
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 12, December 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Analysis of Efficiency of Automated Software
Testing Methods: Direction of Research

K. Valliammai1, Dr. P. Sujatha2

1Research Scholar, Department Computer Science, Bharathiar University, Coiambatore, TN, India

2Associate Professor, Department Computer Science, Vels University, Chennai, TN, India

Abstract: Efficiency is an important property of software testing potentially even more important than effectiveness. Because complex
software errors exist even in critical, widely distributed programs for many years, developers are looking for automated techniques to
gain confidence in their programs correctness. The most effective way to inspire confidence in the program’s correctness for all inputs is

called program verification. However, due to state explosion and other problems, the applicability of verification remains limited to
programs of a few hundred lines of code. Now, software testing trades this effectiveness for efficiency. It allows one to gain confidence
in the program’s correctness with every test input that is executed. So, automated testing is an efficient way to inspire confidence in the
program’s correctness for an increasing set of inputs. Yet, most research of software testing has mainly focused on effectiveness.

Keywords: Automated Testing, Gain Confidence, Software Errors, Software Testing, State Explosion

1. Introduction

The most effective testing technique reveals a maximal
number of errors and inspires a maximum degree of
confidence in the correctness of a program.

We start working to the efficiency
The most efficient testing technique
i) Generates a sufficiently effective test suite in minimal
time or
ii) Generates the most effective test suite in the given time
budget.

Using a simple set of assumptions, we construct a general
model of software testing, define testing strategies where
each generated test input is subject to a cost, and cast our
efficiency analysis as a problem in probability theory.

We model the testing problem as an exploration of error
based input partitions. Suppose, for a program there exists a
partitioning of its input space into homogeneous sub
domains [4], [5]. For each sub domain, either all inputs
reveal an error or none of the inputs reveal an error. The
number and “size” of such error-based partitions can be
arbitrary but must be bounded. Assuming that it is unknown
a-priori whether or not a partition reveals an error, the
problem of software testing is to sample each partition in a
systematic fashion to gain confidence in the correctness of
the program. A testing technique samples the program’s

input space. We say that a partition Di is discovered when
Di is sampled for the first time. The sampled test input
shows whether or not partition Di reveals an error.
Effectively, the sampled test input becomes a witness for the
error-revealing property of Di. A testing technique achieves
the degree of confidence x when at least x% of the program
inputs reside in discovered partitions. Hence, if none of the
discovered partitions reveals an error, we can be certain that
the program works correctly at least for x% of its input. For
our efficiency analysis,
We consider two strategies:

1. Random testing that is oblivious of error-based partitions
and
2. Systematic testing that samples each partition exactly
once.

Random testing (R) samples the input space uniformly at
random and might sample some partitions several times and
some not at all. Specifically, we show that for R the number
and size of partitions discovered decays exponentially over
time.

Systematic testing samples each error-based partition
exactly once and thus strictly increases the established
degree of confidence. We model a systematic testing
technique that chooses the order in which partitions are
discovered uniformly at random and show that number and
size of partitions discovered grows linearly over time.

2. Motivation

The software is a major component of organizations in
computer engineering. They make their own projects and
learn how to develop software. But it seems that while learn
to develop software just by following the actual software
development cycle, which should spend 50 percent or more
on software testing, publish software on the market. Users
only emphasize the software design and coding part. The
proof of the software development lifecycle is informally
filmed. Regardless of the software they develop, they do not
have the system manual or use automated test tools to test
the execution. In the software development stage, developers
have to face some challenges, and consider a variety of
situations.

Ultimately, it affects the reputation and profile of the
organization. Since manual testing is very expensive, the use
of automated test tools is essential to reduce software costs
and enable us to compete with global markets. Automated
testing tools provide wizard testing automation and their
own commands, and provide recording functions and
rework. It is self-controlled flow and self-motion.

Paper ID: ART20163174 34

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 12, December 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Automated testing means that fewer people need to test the
system and often can test with hundreds of people who
manage the simulation of the network on the terminal. In
addition, we note that users who use software testing tools
are very confused. There is a number of software testing
tools available online. The automation tools that master the
integration of some important tools are also a great work
that will take a long time. Even most of the powers are
confused about providing the appropriate tools to study the
selected student practice guidelines. Few companies can
spend money for testing tools. As can be seen, most
educational institutions using automated testing tools. We
would like to provide guidance and research on automated
testing tools with minimal effort. The results of our work
will help users gain exposure to automated testing tools that
can easily learn automated testing tools.

We use the quality standards and functional standards.
Common quality standards are tested for functionality,
reliability, ease of use, efficiency, maintainability,
portability, vendor support, licensing and pricing.

3. Objective

Our goal in this survey is to help professional’s select

efficient tools that suit their needs and environments, as well
as give some indication of the state of the technology in
hedging tools. This work is also of artistic value to those
who are new to practice and software testing coverage, as
well as those who want to understand the gap between
industry and academia.

First, we note that the code coverage tool has been growing
in interest to our software development organizations for
several years. In the project evaluation [5], the internal and
informal discussion of the forum, the following found
several important issues.

1) Developers and testers do not need to know how much of
our code has been included in a good way of testing.

2) The development manager knows how well he is
interested in testing through development milestones
through code completion such as unit testing, integration
testing and system testing.

3) The cycles of change, manufacture and testing are
generally inefficient and ineffective. There are too many
manual steps in the loop and too many flaws crept
through the fields.

4) Developers are so entangled in the fire that they have no
time to search for tools to automate their processes [6].

Therefore, we decided to introduce better construction and
use of automated testing processes. Due to an element in our
approach, we focus on code coverage, which is very easy to
learn by developers and administrators, and has an intuitive
appealing approach, even though its effectiveness is limited
by the basic theory of defect detection. Note to introduce
other techniques, such as building evaluation [7], but we
have limited the coverage of the tool code for the tools and
the range of functionality they provide, as these tools are a
great attraction for us to work with software developers and
their managers. This approach also provides an overview of

how these tools can improve our research, thereby extending
and improving coverage tools.

4. Literature Review

Muhammad Shahid et al. [1] He explains that test
Coverage is an important indicator of software quality and
an essential part of software maintenance. It helps in
evaluating the effectiveness of testing by providing data on
different coverage items. Although much research effort has
been put on how to get coverage information by either code
based testing or requirement based testing, not much has
been paid to measure and analyze the coverage by covering
maximum number of coverage items. The systematic
process was described in terms of the research questions
defined, searching keywords used, the exclusion and
inclusion criteria. Most of the research papers are from
conference and paper proceedings, which indicate that more
work needs to be done in order to improve the current state
of research in test coverage measurement and analysis.

Pranali Prakash Mahadik et al. [2] He conveys that there
are several methods which are capable of generating test
input automatically based on the source code of the program
under test. Survey paper mentioned the description in brief
about test data generation technique like Random selection,
Search-based techniques and Symbolic execution based
techniques. Survey focuses on the problem of how to choose
the most appropriate tool that will fulfill developer
requirements consisting of level of automation, cost
requirement, language support, etc. The idea to develop new
efficient and effective tool by merging properties of some
tools of similar kind that can find more range of errors and
improve the code coverage for object oriented code by
considering features of object oriented languages.

Chayanika Sharma et al. [3] He explains that testing
ensures that software meets user specifications and
requirements. However, the field of software testing has a
number of underlying issues like effective generation of test
cases, prioritisation of test cases etc which need to be
tackled. These issues demand on effort, time and cost of the
testing. Different techniques and methodologies have been
proposed for taking care of these issues. Use of evolutionary
algorithms for automatic test generation has been an area of
interest for many researchers. Genetic Algorithm (GA) is
one such form of evolutionary algorithms. The GA is also
used with fuzzy as well as in the neural networks in different
types of testing. It is found that by using GA, the results and
the performance of testing can be improved.

Adnan Causevic et al. [4] He conveys that contemporary
aspect, such as the introduction of a more lightweight
process, trends towards distributed development, and the
rapid increase of software in embedded and safety-critical
systems, challenge the testing process in unexpected
manners. To our knowledge, there are very few studies
focusing on these aspects in relation to testing as perceived
by different contributors in the software development
process. One of the noteworthy testing research directions
from an industrial perspective seems to be test driven
development as indicated by the results of the survey. The
survey has unique features such as strategic embedding of

Paper ID: ART20163174 35

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 12, December 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

multi-purpose questions and categorisation of respondents
on contemporary aspects which enable us to gain qualitative
insights.

Dudekula Mohammad Rafi et al. [5] He conveys that the
academic views are studied with a systematic literature
review while the practitioners views are assessed with a
survey, where we received responses from 115 software
professionals. The results of the systematic literature review
show that the source of evidence regarding benefits and

limitations is quite shallow as only 25 papers provide the
evidence. Furthermore, it was found that benefits often

originated from stronger sources of evidence (experiments
and case studies), while limitations often originated from
experience. The limitations were high initial invests in
automation setup, tool selection and training. Additionally,
45% of the respondents agreed that available tools in the
market offer a poor fit for their needs. Finally, it was found
that 80% of the practitioners disagreed with the vision that
automated testing would fully replace manual testing.

5. Automated Testing Measures

Software measures can help to improve the process of
automated test organization and track its status. These
measures and techniques have been successfully applied
through our test equipment software. Just as the quote at the
beginning of this study means that if we can measure
something, then we have something to quantify. If we can
quantify things, then we can explain in more detail and learn
more about it. If we can explain it, then we have a better
chance to try to improve it, and so on.

Over time, software projects have become more complex
due to increased functionality, bug fixes, etc. It also requires
that the task be done with fewer people and less time. Over
time complexity will tend to reduce test coverage and,
ultimately, product quality. The other factors involved in the
time are the total cost of the product and the time that the
software is provided. Software measures can provide insight
into the state of automated test work.

5.1 Percent Automatable

At the beginning of the automated test work, the project
automatically has an existing manual test program, a new
automated effort from scratch, or some combination of the
two. In either case, it can be determined as a percentage that
can be automated. The proportion of automation can be
defined as a given set of test cases, how many of them can
be automated? This may be represented by the following
formula:
PA (%) = ATC

TC
=

of test cases automatable

of total test cases

PA = Percent Automatable
ATC = # of test cases automatable
TC = # of total test cases

5.2 Automation Progress

Automation Progress means that the proportion of
automated test cases, how many have been fully automated
at a given moment? Basically, how do we automate the test
for what is the goal? The goal is to automate 100% of

"automated" test cases. This measure is useful for
monitoring at different stages of automated testing.

AP (%) = AA

ATC
=

of actual test cases automated

of test cases automatable

AP = Automation Progress
AA = # of actual test cases automated
ATC = # of test cases automatable

5.3 Test Progress

The progress of automation is closely related, but not the
only common indicator of automation is the progress of the
trial. Test progress can simply be defined as the number of
test cases that are attempted (or completed) over time.

TP (%) = TC

T
=

of test cases (attempted or completed)

time (days \weeks \months ,etc)

TP = Test Progress

TC = # of test cases (either attempted or completed)

T = some unit of time (days / weeks / months, etc)

5.4 Percent of Automated Testing Test Coverage

We want to consider the automatic measurement software is
Percent of automated testing test coverage. This is a measure
to determine which test coverage is being automated to test
really long headlines? It is a measure of the integrity of the
test. This measure is not as much of a measure of how much
automation runs, but rather how much of the product
functionality is covered. For example, running the same or
similar data line may require a considerable amount of time
and effort to run 2000 test cases, does not mean a large
percentage of test coverage. The percentage of automated
test coverage does not specify anything about the
effectiveness of the ongoing trial; it is a measure of its size.
PTC (%) = AC

C
=

automation coverage

total coverage

PTC = Percent of Automatable testing coverage
AC = Automation coverage
C = Total Coverage (KLOC, FP, etc)

5.5 Percent of Testing Coverage

The Percent Automated Test Coverage measure can be used
in conjunction with the standard software testing measure
called Test Coverage.
TC = TTP

TTR
=

total # of TP

total # of test requirements

TC = Percent of Testing Coverage
 TTP = Total # of Test Procedures developed
TTR = Total # of defined Test Requirements

5.6 Defect Density

The defect density is another well known because it is not
specifically automated. It is a measure of all well-known
defects measured by the size of the software entity. For
example, if there is a high density of defects in a particular
function, it is important to conduct a causal analysis. This is
a very complex function, so it is expected that the defect
density is high? Is there a problem with the design /

Paper ID: ART20163174 36

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 12, December 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

implementation functionality? Is the resource (or not
enough) functioning allocated incorrectly because it has
been assigned an inaccurate risk? We can also conclude that
the development of this particular function requires more
training.

DD= D

SS
=

of known defects

total size of system

DD = Defect Density
D = # of known defects
SS = Total Size of system

5.7 Defect Trend Analysis

Closely related measure to Defect Density is Defect Trend
Analysis. Defect Trend Analysis is calculated as
DTA = D

TPE
=

of known defects

of test procedures executed

DTA = Defect Trend Analysis
D = # of known Defects
TPE = # of Test Procedures Executed over time
Cost to locate defect = Cost of testing / the number of
defects located
Defects detected in testing = Defects detected in testing /
total system defects
Defects detected in production = Defects detected in
production/system size

5.8 Actual Impact on Quality

One of the most popular measures to measure quality across
tests (if the number of defects is used as a quality measure)
is Defect Removal Efficiency (DREs), which are unspecific
automation, but are very useful when used with automation
work. DRE is a measure used to determine their efforts to
eliminate the effectiveness of defects. This is also an indirect
measure of product quality. The value is calculated as a
percentage of DRE. The higher the percentage, the greater
the positive impact on product quality. This is because it
represents the absence of any particular phase in time for
identification and elimination.
DRE(%) =

DT

DT +DA

of defects found during testing

of defects found during testing +# of defects found after delivery

DRE = Defect Removal Efficiency
DT = # of defects found during testing
DA = # of defects acceptance defects found after delivery

5.9 Other Software Testing Measures

Along with the measures mentioned in the previous section,
there are some common detection methods. Such measures
do not necessarily apply to automation, but can also be, and
often are, associated with general software testing. These
measures fall into three categories:
 Coverage: Significant parameters are used to measure the

range of tests and successes.
 Progress: The parameter helps identify the success

criteria of the test to match the progress. Progress
measures are collected on iterations. They can be used to
draw the process itself (e.g. time to fix defects, time to
test, etc).

 Quality: Excellence, worth, value and other significant
measures to test the product. Quality is difficult to

measure directly; however, the impact of measured mass
is much easier and possible.

6. Conclusion

Nowadays, the testing in the software development has
played an important role. It can be seen that the main is
amount of money and the total cost of software development
invests in software testing. The survey is based on practical
and functional standards that some automated testing
methods have to illustrate that users can try to get software
to do it easily in an application. The software measures
automated software testing important indicators of hygiene,
quality and schedule. This can also be used for past
performance, current status and future trends. Good
measures are objective, measurable, meaningful, simple, and
have ready-made data. Software quality engineering using
traditional software test methods can be applied for
automated software testing. Whether the automated
assessment is meaningful or not in the test case reflects the
automation of its work. Given an automated set of test cases,
it is determined to provide the greatest return on investment.
Just think, just because test automation does not mean it
should be automated. Our study included three
characteristics of comparison: (i) code coverage, (ii)
coverage criteria and (iii) automation and reporting. Overall,
there has been a lot of investigation and production of
industrial software in software test coverage areas that have
been used. We hope that our work will help to increase the
use of tools to improve software testing.

References

[1] Muhammad Shahid, Suhaimi Ibrahim and Mohd Naz’ri

Mahrin by “A Study on Test Coverage in Software

Testing”, International Conference on

Telecommunication Technology and Applications,2011.
[2] Pranali Prakash Mahadik, Prof.Dr. D. M. Thakore by

“Survey on Automatic Test Data Generation Tools and

Techniques for Object Oriented Code”, International

Journal of Innovative Research in Computer and
Communication Engineering, Vol. 4, Issue 1, January
2016.

[3] Chayanika Sharma , Sangeeta Sabharwal , Ritu Sibal by
“A Survey on Software Testing Techniques using

Genetic Algorithm”, International Journal of Computer
Science Issues, Vol. 10, Issue 1, No 1, January 2013.

[4] Adnan Causevic, Daniel Sundmark, Sasikumar
Punnekkat by “An Industrial Survey on Contemporary

Aspects of Software Testing”,.

[5] Dudekula Mohammad Rafi, Katam Reddy Kiran Moses,
Kai Petersen Mika V. Mantyla by “Benefits and

Limitations of Automated Software Testing: Systematic
Literature Review and Practitioner Survey”,

[6] Hitesh Tahbildar, Plabita Borbora,G. P. Khataniar by
“Teaching Automated Test Data Generation Tools For

C, C++ , And Java Programs”, International Journal of

Computer Science & Information Technology (IJCSIT)
Vol 5, No 1, February 2013.

[7] Saswat Anand, Tsong Yueh Chen, John Clarkby “An

Orchestrated Survey on Automated Software Test Case
Generation”.

Paper ID: ART20163174 37

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 12, December 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[8] J. Lee, S. Kang, D. Lee by “Survey on software testing

practices”, The Institution of Engineering and

Technology 2012.
[9] Pradeep Kumar Singh, Om Prakash Sangwan by “A

Study and Review on the Development of Mutation
Testing Tools for Java and Aspect-J Programs”, I.J.
Modern Education and Computer Science, 2014.

[10] Akalanka Mailewa and Jayantha Herath Susantha
Herath by “A Survey of Effective and Efficient

Software Testing”.

[11] Abdullah Saad AL-Malaise AL-Ghamdi by “A Survey

on Software Security Testing Techniques”, International
Journal of Computer Science and Telecommunications,
Volume 4, Issue 4, April 2013.

[12] Vishal Sangave, Vaishali Nandedkar by “A review on

Automating Test Automation”,
International Journal of Advance Research in Computer
Sciece and Management Studies, Volume 1, Issue 12,
December 2014.

[13] Manjit Kaur and Raj Kumari : "Comparative Study
Automated Testing Tools: Test Complete and
QuickTest Pro", International Journal of Computer
Application , Volume 24 No.1 June 2011.

[14] Hitesh Tahbildar and Bichitra Kalita : "Automated
software test data Generation : Direction of Research "
International Journal of Computer Science and
Engineering Survey , Volume 2 No. 1, PP 99 - 120,
March 2011.

[15] Hitesh Tahbildar and Bichitra Kalita : "Automated test
data generation based on individual constraints and
boundary value" IJCSI International Journal of
Computer Science Issues , vol. 7, pp. 350-359,
September 2010.

[16] Sakamoto, K., H. Washizaki, et al. (2010). “Open Code

Coverage Framework: A Consistent and Flexible
Framework for Measuring Test Coverage Supporting
Multiple Programming Languages”, In the 10th

International Conference on Quality Software,
QSIC,2010, pp. 262-269

[17] Singh M, Gupta P.K., Mishra S., Automated Test Data
Generation for Mutation Using AspectJ Programs‖, In
Proceedings of ICIIP-2011, IEEE, 2011.

[18] Ferrari F.C., Nakagawa E.Y., Maldonado J.C., Rashid
A. Proteum/AJ: a mutation system for AspectJ
programs‖, in Proceedings of AOSD-11, ACM, 2010.

[19] Singh M., Mishra S. and Mall R., ―Accessing and

Evaluating AspectJ based Mutation Testing Tools,
published in Iinternational Journal of Computer
Application, pp. 33-38, 2011.

[20] Singh, P.K, Sangwan O.P. and Sharma A., ―A

Systematic Review on Fault Based Mutation Testing
Techniques and Tools for Aspect-J Programs‖,

published in proceedings of 3rd IEEE International
Advance Computing Conference, IACC-2013, India,
22-23 Feb. 2013.

[21] Saurabh Sinha, Nimit Singhania, and Satish Chandra by
“Automating Test Automation” Suresh

Thummalapenta, IBM Research – India (2012)
[22] Fei Wang, Wencai Du,china by “A Test Automation

Framework Based on WEB” , (2012)

[23] Jingfan Tang by “Towards adaptive framework of

keyword driven automation testing” (2008)

[24] Prof.(Dr.)V. N.Maurya, Er.Rajender Kumar "Analytical
Study on Manual vs. Automated Testing Using with
Simplistic Cost Model" (2012)

[25] A. Sinha, S. Sutton, and A. Paradkar by “Text2Test:

Automated inspection of natural language use cases”

(2010).

Paper ID: ART20163174 38

