 
This complex physiological trait integrates photosynthesis 
into transpiration. It is also negatively associated with the 
concentration of carbon dioxide between leaf cells, which in 
turn relates to carbon isotope discrimination in wheat 

(Farquhar and Richards 1984). Carbon isotope 
discrimination has many attractive features for breeding. It is 
a good surrogate for TE in breeding (Richards et al. 2010). 

Wax (glaucousness) 
Glaucousness is a visual trait related to the colour of 
photosynthetic surfaces, which can be easily identified. Its 
most important feature is reducing transpiration during the 
night and day, thereby reducing water loss. In addition, it is 
important in maintaining the leaf area late into grain filling 
(Richards et al. 2010). 

Other yield-enhancing traits for dry environments 
Other proposed traits to increase wheat grain yield in 
drought conditions include (i) reducing xylem vessel 
diameter, (ii) increasing OA and (iii) reducing grain-filling 
duration and increasing the rate (Richards et al. 2010). 

6. Conclusion 

In summary, the warm-season legume common bean is the 
most important food legume, providing many useful features 
such as proteins. Moreover, it has an important role in 
cropping systems and break crops. Further, it is very 
sensitive to climate changes and abiotic conditions such as 
drought and cold, which may affect crop yields. However, 
WUE leads to minimising the effect of drought stress on 
plants. Additionally, beans have been proposed as an 
alternative crop for mild winter growing seasons in Western 
Australia and potentially for other regions to increase farm 
profitability and food security.  
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Figure 1: ‘A typical soil matrix potential indicating level of water stress in the experimental pots during the course of
experiment. Duration of interval S to BS was ≥70 days, BS to SB was ≈7 days while SB to SE was 10 days’ (cited in Anyia 

and Herzog 2004).

Figure 2: ‘Two illustrative responses of stomatal conductance to increase vapour pressure deficit (adapted from a figure in
Atwell et al. (1999) which used unpublished data of D. Eamus)’ (cited in Bacon 2004).
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