Some Results on I-cordial Graph

T. Nicholas¹, P. Maya²

¹Department of Mathematics, St. Jude's College Thoothoor – 629176, Kanyakumari, Tamil Nadu, India

²Department of Mathematics, Ponjesly College of Engineering, Nagercoil - 629003, Tamil Nadu, India

Abstract: An I-cordial labeling of a graph G (V, E) is an injective map f from V to $\left[-\frac{p}{2} ... \frac{p}{2}\right]^*$ or $\left[-\left|\frac{p}{2}\right|..\left|\frac{p}{2}\right|\right]$ as p is even or odd, respectively be an injective mapping such that $f(u) + f(v) \neq 0$ and induces an edge labeling $f^*: E \rightarrow \{0, 1\}$ where, $f^*(uv) = 1$ if f(u) + f(v) > 0 and $f^*(uv) = 0$ otherwise, such that the number of edges labeled with 1 and the number of edges labeled with 0 differ atmost by 1. If a graph has I-cordial labeling, then it is called I-cordial graph. In this paper, we introduce the concept of I-cordial labeling and prove that some standard graphs that are I-cordial and some graph that are not I-cordial.

Notation: Here $[-x..x] = \{t/t \text{ is an integer and } |t| \le x\}$ and $[-x..x]^* = [-x..x] - \{0\}$.

Keywords: Cordial labeling; I-cordial labeling

AMS Mathematical Subject Classification (2010): 05C78

1. Introduction

By a graph we mean a finite undirected graph without loops and multiple edges. For terms not defined here we refer to Harary [9].

An *I*-cordial labeling of a graph G (V, E) is an injective map f from V to $\left[-\frac{p}{2} \cdot \cdot \frac{p}{2}\right]^*$ or $\left[-\left[\frac{p}{2}\right] \cdot \cdot \left[\frac{p}{2}\right]\right]$ as p is even or odd, respectively, be an injective mapping such that $f(u) + f(v) \neq 0$ and induces an edge labeling $f^* : E \rightarrow \{0, 1\}$ where, $f^*(uv) = 1$ if f(u) + f(v) > 0 and $f^*(uv) = 0$ otherwise such that the number of edges labeled with 1 and the number of edges labeled with 0 differ at most by 1. If a graph has *I*-cordial labeling, then it is called *I*-cordial graph. The concept of cordial graph originated from I.Cahit [1,2] in 1987 as a weaker version of graceful and harmonious graphs and was based on $\{0,1\}$ binary labeling of vertices.

Let f: V \rightarrow {0, 1} be a mapping that induces an edge labeling $\overline{f} : E \rightarrow$ {0, 1} defined by $\overline{f}(uv) = |f(u) - f(v)|$. Cahit called such a labeling cordial if the following condition is satisfied: $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$,where $v_f(i)$ and $e_f(i)$, i = 0, 1 are the number of vertices and edges of G respectively with label i (under f and \overline{f} respectively). A graph G is called cordial if it admits cordial labeling.

In [1], Cahit showed that (i) every tree is cordial (ii) K_n is cordial if and only if $n \le 3$ (iii) $K_{r,s}$ is cordial for all r and s (iv) the wheel W_n is cordial if and only if $n \equiv 3 \pmod{4}$ (v) C_n is cordial if and only if $n \not\equiv 2 \pmod{4}$ (vi) an Eulerian graph is not cordial if its size is congruent to 2 modulo 4.

Du [4] investigated cordial complete k-partite graphs. Kuo et al. [13] determined all m and n for which mK_n is cordial. Lee et al. [14] exhibited some cordial graphs. Generalised Peterson graphs that are cordial are characterised in [7]. Ho et.al [6] investigated the construction of cordial graphs using Cartesian products and composition of graphs. Shee and Ho

[7] determined the cordiality of $C_m^{(n)}$; the one-point union of n copies of C_m . Several constructions of cordial graphs were proposed in [10-12, 15-18]. Other results and open problems concerning cordial graph are seen in [2, 5]. Other types of cordial graphs were considered in [3, 4, 8, 20]. Vaidya et.al [21] has also discussed the cordiality of various graphs.

Definition 1.1 [23]

Let f be a binary edge labeling of graph $G = \{V, E\}$ and the induced vertex labeling is given by $f(v) = \sum_{\forall u} f(u, v) \pmod{2}$ where $v \in V$ and $\{u, v\} \in E$. f is called an **E-cordial labeling** of G if $|e_f(0) - e_f(1)| \le 1$ and $|v_f(0) - v_f(1)| \le 1$, where $e_f(0)$ and $e_f(1)$ denote the number of edges, and $v_f(0)$ and $v_f(1)$ denote the number of vertices with 0's and 1's respectively. The graph G is called **E-cordial** if it admits E-cordial labeling.

In 1997 Yilmaz and Cahit [23] have introduced E-cordial labeling as a weaker version of edge–graceful labeling. They proved that the trees with n vertices, K_n , C_n are E-cordial if and only if $n \neq 2 \pmod{4}$ while $K_{m,n}$ admits E-cordial labeling if and only if $m + n \neq 2 \pmod{4}$.

Definition 1.2 [20]

A prime cordial labeling of a graph G with vertex set V is a bijection f from V to $\{1, 2, 3, ..., |V|\}$ where each edge uv is assigned the label 1 if gcd (f(u), f(v)) = 1 and 0 if gcd (f(u), f(v)) > 1, such that the number of edges having label 0 and edges having label 1 differ by at most 1.

Sundaram et.al. [19] introduced the notion of prime cordial labeling. They proved the following graphs are prime cordial: C_n if and only if $n \ge 6$; P_n if and only if $n \ne 3$ or 5; $K_{1,n}(n, \text{ odd})$; the graph obtained by subdividing each edge of $K_{1,n}$ if and only if $n \ge 3$; bi-stars; dragons; crowns; triangular snakes if and only if the snake has at least three triangles; ladders. J. Babujee and L.Shobana [22] proved the existence of prime cordial labeling for sun graph, kite graph and coconut tree and Y-tree, $< K_{1,n}$: $2 > (n \ge 1)$; Hoffman tree, and $K_2 \Theta C_n (C_n)$

Volume 5 Issue 12, December 2016 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY In this paper we introduce the concept of integer *I*-cordial labeling and we prove that some standard graphs such as cycle C_n , Path P_n , Friendship F_n , Helm graph H_n , Closed graph CH_n , Double Fan DF_n , $n \ge 2$, are *I*-cordial; Wheel W_n and Fan graph f_n are *I*-cordial if and only if n is even and complete graph K_p is not *I*-cordial.

Notation.1.3 Here $[-x..x] = \{t/t \text{ is an integer and } |t| \le x\}$ and $[-x..x]^* = [-x..x] - \{0\}$.

2. Main Results

Definition.2.1

Let G = (V,E) be a simple connected graph with p vertices. Let $f: V \rightarrow \left[-\frac{p}{2} \dots \frac{p}{2}\right]^*$ or $\left[-\left|\frac{p}{2}\right| \dots \left|\frac{p}{2}\right|\right]$ as p is even or odd respectively be an injective mapping such that $f(u) + f(v) \neq 0$ and induces an edge labeling $f^*: E \rightarrow \{0, 1\}$ where f(uv) = 1, if f(u) + f(v) > 0 and f(uv) = 0 otherwise. Let $e_f(i) =$ number of edges labeled with i, where i = 0 or 1. f is said to be *I*-cordial if $|e_f(0) - e_f(1)| \leq 1$. A graph G is called *I*-cordial if it admits a *I*-cordial labeling.

Figure 1: I-cordial Graph

Theorem 2.2 The cycle C_p is *I*-cordial.

Proof. Let $v_1, v_2, \ldots v_p$ be the p vertices of the cycle C_p . Here q = p.

CASE 1.p is even.

Let p = 2n.We define $f : V \rightarrow [-n ...n]^*$ as follows: $f(v_i) = -I$; $1 \le i \le n$; $f(v_{n+i}) = i$; $1 \le i \le n$

When $f(v_n) = -n$ and $f(v_{n+1}) = 1$, the edge labeling $f^*(v_n v_{n+1}) = -n + 1$.

This implies that $f^*(v_n v_{n+1}) < 0$.

Similarly, f (v_1) = -1 and $f(v_p)$ = n yield $f^*(v_1v_p)$ = n - 1, which is positive when $n \geq 1.$

Therefore, we assign $f^*(v_1v_p) = 1$. Obviously, the sum of consecutive negative (positive) integers is negative (positive). As there are $\frac{q}{2}$ such negative labels and $\frac{q}{2}$ positive labels, $e_f(0) = e_f(1) = \frac{q}{2}$.

CASE 2. p is odd and p > 3.

Let p=2n+1, when n>1.We define $f:V\rightarrow [-n \hdots n]$ as $f(v_i)=$ - $i,\ 1\leq i\leq n$ - 1; $f(v_{n\cdot 1+i})=i+1$, $1\leq i\leq n$ - 1 and $f(v_n)=0$

Let us consider the edge $v_n \; v_{n+1} {\in E}$ then $f(v_n) = {\text{-}} (n {\text{-}} 1)$ and $f(v_n) = 1$

That is, $f(v_n) + f(v_{n+1}) < 0$, which implies $f^*(v_n v_{n+1}) = 0$. Similarly, for the edge, $v_n v_1$, $f^*(v_n v_1) = -1 + 0 = -1$, so that $f^*(v_n v_1)$ receives label 0. From the observation n + 1 edges receive label 0 and n edges receive label 1.

Therefore, $e_f(0) = n + 1$ and $e_f(1) = n$. Thus $|e_f(0) - e_f(1)| = 1$.

The case when p = 3 does not yield any I-cordial labeling for C_3 by Theorem 2.3.

Thus C_p is *I*-cordial graph.

Figure 2: C₁₂ and C₁₁ are *I*-cordial graph.

Theorem 2.5 Path $P_n n > 2$ is *I*-cordial.

Proof. When n = 3, we label $\{-1, 0, 1\}$ corresponding to the vertices $\{v_1, v_2, v_3\}$ which implies P_3 is I-cordial.

For the case n > 3, we labeling is similar to Theorem 2.4

Theorem2.6 Complete graph K_p is not *I*-cordial. Proof holds from Theorem 2.3 and 2.4.

Theorem 2.7 The Wheel graph W_n ; n > 3 is *I*-cordial if and only if n is even.

Proof. Let u be the apex vertex and v_1, v_2, \ldots, v_n be the rim vertices. Here |V| = n + 1 and |E| = 2n. Let us consider two cases.

Case 1. |V| is odd. (n is even)

Let n=2m.We define $f:V\rightarrow$ [-m . . m] as f(u)=0; $f(v_i)=$ - i , $1\leq i\leq m$ and $f(v_{m+i})=i,$ $1\leq i\leq m.$

Consider the vertex label $f(v_m)$ = -n and $f(v_{m+1})$ = 1 then, $f^*(v_mv_{m+1}) < 0$. Also $f^*(v_iv_{i+1}) < 0$ for all $i = 1, 2, \ldots, m$ and $f^*(v_i v_{i+1}) > 0$ for all $i = m+1, \ldots, 2m-1$. Also, $f(v_{2m}) = n$ and $f(v_1) = -1$.

Hence W_n ; n > 3 is I-cordial.

Volume 5 Issue 12, December 2016

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

Case 2.|V| is even

That is, when n is odd, by Theorem 2.4, W_n ; $n \geq 3$ is not I-cordial.

Figure 3: W₆ is *I*-cordial

Theorem 2.8 Helm graph H_n is *I*-cordial.

Proof. Let $H_n = G$, then p = 2n + 1 and q = 3n. Let v be the apex vertex, v_1, v_2, \ldots, v_n be the rim vertices of the cycle and u_1, u_2, \ldots, u_n be the pendant vertices corresponding to v_i 's.

CASE 1.n is odd.

Let n = 2m + 1.We define $f : V \rightarrow [-(2m + 1)..(2m + 1)]$ asf(v) = 0; $f(v_i) = -i$, $1 \le i \le m + 1$; $f(v_{(m+1+i)}) = i$, $1 \le i \le m$; $f(u_i) = -(m + 1 + i)$, $1 \le i \le m$ and $f(u_{m+i}) = (m + 1 - i)$, $1 \le i \le m$.

Let us consider the vertices v_{m+1} and v_{m+2} . We have $f(v_{m+1}) = -(m + 1)$ and $f(v_{m+1}) = 1$. Then $f^*(v_{m+1}v_{m+2}) < 0$. Also, $f^*(v_iv_{i+1}) < 0$, for all i = 1, 2, 3, ..., m. Similarly, consider the vertices v_1 and v_{2m+1} . Let $f(v_{2m+1}) = m$ and $f(v_1) = -1$, which implies, $f^*(v_{2m+1}v_1) > 0$. Also, $f^*(v_iv_{i+1}) > 0$, for all i = m + 2, ..., 2m. Thus $|e_f(0) - e_f(1)| = 1$.

Now let us consider the pendant vertices u_i's. Here $f^*(v_iu_i) < 0$ for all i = 1, 2, ..., m and $f^*(v_iu_i) > 0$ for all i = m + 2, ..., 2m + 1. Also, the vertex, $f(v_{m+1}) = -(m + 1)$ and $f(u_{2m+1}) = 2m + 1$. Thus, $f^*(v_{m+1}u_{2m+1}) > 0$. Here $|e_f(0) - e_f(1)| = 1$. Now, $f^*(vv_i) < 0$, for all i = 1, 2, ..., m + 1 and $f^*(vv_i) > 0$, for all i = m + 2, ..., 2m + 1 which implies, $|e_f(0) - e_f(1)| = 1$. From all the cases, $|e_f(0) - e_f(1)| \le 1$.

CASE 2.n is even.

Let n = 2m.We define $f: V \rightarrow [-(2m + 1) \dots (2m + 1)]$ as $f(v) = 0; f(v_i) = -i, 1 \le i \le m; f(v_{m+i}) = i, 1 \le i \le m; f(u_i) = -(m + i), 1 \le i \le m$ and $f(u_{m+i}) = (m + i), 1 \le i \le m.$

Since the apex vertex v, is labeled with 0, $f^*(vv_i) < 0$, for all $i = 1, 2, \ldots$, m and $f^*(vv_i) > 0$, for all $i = m + 1, m + 2, \ldots$, 2m. Here $|e_f(0) - e_f(1)| = 0$.

Consider the vertex v_m and v_{m+1} . Now $f(v_m) = -m$ and $f(v_{m+1}) = 1$. Thus $f^*(v_m v_{m+1}) = -m + 1 < 0$. Also, $f^*(v_i v_{i+1}) < 0$ for all i = 1, 2, ..., m and $f^*(v_i v_{i+1}) > 0$ for all i = m + 1, ..., 2m - 1. Also $f^*(v_{2m} v_1) = m - 1 > 0$. Here $|e_f(0) - e_f(1)| = 0$. Now, $f^*(v_i u_i) < 0$ for all i = 1, 2, ..., m and $f^*(v_{i+1} u_{i+1}) > 0$ for all i m + 1, m + 2, ..., 2m. Thus $|e_f(0) - e_f(1)| = 0$. Hence, H_n is *I*-cordial.

Figure 4: H₇ is *I*-cordial

Theorem 2.9 The closed helm graph CH_n is *I*-cordial.

Proof. Let $CH_n = G$. Then p = 2n + 1 and q = 4n. Let v be the apex vertex, $v_1, v_2, \ldots v_n$ be the vertices of inner cycle and $u_1, u_2, \ldots u_n$ be the rim vertices of the outer cycle. The case when n is even follows from Theorem 2.7. Now suppose n is odd and n = 2m+1.

We define $f: V \rightarrow [-(2m + 1)..(2m + 1)]$ as f(v) = -(m + 1); $f(v_i) = -i$, $1 \le i \le m$; $f(v_{m+1}) = 0$; $f(v_i) = 2m + 2 - i$, $1 \le i \le m$; $f(u_i) = -(m + 1 + i)$, $1 \le i \le m$; $f(u_{m+i}) = i$, $1 \le i \le m$. Then

 $\begin{array}{ll} f^{*}(vv_{i}) < 0 \mbox{ for all } i = 1, 2, \ldots, m+1 \mbox{ and } f^{*}(vv_{i}) > 0 \mbox{ for all } i = m \\ m & + & 2 \mbox{ , } \ldots \mbox{ , } 2m & + & 1. \mbox{ Also} \\ f^{*}(v_{i}u_{i}) < 0 \mbox{ for all } i = 1, 2, \ldots, m \mbox{ and } f^{*}(v_{i}u_{i}) > 0 \mbox{ for all } i = m \\ + & 1, \mbox{ , } \ldots \mbox{ , } 2m & + & 1. \end{array}$

Thus
$$|e_f(0) - e_f(1)| = 0$$
.

Now, $f(v_{m+1}) = 0$, $f(v_{m+2}) = n$ and $f(v_m) = -m$. Thus, $f^*(v_m v_{m+1}) < 0$ and $f^*(v_{m+1} v_{m+2}) > 0$. In the inner cycle, $f^*(v_i v_{i+1}) < 0$ for all i = 1, 2, ..., m, $f^*(v_i v_{i+1}) > 0$ for all i = m + 1, ..., 2m and $f^*(v_{2m+1} v_1) > 0$. Here $|e_f(0) - e_f(1)| = 1$.

 $\begin{array}{l} \mbox{Considering the outer cycle } f^{*}(u_{i}u_{i+1}) < 0 \mbox{ for all } i = 1, 2, \ldots, \\ m \mbox{ and } f^{*}(u_{i}u_{i+1}) > 0 \mbox{ for all } i = m+1, \ldots, 2m. \mbox{ Also } f^{*}(u_{2m+1}u_{1}) \\ < 0 \mbox{ and } f^{*}(u_{m}u_{m+1}) < 0. \mbox{ Here } |e_{f}(0) - e_{f}(1)| = 1. \mbox{ From all } \\ \mbox{ the cases, } |e_{f}(0) - e_{f}(1)| \leq 1. \end{array}$

Thus G is *I*-cordial.

Figure 5: CH₈ is *I*-cordial.

Volume 5 Issue 12, December 2016 www.ijsr.net Licensed Under Creative Commons Attribution CC BY

Theorem 2.10 Friendship graph F_n , n > 1 is *I*-cordial.

Proof. Let v_0 be the central vertices of n triangles, consecutively of F_n . We note that p = 2n + 1 and q = 3n. We consider two cases.

CASE 1.n is even

Let $n=2m.Define\ f:V\rightarrow [-2m\ .\ .\ 2m]$ as $f(v_i)=i$, $1\leq i\leq 2m$, i is odd ; $f(v_{2m+i})=-i$, $1\leq i\leq 2m$, i is odd ; so that the edges of triangles C_i , $i=1,\ 2,\ \ldots$, m are all >0 and the edges of triangles $C_i,\ i=m+1,\ \ldots$, 2m are all <0. Hence, 3m edges shares positive and negative labels. That is, $e_f(0)=e_f(1).$

CASE 2.n is odd.

Thus, $|e_f(0) - e_f(1)| = 1$. Therefore, F_n is *I*-cordial.

Figure 6: Fan graph F₆ is *I*-cordial

Theorem.2.11 The fan f_n , $n \ge 3$ is *I*-cordial if and only if n is even.

Proof. f_n has n + 1 vertices and 2n - 3 edges. Let u be the apex vertex with degree n. Let $v_1, v_2, v_3, \ldots, v_n$ denote the path vertices adjacent to u in f_n .

Case 1.n is even

Let n = 2m. Define $f: V \rightarrow [-m \dots m]$ as f(v) = 0; $f(v_i) = -i$; $1 \le i \le m$ and $f(v_{m+i}) = i$; $1 \le i \le m$ and $f(v_{m+i}) = i$; $1 \le i \le m$. Then $f^*(vv_i) < 0$ for all $i = 1, 2, \dots$, m and $f^*(vv_i) > 0$ for all $i = m + 1, m + 2, \dots$, 2m. Thus $|e_f(0) - e_f(1)| = 0$. Similarly, $f^*(v_iv_{i+1}) < 0$ for all $i = 1, 2, \dots$, m and $f^*(v_iv_{i+1}) > 0$ for all $i = m + 1, m + 2, \dots$, 2m - 1. Thus $|e_f(0) - e_f(1)| = 0$. for all $i = m + 1, m + 2, \dots$, 2m - 1. Thus $|e_f(0) - e_f(1)| = 0$. $f^*(v_iv_{i+1}) < 0$ for all $i = m + 1, m + 2, \dots$, 2m - 1. Thus $|e_f(0) - e_f(1)| = 0$. $f_n, n \ge 3$ is *I*-cordial.

When n is odd, by Theorem 2.2.3 f_n is not *I*-cordial.

Theorem 2.12The double fan Df_n , $n \ge 2$ is *I*-cordial.

Proof. Df_n has n + 2 vertices and 3n - 1 edges. Let a and b denote the apex vertices of degree n and v_1, v_2, \ldots, v_n be the path vertices adjacent to a and b in Df_n . Then $E(Df_n) = A \cup B \cup C$ where $A = \{av_i\}_{i=1}^n$; $B = \{bv_i\}_{i=1}^n$ and $C = \{v_iv_{i+1}\}_{i=1}^n$. We consider two cases:

CASE1. n is even

Let n = 2m.We define $f: V \rightarrow [-(m + 1)..(m + 1)]^*asf(a) = m + 1$; f(b) = -(m + 1); $f(v_i) = i$, $1 \le i \le m$ and $f(v_{m-1+i}) = -i$, $1 \le i \le m$. Consider $f^*(av_i) > 0$ for all i = 1, 2, ..., 2m and $f^*(bv_i) < 0$ for all i = 1, 2, ..., 2m. Thus $|e_f(0) - e_f(1)| = 0$, where $e \in A \cup B$.

Now, $f^*(v_iv_{i+1}) > 0$ for all i = 1, 2, ..., m and $f^*(v_iv_{i+1}) < 0$ for all i = m + 1, m + 2, ..., 2m - 1.

Thus $|e_f(0) - e_f(1)| = 1$.

CASE 2. n is odd

Let n = 2m + 1.We define $f: V \rightarrow [-(m+1)..(m+1)]$.We label as follows: f(a) = -(m+1); f(b) = m + 1; $f(v_i) = -i$, $1 \le i \le m-1$; f(v) = 0; $f(v_{m+i}) = i$, $1 \le i \le m$.Let us consider, $f^*(av_i) < 0$ for all i = 1, 2, ..., 2m + 1.

Thus $|e_f(0) - e_f(1)| = 0$ for all $e \in A \cup B$.

Now, $f(v_iv_{i+1}) < 0$ for all i = 1, 2, ...m and $f^*(v_iv_{i+1}) > 0$ for all i = m + 1, ..., 2m.

Thus $|e_f(0) - e_f(1)| = 0$ for all $e \in C$. Hence from all the cases $|e_f(0) - e_f(1)| \le 1$.

Therefore double fan Df_n , $n \ge 2$ is *I*-cordial.

Figure 8: *Df*₆ is *I*-cordial.

Volume 5 Issue 12, December 2016 www.ijsr.net Licensed Under Creative Commons Attribution CC BY **Theorem 2.13** Double Wheel DW_n , n > 2 is *I*-cordial.

Proof. Let $G = DW_n$ be the double wheel. Let v_0, v_1, \ldots, v_n be the inner rim vertices and v_1', v_2', \ldots, v_n' be the outer rim vertices of DW_n . Then p = 2n + 1 and q = 4n.

We define $f:V\rightarrow [-n\ldots n]$ as, $f(v_0)=0$, $f(v_i)=i$, $1\leq i\leq n$ and $f(v_i')=-i$, $1\leq i\leq n$ so that $f^*(v_iv_{i+1})>0$ for all $i=1,2,\ldots$, n-1 and $f^*(v_i'v_{i+1}')<0$ for all $i=1,2,\ldots$, n-1. Here n edges equally shares negative and positive integers. Since, $f(v_0)=0$ then $f^*(v_0v_i)>0$ for all $i=1,2,\ldots$, n and $f^*(v_0v_i')<0$ for all $i=1,2,\ldots$, n and $f^*(v_0v_i')=0$ for all $i=1,2,\ldots$, n and $f^*(v_0v_i')=0$.

Figure 9: DW₄ is *I*-cordial.

References

- I.Cahit, Cordial graphs, A weaker version of graceful and harmonious graphs, ArsCombinatoria, 23,1987, pp 201-208.
- I.Cahit, Recent results and Open Problems on Cordial graphs, contemporary methods in Graph Theory, R.Bodendrek.(Ed.) Wissenschaftsverlog, Mannheim,1990, pp. 209-230.
- [3] I. Cahit, H-Cordial Graphs, Bull.Inst.Combin.Appl; 18 (1996) 87-101.
- [4] G.M. Du. Cordiality of complete k- partite graphs and some special Graphs, NeimengguShida. XuebaoZiranKexueHauwen Ban 2 (1997) 9-12.
- [5] J.A.Gallian, A dynamic survey of graph labeling, Electron.J.Combin.5 (2000) 1-79.
- [6] Y.S. Ho, S.M. Lee, S.S. Shee, Cordial labeling of the Cartesian product and composition of graphs, Ars Combin.29 (1990) 169-180.
- [7] Y.S. Ho, S.M. Lee, S.S. Shee, Cordial labeling of unicyclic graphs and generalized Peterson graphs, Congr. Numer 68(1989) 109-122.
- [8] M.Hovey, A-Cordial Graphs, Discrete Math.1991 (3), pp 183-194.
- [9] F.Harary, Graph Theory, Addison- Wesly, Reading Mass 1972.
- [10] W.W.Kirchherr, NEPS Operations on Cordial graphs, Discrete Math.115(1993) 201-209.
- [11] W.W.Kirchherr, On the cordiality of certain specific graphs, ArsCombin. 31 (1991) 127 138.
- [12] W.W.Kirchherr,Algebraic approaches to cordial labeling, Graph Theory, CombinatoricsAlgorithms and applications, Y. Alavi,et.al(Eds.)SIAM, Philadelphia, PA, 1991, pp 294 – 299.

- [13] S.Kuo, G.J. Chang, Y.H.H. Kwong, Cordial labeling of mK_nDiscrete math. 169 (1997) 1-3.
- [14] Y.H.Lee, H.M. Lee, G.J.Chang, Cordial labeling of graphs, Chinese J.Math20(1992) 263 – 273.
- [15] S.M.Lee, A.Liu, A construction of cordial graphs from smaller cordial graphs, ArsCombin. 32 (1991) 209-214.
- [16] E. Seah, On the construction of cordial graphs from smaller cordial graphs, ArsCombin. 31 (1991) 249 – 254.
- [17] S.C.Shee, The cordiality of the path union of n copies of a graph, Discrete Math., 151 (1996) 221-229.
- [18] S.C.Shee, Y.S.Ho, The Cardiality of the one-point union of n-copies of a graph, Discrete Math.117 (1993) 225-243.
- [19] M.Sundaram, R.Ponrajan, S.Somusundaram, Prime Cordial labelling of graphs, Journal of Indian Academy Of Mathematics, 27(2005) 373 – 393
- [20] A.Unveren and I.Cahit, M-Cordial Graphs, Pre-print
- [21] S.K.Vaidya, N.A. Dani, K.K.Kanani, P.L.Vihol, Cordial and 3- Equitable labeling forsome star related graphs, International Mathematical Forum, 4, 2009,no.31, 1543-1553.
- [22] J B Babujee and L Shobana, Prime and Prime cordial labeling for special graphs, Int. J. Contemp. Math Sciences 5, (2010), 2347 – 2356.
- [23] R.Yilmaz and I.Cahit, "E-Cordial graphs", ArsCombin.,Vol 46, pp.251 – 266, 1997.