Isolation, Identification and Antibiotic Sensitivity Pattern of Bacteria from Urine Samples in Erbil Hospitals

Ashraf N. Kakoo¹, Adel K. Kheder²

¹Biology Department, College of Science, Salahaddin University, Iraq
²Biology Department, College of Education, Salahaddin University, Iraq

Abstract: Seventy one samples of urine were collected from patients suffering from signs and symptoms of urinary tract infections (UTIs) admitted to Erbil hospitals (Erbil teaching hospital, Maternity teaching hospital, Rigazy teaching hospital and Raparen hospital) and Medya diagnostic center during the period from July 2011 to August 2011. The urine samples were cultured on Blood and MacConkey agar, to detect and identify causative bacteria. The results indicate that the positive samples were 50 (70.40 %), while negative samples were 21 (29.60%), out of this 32 (64 %) represent female while 18(36 %) represent male. The isolated bacteria were identified according to cultural characteristics, microscopical examination and biochemical reaction in addition to Api 20 E system. Escherichia coli was among the most predominate pathogenic bacteria isolated from the urine with a rate of (62%) while other bacteria were Klebsiellapneumoniae(10%), Proteus mirabilis (8%), Pseudomonasaerugenosa(8%), Staphylococcus aureus(6%), Enterobacterspp. (4 %), and Staphylococcus saprophyticus(2 %). Sensitivity test of bacterial isolates to different antimicrobials (Amikacin, Ampicillin, Ceftriaxone, Ciprofloxacin, Nalidixic and Gentamycin; however, they showed high resistance to Amikacin, variation in resistance to Ceftriaxone, Ciprofloxacin, Nalidixic and Gentamycin; however, they showed high resistance to Ampicillin.

Keywords: Urinary tract infections, bacterial pathogen & antibiotic sensitivity

1. Introduction

Antibiotics are low molecular weight, natural product of microorganism and are active against other microorganisms. Discovery of antibiotics is one of the greatest events in the history of medicine which has a profound effect on human life, thus in society as a whole (Bhattacharyya and Sen, 2006). However, the overuse and misuse of antibiotics is leading to the emergence of resistance to these life-saving drugs. Resistance to a variety of antimicrobial agents is emerging in bacterial pathogens throughout the world (Joshi et al., 2008). Antibacterial resistance is the best-known example of rapid adaptation of bacteria to a new ecosystem. The ability of bacteria to expand their ecological niche, also in the presence of antibiotics, can be explained by accumulation of point mutations leading to the modification of existing genes and/or the acquisition of resistance genes by horizontal gene transfer. Resistance genes are often located on extra chromosomal genetic elements or in segments inserted within the chromosome that originate from other genome (Carattoli, 2003). In-vitro antibiotic susceptibility testing in clinical microbiology laboratories is primarily to assist the clinician in the choice of an appropriate antibiotic for the treatment of an infected patient (Gosdenet al., 1998).

Urinary tract infections (UTIs) are defined in terms of the inflamed urinary structure, Cystitis: the bladder, Urethritis: the urethra, Pyelonephritis: the renal tubules and interstitium, Prostatitis: the prostate (Wolfthal, 2008). Urine located within the urinary tract, excluding the distal region of the urethra is considered sterile in healthy individuals, as indicated by the absence of cultivable bacterial cell. UTI describes a condition in which there are microorganisms established and multiplying within urinary tract. It most often due to bacterial, but may also include fungal, parasitic and viral infection (Chaudhuri et al., 2008). Over 95% of UTIs are caused by a single bacterial species, and 90% of these are E. coli. Other Enterobacteriaceae, Pseudomonas, and Gram-positive bacteria become increasingly frequent with chronic (Ryan and Ray, 2004).

2. Material and Methods

2.1 Sample Collection

Clean catch midstream urine was collected from each patient into a 20mL calibrated sterilescrew-capped universal container which was distributed to the patients. The specimens were labeled, transported to the laboratory.

Isolation of uropathogens was performed by surface streak procedure on both blood and MacConkey agar and the plates were incubated for 24-48 hours at 37°C. All media were examined after times of incubation, if no growth occurs they were incubated for another 24 hours before regarded as negative.

2.2 Identification of the bacteria

- **Morphological Characteristics**
 The isolated bacterial colonies were identified according to their morphology, colony pigmentation, fermentation, haemolysis and swarming on the blood agar (Atlas et al., 1995).

- **Microscopical characteristics**
The isolated bacteria were further classified by Gram staining to Gram-negative and Gram-positive (Atlas et al., 1995).

- **Biochemical tests**
 Gram negative bacteria were identified by the standard biochemical tests IMViC test (Indol, methyl red, Voges-Proskauer and Citrate), Urease test, Oxidase test and Gram positive microorganisms were identified with the corresponding laboratory tests: catalase, coagulase, mannitol test, novobiocin susceptibility test.

- **API 20E kitApi 20E test**
 To support the biochemical tests, Api 20E was performed for Gram negative bacteria.

Antibiotic sensitivity
Antibiotic sensitivity test was performed for each isolate utilizing the method of Kirby-Bauer (disc diffusion method). This was performed on Mueller-Hinton agar with the following antibiotic discs: Ampicillin (AMP 10μg), Amikacin (AK 30μg), Ceftraxon (CTR 30μg), Ciprofloxacin (CIP 5μg), Gentamicin (CN 10μg), Nalidixic acid (NA 30μg), and Imipenem (IMI 10 μg.). Sensitivity was read after incubation for 24 hrs. at 35°C.

3. Results

3.1 Incidence of urinary tract infection

Out of 71 urine specimens collected from patients complaining of signs and symptoms of UTIs, attended to four hospitals in Erbil city (Maternity teaching hospital, Erbil teaching hospital, Rizgary teaching hospital and Raparen hospital) and Medya diagnostic centre. In the period from July 2011 till August 2011. Fifty samples (70.40%) were positive for bacterial infection.

3.2 UTIs related to sex

Figure (3-1) represent that out of 50 patients, 32 (64%) of bacterial isolates obtained from female and 18 (36%) isolates from male.

3.3 Incidence of bacterial isolates associated with UTIs

Table (3-1) shows the percentage of bacterial isolates from 50 positive urine culture specimens, the percentage of isolates were as follows: *E. coli* (62%), *Klebsiella pneumoniae* (10%), *Pseudomonas aeruginosa* (8%), *Proteus mirabilis* (8%), *Staphylococcus aureus* (6%), *Enterobacter* spp. (4%) and *Staphylococcus saprophyticus* (2%) respectively.

<table>
<thead>
<tr>
<th>Bacterial isolates</th>
<th>No</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>31</td>
<td>62</td>
</tr>
<tr>
<td>Klebsiella pneumonia</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Staphylococcus spp.</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Enterobacter spp.</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

3.4 Identification of Gram-negative bacteria

Table (3-2): Represent some biochemical tests for gram negative bacteria

<table>
<thead>
<tr>
<th>Species</th>
<th>Test Results</th>
<th>I</th>
<th>Mr</th>
<th>Vp</th>
<th>Si</th>
<th>Oi</th>
<th>Mot</th>
<th>Ur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Klebsiella pneumonia</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>- + D D</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Enterobacter spp.</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Abbreviation: I: Indole test, Mr: Methyl red test, Vp: Voges-Proskauer test, Si: Simmons citrate test, Oi: Oxidase test, Ur: Urease, Mot: Motility, D: Different strains gave different results, +: Positive, -: Negative.

3.5 Identification of Gram-positive bacteria

Table (3-3): Represents some biochemical tests for Staphylococci

<table>
<thead>
<tr>
<th>Tests</th>
<th>Staphylococcus spp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. aureus</td>
</tr>
<tr>
<td>Catalase</td>
<td>+</td>
</tr>
<tr>
<td>Mannitol fermentation</td>
<td>+</td>
</tr>
<tr>
<td>Coagulase</td>
<td>+</td>
</tr>
<tr>
<td>Hemolysis</td>
<td>+</td>
</tr>
</tbody>
</table>

Staphylococcus saprophyticus
Most strains of *S. saprophyticus* mannitol fermented, coagulase negative, do not exhibit hemolysis on blood agar. The bacterial isolate was resistant to Novobiocin (Benson, 2001).

3.6 Antimicrobials resistance of bacterial UTIs

Table (3-4): Resistance percentage of UTI bacterial isolates to different antimicrobials under study

<table>
<thead>
<tr>
<th>Species</th>
<th>AK</th>
<th>AMP</th>
<th>CTR</th>
<th>CIP</th>
<th>GN</th>
<th>NA</th>
<th>IMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>31</td>
<td>9.6</td>
<td>90.3</td>
<td>51.2</td>
<td>51.6</td>
<td>65.1</td>
<td>25.1</td>
</tr>
<tr>
<td>Klebsiella pneumonia</td>
<td>5</td>
<td>100</td>
<td>60</td>
<td>20</td>
<td>20</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>4</td>
<td>25</td>
<td>75</td>
<td>25</td>
<td>70</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Staphylococcus spp.</td>
<td>4</td>
<td>70</td>
<td>50</td>
<td>25</td>
<td>0</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Enterobacter spp.</td>
<td>2</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Ampicillin AMP 10μg, Amikacin AK 30μg, Ceftraxon CTR 30μg, Ciprofloxacin CIP 5μg, Gentamicin CN 10μg, Nalidixic Acid</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Volume 5 Issue 12, December 2016

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY
acid NA 30\(\mu\)g, and Imipenem IMI 10 \(\mu\)g.). Sensitivity was read after incubation for 24 hrs. at 35°C. The bacteria isolates were regarded as sensitive or resistant according to CLSI criteria.

4. Discussion

4.1 Incidence of bacterial isolates associated with UTIs.

E.coli was the most prevalent bacterial UTIs in this study, it constitutes about (62%). This result was similar to those recorded by Barrett et al., (1999) and Gluhovschi et al., (1998), they revealed that the isolates percentage of E.coli UTIs were (65.1%) and (58.06%) respectively; However, Al-Hemidawi (2005) and Koseet al., (2007) demonstrated that E.coli was most common isolated bacteria from UTIs (42.1%) and (73.6%) respectively. These fluctuations might be attributed to the social habits, hygienic status in different communities and the difference in the time of the study.

The recovery rate of Klebsiellapneumoniae from cases of UTIs in this study was (10%). This finding was in agreement with the research results of Iris et al., (2006) and AL-Hemidawi (2005), in which the percentage of Klebsiellapneumoniae in UTIs were (9 %) and (8.7 %) respectively. In the present study the percentage of Pseudomonas aeruginosa isolates were (8%), the same result was obtained by Al-Hemidawi (2005) and Jarjees (2006), they recorded the isolation percentage of Pseudomonas aeruginosain UTIs were (7%) and (7.39%) respectively. The frequency of Proteus mirabilis was (8%), this result was near to those reported by Memon (2007) and Jarjees (2006) that the frequency of Proteus mirabilis isolated from UTIs were (4.9%) and (6.78%) respectively. The percentage rates of Staphylococcus spp. from cases of UTIs in this study were (6%) for Staphylococcus aureus (2%) and Staphylococcus saprophyticus. Al-Hemidawi (2005) and Ameen (2002) revealed that Staphylococcus aureus isolated from UTIs were (10.1%) and (11.36%) respectively, these differences in the rate are due to size of sample, social habits and hygienic status in different communities. The percentage rate of Staphylococcus saprophyticuswas in agreement with Barrett et al., (1999) who reported (1.5%) for coagulase negative Staphylococcus isolated from UTI. Kolawoleet al., (2009) recorded (7.22%) for Staphylococcus saprophyticus isolated from UTIs and that is disagreement with our result. The results in the present study showed that the percentage of Enterobacter spp. in UTIs was (4%). This findings are supported by Ameen (2002) and Jarjees (2006) who demonstrated (3.78%) and (2.60%) respectively for Enterbacter spp. isolated from UTIs.

4.2 UTIs related to sex

In this study out of 50 patients, 32 (64%) of bacterial isolates obtained from female and 18 (36%) isolates from male. Kolawoleet al., (2009) investigated a high prevalence of bacteriuria in female (66.67%) than male (33.33%), also Al-Hemidawi (2005) recorded high incidence of UTIs infection in female (60.8%) than male (39.1%). Women are more susceptible to UTI because a woman’s urethra is short, allowing quick access of bacteria to the bladder. Also a woman’s urethral opening is near sources of bacteria from the anus and vagina. The incidence increases with age and sexual activity. Rate of infection are high in postmenopausal women, because of bladder or uterine prolapse causing incomplete bladder emptying, loss of estrogen with attendant changes in vaginal flora, loss of Lactobacilli, which allows periurethral colonization with gram negative aerobes (Chaudhuri et al., 2008).

4.3 Antimicrobials resistance of bacterial UTIs

Sensitivity test for fifty bacterial isolates done against six common widely used antimicrobials for UTIs which includes (AK, AMP, CIP, GN, CTR, NA.IMI). In general, the bacteria investigated in the present study showed sensitivity to Imipenem and low resistance to Amikacin, variation in resistance to Ceftriaxone, Nalidixic, Ciprofloxacin and Gentamycin; however, they showed high resistance to Ampicillin.

These results are in agreement with Parvin et al., (2009) and Jarjees (2006). Chigbu and Ezeronye (2003) reported that higher prevalence of resistance of antimicrobial agent such as Ampcillin could be due to widespread and discriminate use of this antibiotic and production of B- lactamases by most bacteria. Imipenem is carbanapenem antibiotic with a broad spectrum of actvityion Gram-positive and Gram-negative bacteria. It is a potent inhibitor ofplasmid and chromosomally mediated B- lactamases (Aacet et al., 1983).

Increasing bacterial resistance in Erbil city may be due to:

- Most antibiotics prescription in hospitals are given without clear evidence of infection or adequate medical indication.
- Many physicians have administered antibacterial drugs to patients with colds, Influenza, viral pneumonia and other viral diseases.
- Antibiotics are prescribed without culturing and identifying the pathogen or without determining bacterial sensitivity to the drug.
- The patient not completing their course of medication.
- Drugs are available to the public.

5. Conclusion

During the course of this study the rate of incidence of UTIs in Hawler Hospitals among female was more than male. E.coli was among the commonest pathogenic bacteria isolated from UTI. Amikacin and Imipenem were the most active antibiotics against bacteria causing UTI. Most of the isolates causing UTI seem to be highly resistant to Ampicillin.

References

