Some Results on I-cordial Graph

T. Nicholas¹, P. Maya²

¹Department of Mathematics, St. Jude’s College Thoothoor – 629176, Kanyakumari, Tamil Nadu, India
²Department of Mathematics, Ponjesly College of Engineering, Nagercoil - 629003, Tamil Nadu, India

Abstract: An I-cordial labeling of a graph $G (V, E)$ is an injective map f from V to $[-\frac{p}{2}, \frac{p}{2}]$ or $[-\frac{p}{2}, \frac{p}{2}]$ as p is even or odd, respectively be an injective mapping such that $f(u) + f(v) ≠ 0$ and induces an edge labeling $f^* : E → {0, 1}$ where, $f^*(uv) = 1$ if $f(u) + f(v) > 0$ and $f^*(uv) = 0$ otherwise, such that the number of edges labeled with 1 and the number of edges labeled with 0 differ at most by 1. If a graph has I-cordial labeling, then it is called I-cordial graph. In this paper, we introduce the concept of I-cordial labeling and prove that some standard graphs that are I-cordial and some graph that are not I-cordial.

Notation: Here $[-x..x] = \{t \mid t ≤ x\}$ and $[-x..x]^* = [-x..x] - \{0\}$.

Keywords: Cordial labeling; I-cordial labeling

AMS Mathematical Subject Classification (2010): 05C78

1. Introduction

By a graph we mean a finite undirected graph without loops and multiple edges. For terms not defined here we refer to Harary [9].

An I-cordial labeling of a graph $G (V, E)$ is an injective map f from V to $[-\frac{p}{2}, \frac{p}{2}]$ or $[-\frac{p}{2}, \frac{p}{2}]$ as p is even or odd, respectively, be an injective mapping such that $f(u) + f(v) ≠ 0$ and induces an edge labeling $f^* : E → \{0, 1\}$ where, $f^*(uv) = 1$ if $f(u) + f(v) > 0$ and $f^*(uv) = 0$ otherwise such that the number of edges labeled with 1 and the number of edges labeled with 0 differ at most by 1. If a graph has I-cordial labeling, then it is called I-cordial graph. The concept of cordial graph originated from I.Cahit [1, 2] in 1987 as a weaker version of graceful and harmonious graphs and was based on $\{0, 1\}$ binary labeling of vertices.

Let $f : V → \{0, 1\}$ be a mapping that induces an edge labeling $f^* : E → \{0, 1\}$ defined by $f^*(uv) = |f(u) - f(v)|$. Cahit called such a labeling cordial if the following condition is satisfied: $|v_i(0) - v_i(1)| ≤ 1$ and $e_i(0) - e_i(1) ≤ 1$, where $v_i(0)$ and $e_i(0)$, $i = 0, 1$ are the number of vertices and edges of G respectively with label i (under f and f^* respectively). A graph G is called cordial if it admits cordial labeling.

In [1], Cahit showed that (i) every tree is cordial (ii) K_n is cordial if and only if $n ≤ 3$ (iii) $K_{r,s}$ is cordial for all r and s (iv) the wheel W_n is cordial if and only if $n = 3$ (mod 4) (v) C_n is cordial if and only if $n ≠ 2$ (mod 4) (vi) an Eulerian graph is not cordial if its size is congruent to 2 modulo 4.

Du [4] investigated cordial complete k-partite graphs. Kuo et al. [13] determined all m and n for which mK_n is cordial. Lee et al. [14] exhibited some cordial graphs. Generalised Petersen graphs that are cordial are characterised in [7]. Ho et.al [6] investigated the construction of cordial graphs using Cartesian products and composition of graphs. Shee and Ho [7] determined the cordialities of $C_m^{(n)}$; the one–point union of n copies of C_m. Several constructions of cordial graphs were proposed in [10-12, 15-18]. Other results and open problems concerning cordial graph are seen in [2, 5]. Other types of cordial graphs were considered in [3, 4, 8, 20]. Vaidya et.al [21] has also discussed the cordiality of various graphs.

Definition 1.1 [23]
Let f be a binary edge labeling of graph $G = (V, E)$ and the induced vertex labeling is given by $f(v) = \sum_{e \in E} f(e) (\mod 2)$ where $v \in V$ and $(u,v) \in E$. f is called an E-cordial labeling of G if $|e(0) - e(1)| ≤ 1$ and $|v(0) - v(1)| ≤ 1$, where $e(0)$ and $e(1)$ denote the number of edges, and $v(0)$ and $v(1)$ denote the number of vertices with 0's and 1's respectively. The graph G is called E-cordial if it admits E-cordial labeling.

In 1997 Yılmaz and Cahit [23] have introduced E-cordial labeling as a weaker version of edge–graceful labeling. They proved that the trees with n vertices, K_n, C_n are E-cordial if and only if n is even or odd, respectively. C_m is E-cordial if and only if $n ≠ 2$ (mod 4) while K_m,n admits E-cordial labeling if and only if $m + n ≠ 2$ (mod 4).

Definition 1.2 [20]
A prime cordial labeling of a graph G with vertex set V is a bijective function f from V to $\{1, 2, 3, \ldots, |V|\}$ where each edge uv is assigned the label 1 if gcd $(f(u), f(v)) = 1$ and 0 if gcd $(f(u), f(v)) > 1$, such that the number of edges having label 0 and edges having label 1 differ by at most 1.

Sundaram et.al. [19] introduced the notion of prime cordial labeling. They proved the following results are prime cordial: C_n if and only if $n ≥ 6$; P_n if and only if $n ≠ 3$ or 5; $K_{1,n}(n, odd)$; the graph obtained by subdividing each edge of $K_{1,n}$ if and only if $n ≥ 3$; bi-stars; dragons; crowns; triangular snakes if and only if the graph has at least three triangles; ladders. J. Babujee and L.Shobana [22] proved the existence of prime cordial labeling for sun graph, kite graph and coconut tree and Y-tree, $< K_{1,n}; K_{2} >$ ($n ≥ 1$); Hoffman tree, and $K_{2} \cup C_n (C_n)$.
In this paper we introduce the concept of integer I-cordial labeling and we prove that some standard graphs such as cycle C_n, Path P_n, Friendship F_n, Helm graph H_n, Closed graph CH_n, Double Fan DF_n, $n \geq 2$, are I-cordial; Wheel W_n and Fan graph fn are I-cordial if and only if n is even.

Main Results

Notation.1.3

Here $[-x..x] = \{t \div t$ is an integer and $|t| \leq x\}$ and $[-x..x]^* = [-x..x] - \{0\}$.

2. Main Results

Definition.2.1

Let $G = (V,E)$ be a simple connected graph with p vertices. Let $f: V \rightarrow [-p/2..p/2]$ or $[-p/2..p/2]^*$ as p is even or odd respectively be an injective mapping such that $f(u) + f(v) \neq 0$ and induces an edge labeling $f^*: E \rightarrow \{0, 1\}$ where $f(v_{uv}) = 1$, if $f(u) + f(v) > 0$ and $f(v_{uv}) = 0$ otherwise. Let $e_f(i) =$ number of edges labeled with i, where $i = 0$ or 1. f is said to be I-cordial if $|e_f(0) - e_f(1)| \leq 1$. A graph G is called I-cordial if it admits a I-cordial labeling.

Figure 1: I-cordial Graph

Theorem 2.2 The cycle C_p is I-cordial.

Proof. Let v_1, v_2, \ldots, v_p be the p vertices of the cycle C_p. Here $q = p$.

CASE 1. p is even.

Let $p = 2n$. We define $f: V \rightarrow [-n..n]^*$ as follows: $f(v_i) = -i$; $1 \leq i \leq n$; $f(v_{i+n}) = i$; $1 \leq i \leq n$.

When $f(v_n) = -n$ and $f(v_{n+1}) = 1$, the edge labeling $f^*(v_nv_{n+1}) < 0$.

This implies that $f^*(v_nv_{n+1}) < 0$.

Similarly, $f(v_{p-1}) = -1$ and $f(v_p) = n$ yield $f^*(v_{p-1}v_p) = n - 1$, which is positive when $n \geq 1$.

Therefore, we assign $f^*(v_{p-1}v_p) = 1$. Obviously, the sum of consecutive negative (positive) integers is negative (positive). As there are $\frac{q}{2}$ such negative labels and $\frac{q}{2}$ positive labels, $e_f(0) = e_f(1) = \frac{q}{2}$.

CASE 2. p is odd and $p > 3$.

Let $p = 2n + 1$, when $n > 1$. We define $f: V \rightarrow [-n..n]$ as follows: $f(v_i) = -i$, $1 \leq i \leq n - 1$; $f(v_{n+1}) = i + 1$, $1 \leq i \leq n - 1$; and $f(v_n) = 0$.

Let us consider the edge $v_nv_{n+1} \in E$ then $f(v_n) = -(n - 1)$ and $f(v_{n+1}) = 1$.

That is, $f(v_n) + f(v_{n+1}) < 0$, which implies $f^*(v_nv_{n+1}) = 0$.

Similarly, for the edge, v_nv_{n+1}, $f^*(v_nv_{n+1}) = -1 + 0 = -1$, so that $f^*(v_nv_{n+1})$ receives label 0. From the observation $n + 1$ edges receive label 0 and n edges receive label 1.

Therefore, $e_f(0) = n + 1$ and $e_f(1) = n$. Thus $|e_f(0) - e_f(1)| = 1$.

The case when $p = 3$ does not yield any I-cordial labeling for C_3 by Theorem 2.3.

Thus C_p is I-cordial graph.

Figure 2: C_{12} and C_{11} are I-cordial graph.

Theorem 2.5 Path $P_n\ n > 2$ is I-cordial.

Proof. When $n = 3$, we label $\{-1, 0, 1\}$ corresponding to the vertices $\{v_1, v_2, v_3\}$ which implies P_3 is I-cordial.

For the case $n > 3$, we labeling is similar to Theorem 2.4.

Theorem 2.6 Complete graph K_p is not I-cordial.

**Proof holds from Theorem 2.3 and 2.4.

Theorem 2.7 The Wheel graph W_n; $n > 3$ is I-cordial if and only if n is even.

Proof. Let u be the apex vertex and v_1, v_2, \ldots, v_n be the rim vertices. Here $|V| = n + 1$ and $|E| = 2n$. Let us consider two cases.

Case 1. $|V|$ is odd. (n is even)

Let $n = 2m$. We define $f: V \rightarrow [-m..m]$ as follows: $f(v_i) = -i$, $1 \leq i \leq m$ and $f(v_{m+i}) = i$, $1 \leq i \leq m$.

Consider the vertex label $f(v_{m}) = -n$ and $f(v_{m+1}) = 1$ then, $f^*(v_{m}v_{m+1}) < 0$. Also $f^*(v_{m+i}v_{i}) < 0$ for all $i = 1, 2, \ldots, m$ and $f^*(v_{m+i}v_{m+i}) > 0$ for all $i = m+1, 2m-1$. Also, $f(v_{2m}) = n$ and $f(v_{m}) = -1$.

Therefore, $f^*(v_{2m}v_{i}) > 0$. Now $f^*(uv_i) > 0$ for all $i = 1, 2, \ldots, m$ and $f^*(uv_i) > 0$ for all $i = m+1, 2m$. Hence, the q edges equally share label 0 and 1. That is, $e_f(0) = e_f(1) = \frac{q}{2}$ which imply $|e_f(0) - e_f(1)| = 1$.

Thus from both the cases $|e_f(0) - e_f(1)| \leq 1$.

Hence W_n; $n > 3$ is I-cordial.
Case 2. |V| is even
That is, when n is odd, by Theorem 2.4, \(W_n \); \(n \geq 3 \) is not \(I \)-cordial.

\[\text{Figure 3: } W_n \text{ is } I\text{-cordial} \]

Theorem 2.8 Helm graph \(H_n \) is \(I \)-cordial.

Proof. Let \(H_n = G \), then \(p = 2n + 1 \) and \(q = 3n \). Let \(v \) be the apex vertex, \(v_1, v_2, \ldots, v_n \) be the rim vertices of the cycle and \(u_1, u_2, \ldots, u_n \) be the pendant vertices corresponding to \(v_i \)’s. Suppose \(n = 2m \). We define \(f : V \rightarrow \{ -(2m + 1), (2m + 1) \} \) as \(f(v) = 0; f(v_i) = -i, 1 \leq i \leq m; f(v_{m+i}) = i, 1 \leq i \leq m \).

Let us consider the vertices \(v_{m+1} \) and \(v_{m+2} \). We have \(f(v_{m+1}) = m \) and \(f(v_{m+2}) = 0 \). Also, \(f(v_{m+i}) = m, 1 \leq i \leq m \).

Now let us consider the pendant vertices \(u_i \)’s. Here \(f(u_i) = m + 1 \) for all \(i = 1, 2, 3, \ldots, m \) and \(f(u_{m+i}) = 1 \). Thus \(|ef(0) - ef(1)| = 1 \). From all the cases, \(|ef(0) - ef(1)| = 1 \).

\[\text{Figure 4: } H_7 \text{ is } I\text{-cordial} \]

Theorem 2.9 The closed helm graph \(CH_n \) is \(I \)-cordial.

Proof. Let \(CH_n = G \). Then let \(p = 2n + 1 \) and \(q = 4n \). Let \(v \) be the apex vertex, \(v_1, v_2, \ldots, v_n \) be vertices of the inner cycle and \(u_1, u_2, \ldots, u_n \) be the rim vertices of the outer cycle. The case when \(n \) is even follows from Theorem 2.7. Now suppose \(n \) is odd and \(n = 2m + 1 \).

Since the apex vertex \(v \), is labeled with 0, \(f(v) = 0; f(v_i) = -i, 1 \leq i \leq m; f(v_{m+i}) = i, 1 \leq i \leq m; f(u_i) = m + 1; f(u_{m+i}) = i, 1 \leq i \leq m \). Thus \(|ef(0) - ef(1)| = 1 \). From all the cases, \(|ef(0) - ef(1)| = 1 \).

Thus \(G \) is \(I \)-cordial.

\[\text{Figure 5: } CH_6 \text{ is } I\text{-cordial} \]
Theorem 2.10 Friendship graph F_n, $n > 1$ is I-cordial.

Proof. Let v_0 be the central vertices of n triangles, consecutively of F_n. We note that $p = 2n + 1$ and $q = 3n$. We consider two cases.

CASE 1. n is even

Let $n = 2m$. Define $f: V \rightarrow [-2m \ldots 2m]$ as $f(v_i) = i$, $1 \leq i \leq 2m$, i is odd; $f(v_{2m+i}) = -i$, $1 \leq i \leq 2m$, i is odd; so that the edges of triangles C_i, $i = 1, 2, \ldots, m$ are all > 0 and the edges of triangles C_i, $i = m + 1, \ldots, 2m$ are all < 0. Hence, $3m$ edges shares positive and negative labels. That is, $e_0(0) = e_1(1)$.

CASE 2. n is odd.

Let $n = 2m + 1$. We consider $f: V \rightarrow [-2m \ldots 2m]$ as $f(v_i) = i$, $1 \leq i \leq 2m + 1$, i is odd; $f(v_{2m+1+i}) = -i$, $1 \leq i \leq 2m + 1$, i is odd; so that the edges of triangles C_i, $i = 1, 2, \ldots, m$ are all > 0 and the edges of triangles C_i, $i = m + 2, \ldots, 2m + 1$ are all < 0. Also in the triangle, C_m the edges $f(v_{2m+1}v_0) > 0$, $f(v_{2m+1}v_{2m+2}) > 0$ and $f(v_0v_{2m+2}) < 0$. Hence, $e_0(0) = 1, e_1(1) + 2$.

Thus, $|e_0(0) - e_1(1)| = 1$. Therefore, F_n is I-cordial.

Figure 6: Fan graph F_6 is I-cordial

Theorem 2.11 The fan f_n, $n \geq 3$ is I-cordial if and only if n is even.

Proof. f_n has $n + 1$ vertices and $2n - 3$ edges. Let u be the apex vertex with degree n. Let $v_1, v_2, v_3, \ldots, v_n$ denote the path vertices adjacent to u in f_n.

Case 1. n is even

Let $n = 2m$. Define $f: V \rightarrow [-m \ldots m]$ as $f(v_i) = i$, $1 \leq i \leq m$ and $f(v_{2m+i}) = -i$; $1 \leq i \leq m$. Then $f(v_i) < 0$ for all $i = 1, 2, \ldots, m$ and $f(v_{2m+i}) > 0$ for all $i = m + 1, m + 2, \ldots, 2m$. Thus $|e_0(0) - e_1(1)| = 0$. Similarly, $f(v_{2m+1+v_i}) < 0$ for all $i = 1, 2, \ldots, m$ and $f(v_{2m+1}v_i) > 0$ for all $i = m + 1, m + 2, \ldots, 2m$. Thus $|e_0(0) - e_1(1)| = 1$. Therefore from the above cases $e_0(0) - e_1(1) = 1$. Hence, F_n, $n \geq 3$ is I-cordial.

When n is odd, by Theorem 2.2.3 f_n is not I-cordial.

Figure 7: f_6 is I-cordial

Theorem 2.12 The double fan Df_n, $n \geq 2$ is I-cordial.

Proof. Df_n has $n + 2$ vertices and $3n - 1$ edges. Let a and b denote the apex vertices of degree n and v_1, v_2, \ldots, v_n be the path vertices adjacent to a and b in Df_n. Then $E(Df_n) = A \cup B \cup C$ where $A = \{av_i\}_{i=1}^n$; $B = \{bv_i\}_{i=1}^n$ and $C = \{v_iv_{i+1}\}_{i=1}^n$.

We consider two cases:

CASE 1. n is even

Let $n = 2m$. We define $f: V \rightarrow \{-m - 1, \ldots, m + 1\}$ as $f(a) = m + 1$, $f(b) = - (m + 1)$; $f(v_i) = i$, $1 \leq i \leq m$ and $f(v_{2m+i}) = -i$, $1 \leq i \leq m$. Consider $f(v_{2m+1}v_0) > 0$, $f(v_{2m+1}v_{2m+2}) > 0$ and $f(v_0v_{2m+2}) < 0$. Hence, $e_0(0) = 1, e_1(1) + 2$.

Now, $f(v_i) < 0$ for all $i = 1, 2, \ldots, m$ and $f(v_{2m+1}) < 0$ for all $i = m + 1, m + 2, \ldots, 2m - 1$.

Thus $|e_0(0) - e_1(1)| = 1$.

CASE 2. n is odd

Let $n = 2m + 1$. We define $f: V \rightarrow \{-m, \ldots, m\}$ as $f(a) = m + 1$, $f(b) = - (m + 1)$; $f(v_i) = i$, $1 \leq i \leq m$ and $f(v_{2m+i}) = -i$, $1 \leq i \leq m$. Let us consider, $f(v_{2m+1}v_0) > 0$ for all $i = 1, 2, \ldots, m$ and $f(v_{2m+1}v_{2m+2}) > 0$ and $f(v_0v_{2m+2}) < 0$. Hence, $e_0(0) = 1, e_1(1) + 2$.

Now, $f(v_i) < 0$ for all $i = 1, 2, \ldots, m$ and $f(v_{2m+1}) < 0$ for all $i = m + 1, m + 2, \ldots, 2m$.

Thus $|e_0(0) - e_1(1)| = 0$ for all $e \in A \cup B$.

Case 2. n is odd

Let $n = 2m + 1$. We define $f: V \rightarrow \{-m - 1, \ldots, m\}$ as $f(a) = m + 1$, $f(b) = - (m + 1)$; $f(v_i) = i$, $1 \leq i \leq m$ and $f(v_{2m+i}) = -i$, $1 \leq i \leq m$. Let us consider, $f(v_{2m+1}v_0) > 0$ for all $i = 1, 2, \ldots, m$ and $f(v_{2m+1}v_{2m+2}) > 0$ and $f(v_0v_{2m+2}) < 0$. Hence, $e_0(0) = 1, e_1(1) + 2$.

Now, $f(v_i) < 0$ for all $i = 1, 2, \ldots, m$ and $f(v_{2m+1}) < 0$ for all $i = m + 1, m + 2, \ldots, 2m$.

Thus $|e_0(0) - e_1(1)| = 0$ for all $e \in C$. Hence from all the cases $|e_0(0) - e_1(1)| \leq 1$.

Therefore double fan Df_n, $n \geq 2$ is I-cordial.

Figure 8: Df_6 is I-cordial.
Theorem 2.13 Double Wheel DW_n, $n > 2$ is I-cordial.

Proof. Let $G = DW_n$ be the double wheel. Let v_0, v_1, \ldots, v_n be the inner rim vertices and v_1', v_2', \ldots, v_n' be the outer rim vertices of DW_n. Then $p = 2n + 1$ and $q = 4n$.

We define $f : V \rightarrow [-n \ldots n]$ as, $f(v_0) = 0$, $f(v_i) = i$, $1 \leq i \leq n$ and $f(v_i') = -i$, $1 \leq i \leq n$ so that $f(v_i v_{i+1}) > 0$ for all $i = 1, 2, \ldots, n - 1$ and $f(v_i' v_{i+1}') < 0$ for all $i = 1, 2, \ldots, n - 1$. Here n edges equally shares negative and positive integers. Since, $f(v_0) = 0$ then $f(v_0 v_i) > 0$ for all $i = 1, 2, \ldots, n$ and $f(v_0 v_i') < 0$ for all $i = 1, 2, \ldots, n$. Here also n edges shares negative and positive integers. That is, $e_f(0) = e_f(1)$. Hence, $|e_f(0) - e_f(1)| = 0$.

Figure 9: DW_4 is I-cordial.

References

[20] A.Unveren and I.Cahit, M-Cordial Graphs, Pre-print

Volume 5 Issue 12, December 2016

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY