
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 12, December 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Study of Classification Algorithm in Data Mining
R. Savundhariyalachmi1, N. Pandimeena2, P. Ramya3

1, 2M.Sc (CS & IT), Department of CS & IT, Nadar Saraswathi College of Arts and Science, Theni, Tamilnadu, India

3Assistant Professor, Department of CS & IT, Nadar Saraswathi College of Arts and Science, Theni, Tamilnadu, India

Abstract: Classification is a model finding process that is used for portioning the data into different classes according to some constraints
.In other words we can say that classification is process of generalizing the data according to different instances. In this paper we present the
basic classification technique. Several major kind of classification method including K-nearest neighbor classifier, Naïve Bayes, Apriori
Algorithm, Decision tree induction, Support vector machine[SVM].

Keywords: Apriori, Decision tree induction, Naïve bayes, Support Vector Machine

1. Introduction

Data mining or knowledge discovery is needed to make sense
and use of data knowledge discovery in data is the non-trivial
process of identifying valid, novel, potentially useful and
ultimately understandable patterns in data. Data mining
consists of more than collection and managing data. It also
includes analysis and prediction. They also include statistical
models, mathematical algorithm and machine learning
methods. people are often do mistakes while analyzing or
possibly, when trying to establish relationships between
multiple features. This makes it difficult for them to find
solutions to certain problems. Machine learning can often be
successfully applied to these problems, improving the
efficiency of systems and the designs of machines. There are
several application of data mining (ML) the significant of
which is data mining. In particular this work is concerned with
classification problems in which the output of instances admits
only discrete unordered values.

2. The Apriori Algorithm

The apriori algorithm was proposed by Agrawal and Srikant in
1994.Apriori is designed to operate on database containing
transaction. Apriori uses a "bottomup" approach, where
frequent subsets are extended one item at a time (a step known
as candidate generation), and groups of candidates are tested
aging to the data. The algorithm terminates when no further
successful extension are found. Apriori uses Breadth-First
search and a Hast tree Structure to count candidate item set of
length then it prunes the candidates which have a infrequent
sub pattern. According to the downward closure which have
an infrequent item set among candidates. Apriori is an
influential algorithm for mining frequent itemsets for Boolean
association rules. The name of the algorithm is based on the
fact that the algorithm uses prior knowledge of frequent
itemset properties, as we shall see below. Apriori is a seminal
algorithm for finding frequent itemsets using candidate
generation. It is characterized as a level-wise complete search
algorithm using anti-monotonicity of itemsets, ―if an itemset is
not frequent, any of its superset is never frequent‖. By
convention, Apriori assumes that items within a transaction or

itemset are sorted in lexicographic order. Let the set of
frequent itemsets of size k be Fk and their candidates be Ck.
Apriori first scans the database and searches for frequent
itemsets of size 1 by accumulating the count for each item and
collecting those that satisfy the minimum support requirement.
It then iterates on the following three steps and extracts all the
frequent itemsets.

1) Generate Ck+1, candidates of frequent itemsets of size k
+1, from the frequent itemsets of size k.

2) Scan the database and calculate the support of each
candidate of frequent itemsets.

3) Add those itemsets that satisfies the minimum support
requirement to Fk+1

3. Decision Tree Induction

Decision trees are trees that classify instances by sorting them
based on feature values. Each node in a decision tree
represents a feature in an instance to be classified, and each
branch represents a value that the node can assume. Instances
are classified starting at the root node and sorted based on
their feature values.. A decision tree is a tree in which each
branch node represents a choice between a number of
alternatives, and each leaf node represents a decision. Decision
tree are commonly used for gaining information for the
purpose of decision -making. Decision tree starts with a root
node on which it is for users to take actions. From this node,
users split each node recursively according to decision tree
learning algorithm. The final result is a decision tree in which
each branch represents a possible scenario of decision and its
outcome.

A decision tree is a Fow-chart-like tree structure, where each
internal node denotes a test on an attribute, each branch
represents an outcome of the test, and leaf nodes represent
classes or class distributions. The topmost node in a tree is the
root node.
1. create a node N;
2. if samples are all of the same class, C then
3. return N as a leaf node labeled with the class C;
4. if attribute-list is empty then

Paper ID: ART20162846 45

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 12, December 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

5. return N as a leaf node labeled with the most common class
in samples;
6. select test-attribute, the attribute among attribute-listwith
the highest information gain;
7. label node N with test-attribute;
8. for each known value ai of test-attribute
9. grow a branch from node N for the condition test-attribute=
ai;
10. let si be the set of samples for which test-attribute= ai;
11. if si is empty then
12. attach a leaf labeled with the most common class in
samples;
13. else attach the node returned by Generate_decision_tree(si,
attribute-list_test-attribute)

Decision trees can be significantly more complex
representation for some concepts due to the replication
problem. Solution is using an algorithm to implement complex
features at nodes in order to avoid replication.

4. K-Nearest Neighbor classifier:

Nearest neighbor classifiers are based on learning by analogy.
The training samples are described by n dimensional numeric
attributes. Each sample represents a point in an n dimensional
space. In this way, all of the training samples are stored in an
n-dimensional pattern space.

When given an unknown sample, a k-nearest neighbor
classifier searches the pattern space for the k training samples
that are closest to the unknown sample. "Closeness" is defined
in terms of Euclidean distance, where the Euclidean distance,
where the Euclidean distance between two points, X=(x1, x2,
……, xn) and Y=(y1, y2, …., yn) is d(X, Y)= 2

𝑑 𝑥,𝑦 = ∑ 𝑥𝑖 − 𝑦𝑖 2
classification process. One of the most straight forward
instance-based learning algorithms is the nearest neighbor
algorithm. Aha (1997) and De Mantaras and Armengol(1998)
presented a review of instance-based learning classifiers.
Thus, in this study, apart from a brief description of the
nearest neighbor algorithm, we will refer to some more recent
works. k-Nearest Neighbor (kNN) is based on the principle
that the instances within a dataset will generally exist in close
proximity to other instances that have similar properties
(Cover and Hart, 1967). If the instances are tagged with a
classification label, then the value of the label of an
unclassified instance can be determined by observing the class
of its nearest neighbors. The Knn locates the k nearest
instances to the query instance and determines its class by
identifying the single most frequent class label. A pseudo-code
example for the instance base learning methods is illustrated.

procedure InstanceBaseLearner(Testing Instances)
for each testing instance
{
find the k most nearest instances of the training set according
to a distance metric

Resulting Class= most frequent class label of the k nearest
instances
}

A drawback of the basic "majority voting" classification
occurs when the class distribution is skewed. That is,
examples of a more frequent class tend to dominate the
prediction of the new example, because they tend to be
common among the k nearest neighbors due to their large
number. One way to overcome this problem is to weight the
classification, taking into account the distance from the test
point to each of its k nearest neighbors. The class (or value, in
regression problems) of each of the k nearest points is
multiplied by a weight proportional to the inverse of the
distance from that point to the test point. Another way to
overcome skew is by abstraction in data representation.
Suppose that an object is sampled with a set of different
attributes, but the group to which the object belongs is
unknown. Assuming its group can be determined from its
attributes; different algorithms can be used to automate the
classification process. A nearest neighbor classifier is a
technique for classifying elements based on the classification
of the elements in the training set that are most similar to the
test example. With the k-nearest neighbor technique, this is
done by evaluating the k number of closest neighbors [8]

In pseudocode, k-nearest neighbor classification algorithm can
be expressed fairly compactly [8]:
k - number of nearest neighbors
for each object X in the test set do
calculate the distance D(X, Y) between X and every object Y in
the training set
neighborhood - the k neighbors in the training set closest to X
X.class �SelectClass(neighborhood)
end for

Naïve Bayes:
Naive Bayes is a simple technique for constructing classifiers:
models that assign class labels to problem instances,
represented as vectors of feature values, where the class labels
are drawn from some finite set. It is not a single algorithm for
training such classifiers, but a family of algorithms based on a
common principle: all naive Bayes classifiers assume that the
value of a particular feature is independent of the value of any
other feature, given the class variable. For example, a fruit
may be considered to be an apple if it is red, round, and about
10 cm in diameter. A naive Bayes classifier considers each of
these features to contribute independently to the probability
that this fruit is an apple, regardless of any possible correlation
between the color, roundness, and diameter features. For some
types of probability models, naive Bayes classifiers can be
trained very efficiency in a supervised learning setting. In
many practical applications, parameter estimation for naive
Bayes models uses the method of maximum likelihood; in
other words, one can work with the naive Bayes model
without accepting Bayesien Probility or using on Bayeisen
methods. Despite their naive design and apparently
oversimplified assumptions, naive Bayes classifiers have
worked quite well in many complex real-world situations. In

Paper ID: ART20162846 46

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 12, December 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

2004, an analysis of the Bayesian classification problem show
that are sound theoretical reason for the apparently implausible
efficacy of naive Bayes classifiers Given a set of objects, each
of which belongs to a known class, and each of which has a
known vector of variables, our aim is to construct a rule which
will allow us to assign future objects to a class, given only the
vectors of variables describing the future objects. Problems of
this kind, called problems of supervised classification, are
ubiquitous, and many methods for constructing such rules
have been developed. One very important one is the naive

Bayes method—also called Bayes, simple Bayes, and
independence Bayes. This method is important for several
reasons. It is very easy to construct, not needing any
complicated iterative parameter estimation schemes. This
means it may be readily applied to huge data sets. It is easy to
interpret, so users unskilled in classifier technology can
understand why it is making the classification it makes. And
finally, it often does surprisingly well: it may not Probabilistic
approaches to classification typically involve modeling the
conditional probability distribution P(C|D), where C ranges
over classes and D over descriptions, in some language, of
objects to be classified. Given a description d of a particular
object, we assign the class argmaxcP(C = c|D = d). A
Bayesian approach splits this posterior distribution into a prior
distribution P(C) and a likelihood P(D|C):

5. Support vector machine

―Support Vector Machine‖ (SVM) is a supervised machine
learning algorithm which can be used for either classification
or regression challenges. However, it is mostly used in
classification problems. In this algorithm, we plot each data
item as a point in n-dimensional space (where n is number of
features you have) with the value of each feature being the
value of a particular coordinate. Then, we perform
classification by finding the hyper-plane that differentiate the
two classes very well (look at the below snapshot).

Support vector machines are supervised learning models with
Associated learning algorithms that analyze data used for
classification and regression analysis. An SVM model is a
representation of the examples as point in space, mapped so

that examples of the separate categories are divided by a clear
gap that is as a wide as possible.

6. Conclusion

In the classification algorithm is described in this paper. The
classification methods are typically strong in modeling
interaction. The goal of classification result integration
algorithms is to generate more certain precise and accurate
system results.

References

[1] Xindong wu et.al,‖top 10 algorithms of data Mining‖,
springer-Verlag London, 2007.

[2] Pang –ning tan, Michael Steinbach and vipin kumar.
Introduction to data Mining Addision Wesley, 2006

[3] Plilip s.yu, zhi-hua zhou, david j.hand and dan steinberg
Top 10 Algorithm in data mining vol 14 no1 pp.1-37 Dec
2007

[4] T-cover and p.hart ‗nearest neighbor pattern classification‖
IEEE Trans inf theor vol 13.nol pp 21-27 sep 2006

Paper ID: ART20162846 47

