
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Congestion Control Techniques in Programmable
Computer Networks

Ankita1, S. Vamshi Krishna2

1Ms., M-tech (EC) Student, MGM COET, Department of ECE, Noida, UP, India

2Head of the Department, MGM COET, Department of ECE, Noida, UP, India

Abstract: Software Defined Networking (SDN) is becoming an apparent network architecture where network control is separated from
data plane which is directly programmable. It promises to remove the complexity of the network management and enable upheaval
through network programmability. The POX is one of the open source Software Defined Network controller and a platform for the
expeditious development and designing of network control software. This paper defines the difference between various parameter when
calculated for traditional network and SDN network and proposes a set of rules which are defined in the POX controller as the
controller component and based on which the open flow switch will take the decisions during transmission of data packets in the Open
flow network. This method proposed to increase the performance of the network by avoiding congestion using spanning tree protocol
which reroutes the packet in case of link failure/congestion. This paper also described the process of defining different set of rules in
each switch in the network. The experimental results shows average round trip time(RTT) or average delay for network with and without
congestion/link failure detection for POX controller. Along with the comparison between traditional and SDN network based on various
parameters.

Keywords: Software Defined Networking, POX Controller, Open flow, Mininet, Traditional Network, Python

1. Introduction

Traditional network architectures are futile to meet the
requirements of today’s enterprises, carriers, data centers and
end users. Due to the major industry effort lead by the Open
Networking Foundation (ONF), Software-Defined
Networking (SDN) is reorganizing networking architecture.
The SDN architecture is accomplished by separating the
control plane from the data plane and by giving a
programmable interface for that separated control plane,
unlike the traditional architecture, the network intelligence
and state are centralized analytically and the underlying
network infrastructure is abstracted from the applications. As
a result, the enterprises gain unprecedented network control,
programmability and automation which enable them to build
highly scalable, flexible and non-complex networks that
readily adapt changing business requirements.

With this system in place for centralized command and
control of the network through SDN and a programmable
interface, more automated processes can be added to handle
complex systems. Real-time decisions can be taken for
traffic optimization, security, maintenance. Separate traffic
types can be run side-by-side while receiving different paths
and forwarding that can respond accurately to the network
changes.SDN is currently attracting significant attention
from both academic area and industry. A group of network
operators, service providers, and vendors have recently
created the Open Network Foundation, an industrial
operatedorganization, to promote SDN and standardize the
Open Flow protocol. On the educational side, the Open Flow
Network Research Center [11] has been created with a focus
on SDN research. There have also been standardization
efforts on SDN at various industrial firms.
The main aim is to make software developers rely on the
network components in an easy manner as they do on storage
and computing resources. The SDN architecture is shown in
figure 1. In SDN network intelligence is locally centralized

in control plane (controller) whereas data plane consist of
simple packet forwarding devices (switches,hosts) that can
be programmed via open interface.

Figure 1: SDN architecture

POX is a open source SDN controller and a platform which
allows to program the devices through controller and for
prototyping the network control software using python
programming language. POX is mainly used for research
purpose in the field of SDN. POX can run anywhere,
particularly it targets Linux, MAC OS and windows.The
POX contains reusable sample components for shortest path
selection, controlling the switch behavior, etc. It also
supports GUI and visualization tools.

The field of SDN is quiet recent and growing very fast.
There a lot of challenges to be addressed in this field now. In
this paper we propose a set of components which are defined
in the POX controller on which the Openflow switches will
take appropriate action for forwarding the incoming packets
to the destination. In this paper we are also defining
difference between some parameters of traditional network

Paper ID: ART20163248 1693

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

compared to Openflow network with the help of graphs
based on experiments we have performed.

The method is presented to define different rules to the
switch in the network. Then the method to reroute packets in
case of a link failure/congestion is also defined. Also
comparison between the Open flow network with congestion
detection and the network without congestion detection in
terms of average RTT is shown.

Open Flow [1] is the first standard communications link
defined between the control and datalayers (consisting of
forwarding components) of an SDN architecture. Open Flow
permits the direct access and handling of the forwarding
plane of network devices such as switches and hosts both
physical and virtual (hypervisor based). It is the
unavailability of an open link to the forwarding plane that
has led tothe characterization of today’s networking devices
as inflexible, closed, and rigid like. Open Flow is one of the
standard protocols available and a protocol like Open Flow is
required to relocate the network control out of the switches
to logically centralized control Software [9].

Figure2: The Open flow architecture

The OpenFlow protocol [4] is a key facilitator for software
defined networks and currently is the one of the standardized
SDN protocol that allows direct designing of the forwarding
plane of network devices. It was initially applied to Ethernet-
based networks and then the OpenFlow switching spread out
to a much broader set of use cases. OpenFlow SDNs can be
deployed on extant networks, both physical and virtual.
Network devices support OpenFlow forwarding and also
traditional forwarding, which makes it unchallenging for the
enterprises andcarriers to progressively introduce OpenFlow-
based SDN technologies, even in multi distributor network
environments.

Mininet is a network emulator. It executes a collection of
end-hosts, routers, legacy or Openflow switches and links on
a Linux kernel. It utilizes the lightweight virtualization to
form a singlesystem which looks like a complete network,
operating onthe same system, kernel and user code. A
Mininet hostacts like a real machine. The Ssh protocol is
used andit is used to run whimsical programs (including the
network services implemented on the underlying Linux

system). In short, Mininet's virtual hosts, switches, links, and
controllers are the real thing – they are just designed using
software other than hardware – and for the most part their
behavior is similar to discrete hardware elements. It is
practically feasible to create a Mininet network that look like
a hardware network, or a hardware network that looks like a
Mininet network and to run the applications and the binary
code on either platform.

This paper is arranged as follows. Section II discusses some
of the related work. Section III describes the proposed
method. Section IV discusses the evaluation procedure and
performance results and section V discuss the conclusion and
future work that can be done.

2. Related Work

Ethane [13], the antecedent of NOX and OpenFlow, is an
early flow-based networking technology for creating reliable
enterprise networks. Ethane shows that by restricting
transmission in the network before an identity is verified by a
central controller, strong security policies can be enforced in
the network. Ethane does not considerusing parallelism in
their designs.

NOX [7] is a platform for building network control
applications which expands the Ethane work in two
dimensions. First, it attempts to scale the centralized pattern
to very large systems. The second extension is allowing
general programmatic control of the network. The Ethane
systems were created around a single application: identity-
based access control. NOX provides a general programming
link that makes it easier to sustain current management tasks
and possible to provide more advanced management
functionality.

Maestro [3] shows how the rudimentary problem of
performance bottleneck in controller is resolved by
parallelism. Maestro provides a basic programming model
for programmers and exploits parallelism together with
additional throughput increasing techniques. The throughput
of Maestro can attain near linear scalability on an eight core
server machine.

Hyper Flow [14] aims at upgrading the performance of the
OpenFlow control plane. However, Hyper Flow takes a
completely different outlook by expanding NOX to a
distributed control plane. By synchronizing network-wide
state among distributed controllers in the background
through a administrated file system, HyperFlow ensures that
the processing of a particular flow request can be localized to
an individual controller machine. The techniques employed
by Hyper Flow are orthogonal to the design of the controller
and they can also strengthen Maestro to become fully
distributed to attain even higher overallscalability.

DIFANE [15] provides a way to accomplish efficient rule
based policy enforcement in a network by executing policy
rules matching at the switches.DIFANE's network controller
installs policy rules inswitches and does not need to be
mixed up in matchingpackets against these rules as in
OpenFlow. However,OpenFlow is more reliable since its
control logic canrealize behaviors that cannot be easily

Paper ID: ART20163248 1694

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

carried out by a set of static policy rules installed in switches.
Ultimately, the techniques recommended by DIFANE to
offload policy rules complementing onto switches and our
techniques to increase the performance of the controller are
extremely complementary: Functionalities that can be
achieved by DIFANE can be off-loaded to switches, while
tasks that require central controller processing can be
handled systematically by Maestro.

Beacon [6] is a Java-based OpenFlow controller. Beacon
reviewed new areas of the OpenFlow controller design
space, with a focus on being favorable to the developer, high
performance and having the capability to start and stop
existing and new software and program at runtime. Beacon
showed high performance and was able to scale linearly with
various processing cores.

In the above mentioned papers, few of the issues have not
been addressed such as the bandwidth utilization in POX
controller, reducing the RTT time to increase the average
RTT and avoiding the network congestion.

3. Proposed Method

In this section, the some of the methods are defined which
are used to show the congestion management in SDN
compared to traditional network in terms of comparison
between various networks on different parameters. First
algorithm is provided for discovering the network topology
and to detect the link failure. Then certain components of
POX are discussed which can be used to control the behavior
of an Open flow switch. Finally some POX components
responsible for rerouting the packets/load in case of link
failure/congestion are discussed to avoid the congestion and
increase the network performance.

Figure 3: Experiment Tested Topology

A. Discovering Network Topology and Detecting Link
Failure

Figure 4: Path Selection for Transmission of Data Packets

The Open flow discovery component uses LLDP messages
sent to and received from OpenFlow switches to determine
the network topology. It also detects when network links go
up or down. This information can be used by other
components.

The component used is: openflow.discovery

The Spanning Tree component is required to eliminate the
loops present in the network topology. It works with the
OpenFlow Discovery component to establish a view of the
network topology and constructs a spanning tree by disabling
flooding on switch ports that aren’t on the tree. The

optionsno-flood and hold-down are used to ensure no
packets are flooded in the network before the component
creates the spanning tree.

The component used is: openflow.spanning_tree ‐‐no-flood
‐‐hold-down

B. Switchasa Firewall and as a Dumb Hub

Switch as a hub forwards traffic out to all of its ports and no
code is required to make a switch as a dumb hub. POX
controller component is used to make the switch as a dumb
hub.

Now to make the switch as a firewall a code is written in
python programming language for the controller due to
which the switch will block the flow from source to
destination and vice versa.

Table 1: Hub Component

C. Avoiding LinkFailure/Congestion

Figure 5: Updating the Transmission Path in case of Link
failure/congestion

The network congestion is one of the common problems
faced during transmission of data. The network congestion

Paper ID: ART20163248 1695

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

occurs when a link carries large amount of data which results
in deterioration of quality of services. This results in packet
loss, queuing delay or the blocking of new connections. So to
prevent this problem, an approach is proposed by defining
different rules set in the switches. Whenever there is
congestion in the network, the controller sends instructions
to the switches based on the defined rules to find an
alternative path to send the data which prevents network
congestion.

The Spanning Tree component will respond to changes in
the network topology. If a link failure is detected, and if an
alternate link exists, it can maintain connectivity in a
network by creating a new path that enables flooding on the
ports connected to the alternate link.

The component used is: openflow.spanning_tree ‐‐no-flood
‐‐hold-down
The Host Tracker component attempts to keep track of hosts
in the network. Host Tracker examines messages received by
POX and learns MAC and IP address of hosts in the network.
Host Tracker will work in our example but it relies on
packets arriving at the controller. Packet forwarding in the
network must be done reactively so we need to use a
forwarding component likeforwarding.l2_learning.
The component used is:host_tracker
The algorithm is described as follows:

Algorithm: Congestion Avoidance
1. Messages are sent to open flow switches to discover the

network topology
2. Spanning tree is constructed by disabling flooding on

switch ports that aren’t on the tree

3. Open flow switches are made to act like Ethernet
switches

4. It learns Ethernet MAC addresses, and matches all fields
in the packet header so it may install multiple flows in the
network for each pair of MAC addresses.

5. Packet enters the network from host 1 and is delivered to
the destination host (h6)

6. Host tracker examines messages received by POX and
learns MAC and IP of hosts in the network.

7. Packet dump will display on the log console information
about data packets received by POX from switches.

8. If a link is broken or congested and if alternate link exists
connectivity is maintained by creating
a new tree that enables flooding on the ports connected to
the alternate link within 45 sec.

4. Performance and Evaluation

To evaluate the open flow controller performance compared
to the traditional network various parameters are calculated
for the various network build on Miniedit using Mininet.
Mininet is a network emulator used to create SDNs scenario
in Linux environment. Every network device, hosts, switches
and controller are virtualized and communicate via Mininet.
A Python script is used to design the topology in Mininet and
the trafficflows setup are received from a remote OpenFlow
controller. Hence, the test environment applies and performs
the actual protocol stacks that communicate with each other

virtually. The Mininet environment authorizes the
implementation of real protocols in a virtual network.

A. Evaluation Procedure

Figure 6: Experimental Tested Topology

To define the experiment, initially it is necessary to specify
the hosts and switches that will be used. The OpenFlow
controller has the task to define the best path to connect all
hosts. To evaluate the network performance in each case
(open flow and traditional) it was included into the
experimental tested topology shown on figure 4, that creates
and sends a large amount of OpenFlow messages to the
controller in order to test its performance. The experiment
execution results in obtaining the number of OpenFlow
messages, the controller can support per second, besides the
messages sent by actual switches or virtualized switches in
Mininet.

The tests with the Mininet, simulated the presence of 30
switches, in the topology created on Mininet. In each round,
10 switches are used to test the performance and in these
tests, the average RTT in milliseconds and bandwidth were
calculated.

The graph of average RTT and bandwidth were plotted for
different number of switches. Finally, the graph for average
RTT for Openflow network with and without congestion
detection was plotted.

B. Results
The performance test is shown is the following graphs. They
show the performance in terms of various parameters like
throughput and average RTT. The graph figure 8 shows the
difference between average RTT for Open flow network and
traditional network.

Paper ID: ART20163248 1696

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 7: Throughput in POX controller

The above graph shows the throughput in traditional network
and Openflow network using POX controller. As shown in
the above graph, the throughput is higher in Open flow
network than in traditional network.

Figure 8: Average RTT in POX controller

The above graph shows the average RTT in milliseconds in
traditional network and Openflow network using POX
controller. The average RTT in Openflow network in much
less than the traditional network showing better performance
in Open flow network.

Table 2: Comparison between traditional network
parameters and open flow parameters

parameter/
network

RTT (before
congestion)

RTT (after
congestion)

Traditional network 1.141ms 11.103ms
Open flow network 1.003ms 0.987ms

5. Final Result

As shown in the table 2 the performance of traditional
network degrades as congestion occurs in the network
whereas on the other hand congestion does not affect the
performance of open flow network because of the pox
controller controlling the open flow network. Hence this
concludes the result of my experiment displaying the main
difference between traditional network and open flow
network.

6. Conclusion and Future Work

Software Defined Networking is a promising paradigm for
future network management, and OpenFlow is becoming
apparent as a successful industry-supported SDN building
block. In this paper, a set of rules for a switch and the
process of improving network performance compared to
traditional network through a POX controller using mininet
are discussed. The set of rules defined in the POX controller
reduces the transmission time by about 25% and increases
the performance of the network by about 20%. Also,
performance of Open flow network increases when the link
failure/congestion is detected compared to when it’s not

detected and how different rules are set for the switches to
avoid the network congestion.

As future work, the discussed approach can be implemented
in real-time network. In addition, a new approach can be
designed to assign priority to the network packets
dynamically and the implementation of different
functionalities in multiple Openflow controllers.

References

[1] N.McKeown et al.; T. Anderson; H. Balakrishnan; G.
Parulkar; L.Peterson; J. Rexford; S. Shenker and J.
Turner (2008):“OpenFlow: Enabling Innovation in

Campus Networks”, ACMSIGCOMM Computer
Communication Review, 38(2):69–74.

[2] “Software-Defined Networking: The New Norm for
Networks”,ONF White Paper, April 13, 2012

[3] Z. Cai et al.; A. Cox and T. Ng (2010): “Maestro: A

system for scalable Open Flow control” Technical

Report TR10-08, RiceUniversity.
[4] Marcial P Fernandez (2013):“Comparing OpenFlow

ControllerParadigms Scalability: Reactive and
Proactive” IEEE 27

thInternational Conference on
Advanced Information Networking andApplications, pp
1009-1016.

[5] Advait Dixit et al., Fang Hao, Sarit Mukherjee, T.V.
Lakshman,Ramana Kompella (2013): “Towards an

Elastic Distributed SDN Controller” HotSDN’13Hong

Kong, China.
[6] David Erickson(2013):“The Beacon OpenFlow

Controller”, HotSDN’13, Hong Kong, China, pp. 13-18.
[7] N. Gude et al., T. Koponen, J. Pettit, B.Pfaff, M.

Casado, N. McKeown, and S. Shenker (2008):
“Nox:towards an operatingsystem for networks”,

ACMSIGCOMM Computer CommunicationReview,
38(3):105–110

[8] Bob Lantz et al., Brandon Heller, and Nick
McKeown(2010):“Anetwork in a laptop: rapid

prototyping for software-definednetworks”, In

Proceedings of the Ninth ACM SIGCOMMWorkshop
on Hot Topics in Networks.

[9] Adrian Lara et al., Anisha Kolasani, and Byrav
Ramamurthy(2014):“Network Innovation using
OpenFlow: ASurvey”, IEEE Communications Surveys
& Tutorials, VOL. 16,No. 1,Pp 493-512

[10] HIDEyuki Shimonishi et al., Yasuhito Takamiya,
Yasunobu Chiba, Kazushi Sugyo, Youichi
Hatano,Kentaro Sonoda, Kazuya Suzuki, Daisuke

Paper ID: ART20163248 1697

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Kotani, and Ippei Akiyoshi(2012):“Programmable

Network Using OpenFlow for Network Researches
andExperiments”, The Sixth International Conference
on MobileComputing and Ubiquitous Networking.

[11] Open Networking Research Center (ONRC):
http://onrc.net

[12] Pox:http://www.noxrepo.org/pox/about-pox/
[13] Martin Casado, Michael J. Freedman, Justin Pettit,

Jianying Luo,Nick McKeown, and Scott Shenker.
“Ethane: taking control of theenterprise”, SIGCOMM

'07: Proceedings of the 2007 conference onApplications,
technologies, architectures, and protocols forcomputer
communications, pages 1.12, New York, NY, USA,
2007.ACM.

[14] Amin Tootoonchian and Yashar Ganjali.“Hyperflow: A

distributedcontrol plane for openflow”. INM/WREN,

2010.
[15] M. Yu, J. Rexford, M.J. Freedman, and J. Wang.

“Scalable flowbased networking with DIFANE”, Proc.

ACM SIGCOMM, August2010.
[16] Iperf : http://iwl.com/white-papers/iperf

Paper ID: ART20163248 1698

