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Abstract: A water distribution network (WDN) consists of thousands of nodes with nonlinear hydraulic behaviour, linked by thousands 
of interconnecting links. The inherent problem associated with cost optimisation in the design of water distribution networks is due to 
the nonlinear relationship between flow and head loss and availability of the discrete nature of pipe sizes. The importance and huge 
capital cost of the system leads to considerable attention on seeking the optimal cost design. The present paper is focused on the 
Differential Evolution (DE) algorithm linked with EPANET software to achieve the goal of optimisation of a specified objective 
function. A simulation–optimisation model is developed in which the optimization is done by DE. Two well-known benchmark networks 
were taken for application of the DE algorithm to optimise pipe size and the results prove that the algorithm can perform satisfactorily. 
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1. Introduction 

A water distribution network (WDN) is a collection of many 
components such as pipes, reservoirs, pumps and valves 
which are connected to each other to provide water to 
consumers. Among these components, the interconnecting 
pipes that transport water from the source node to the 
demand nodes account for the major fraction of the capital 
cost. The optimal design of such network is defined as 
determining the best combination of pipe sizes that gives the 
minimum cost for the given layout of network such that the 
constraints on quantities and pressures at the consumer 
nodes are fulfilled.

Several methods are available to design a water distribution 
network in which rule of thumb and trial and error are the 
most popular methods. With the development of high speed 
digital computers and improved optimisation techniques, the 
design of water distribution networks was attempted since 
the 1970s. The complexity of the problem is due to the 
nonlinear relationship between flow and head loss, the 
presence of discrete decision variables such as pipe 
diameter, cost functions for the materials, labour,
geographical layout, multiple demand loading patterns, 
uncertainty in demands, and location of tanks, pumping 
stations, booster pumps, valves, etc. Numerous literatures 
exist on the optimization of water distribution networks 
using linear programming, nonlinear programming, 
enumeration techniques, and heuristic methods. The 
evolutionary techniques used for optimal design of water 
distribution systems includes the genetic algorithm(GA)
[12],[14],[16], the modified genetic algorithm [5],[8],[9], the 
simulated annealing algorithm(SAL)[1], the shuffled 
leapfrog algorithm(SFLA)[2], ant colony optimization 
[10],[21], novel cellular automata [6], harmony 
search(HS)s[3],[4] and the particle swarm algorithm 
[13],[14] for optimal design of water distribution systems
are some of them.

The present work is focused on the Differential Evolution 
(DE) algorithm linked with EPANET software to achieve 
the goal of optimisation of a specified objective function. A 
simulation–optimisation model is developed in which the 

optimization is done by DE. Two well-known benchmark 
networks were taken for application of the DE algorithm to 
optimise pipe size and the results prove that the algorithm 
can perform satisfactorily.  

2. Water Distribution Network Modelling 

Water distribution network modeling belongs to a class of 
large combinatorial non-linear optimization problems, 
involving complex implicit constraints, such as conservation 
of mass and energy equations, which are commonly satisfied 
through the use of hydraulic simulation solvers. Recently, 
many researchers have shifted the focus from traditional 
optimization methods to the use of meta-heuristic 
approaches for handling this complexity. In recent years, 
evolutionary algorithms are often the preferred choices 
because of their ability to deal with complex, nonlinear, and 
discrete optimization problems as well as the ease and 
generality with which they can be linked to any simulation 
model. 

2.1 Simulation tool -EPANET 

EPANET is a computer program that performs extended 
period simulation of hydraulic and water quality behaviour 
within pressurized pipe networks. A network consists of 
pipe, node, pump, storage tank or reservoir. EPANET tracks 
the flow of water in each pipe, the pressure at each node, and 
the height of water in each tank. EPANET is designed to be 
used for many different kinds of application in distribution 
system analysis. 

2.2 Optimization tool – Differential Evolution 

Differential Evolution (DE) algorithm is a branch of 
evolutionary programming developed by Rainer Storn and 
Kenneth Price (Price and Storn, 1997) for optimization 
problems over continuous domains. In DE, each variable’s 

value is represented by a real number. The advantages of DE 
are its simple structure, ease of use, speed and robustness. 
DE is one of the best genetic type algorithms for solving 
problems with the real valued variables. Differential 
Evolution is a design tool of great utility that is immediately 
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accessible for practical applications. DE has been used in 
several science and engineering applications to discover 
effective solutions to nearly intractable problems without 
appealing to expert knowledge or complex design 
algorithms. If a system is amenable to being rationally 
evaluated, DE can provide the means for extracting the best 
possible performance from it. 

There are three important operators involved in the DE 
algorithm including the mutation, crossover and selection 
operators. In DE the mutation operation takes place first and 
then the crossover operation carries. As evolution 
progresses, the mutation operator favours exploitation. 
Hence, DE automatically adapts the mutation increments 
(i.e., search step) to the best value based on the stage of the 
evolutionary process. The DE algorithm also uses a uniform 
crossover that can take child vector parameters from one 
parent more often than from the other. By using components 
of existing population members to construct trial vectors, 
crossover operator efficiently shuffles information about 
successful combinations, enabling the search for an optimum 
to focus on the most promising area of the solution space. 

3. Methodology 

The design of WDN when defined in a mathematical form 
leads to a non-linear, non-convex and multi-modal problem 
classified as an NP-hard combinatorial problem. The desired 
cost to be optimized is fixed and then the mathematical 
model is developed. In the present study, Differential 
Evolution algorithm is used as an optimization tool which is 
integrated with EPANET via the EPANET toolkit. The 
optimized value is calibrated with the Benchmark networks. 
If the conditions are satisfied, the simulations get closed else 
the optimization parameter (Pipe diameter) is refined. The 
methodology framework has been pictorially represented in 
Fig .1   

3.1 Objective Function 

The problem of optimal design of water distribution network 
usually has an objective of minimizing the total capital cost. 
The mathematical representation of objective function is 
mentioned below 

Where C = Cost of the water distribution network 
Di = Diameter of the pipe 
Li = Length of the Pipe 
np = No. Of pipes 

Figure 1: Elements of Methodology

3.2 Constraints 

Constraints are set of mathematical equations used to find 
the solution, which impose some conditions that the decision 
variables should satisfy. The following constraints are used 
in the optimal design of water distribution network. 

3.2.1 Flow continuity constraint 
The continuity principle states that the quantity of flow into 
the node must be equal to the quantity of flow leaving that 
node. Mathematically it is expressed as 

Where Qin= flow into junction 
Qout= Flow out of junction 
Qe= Demand at junction node 

3.2.2 Energy conservation constraint 
The total head loss around the closed path (loop) should be 
equal to zero. 

Where hfi = Head loss due to friction in pipe i. 
            ∆H = Difference between nodal heads at both ends &  
            ∆H = 0 , if the path is closed.

3.2.3 Minimum head constraint 
The pressure head in all nodes should be greater than the 
prescribed minimum pressure head 

Hj
avl

≥ Hj
min 

Where Hj
avl = pressure head at node 

Hj
min = minimum pressure head 

3.3 Benchmark network 

Validation of the developed optimization model is carried 
out using two Benchmark water distribution networks. These 
networks are frequently used for verifying the model 
accuracy developed for the design of WDN. 
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3.3.1 Two loop network 
The two-loop network, shown in Fig.2, was originally 
presented by Alperovits and Shamir (1977). The network 
consists of eight links, six demand nodes and a reservoir 
with two loops, and is fed by gravity from a reservoir with a 
210m fixed head. The pipes are all 1000 m long with the 
assumed Hazen–Williams coefficient of 130. The minimum 
pressure limitation at all demand nodes is 30 m above 
ground level. 

Numerous researchers have examined the chosen case study
(Savic & Walter 1997; Cunha & sousa 1999; Eusuff & 
Lansey 2003). The same existing pipe input data including 
discrete set of available diameters, and minimum head and 
demand at each node are used in this study. There are 14 
commercial diameters to be selected; thus the problem 
search space consists of 148 = 1.48 x109 different network 
designs.

3.3.2 Hanoi network
The Hanoi network shown in Fig.3 was first presented by 
Fujiwara and Khang(1987). The network consists of 32 
nodes and 34 links arranged in three loops, fed from a single 
fixed head source providing a head of 100m. The input data 
remains the same as used by numerous authors (Savic and 
Walters 1997; Cunha and Sousa 1999; Eusuff and Lansey 
2003).The minimum required head for all the nodes is 30m.
There are six available pipe diameters to be selected for each 
new pipe; thus the total search space consists of 634 = 2.865 
x1026 possible designs.

  

Figure 2: Layout of two loop network

Figure 3: Layout of Hanoi network

4. Implementation Strategy 

In the present study, a combined simulation–optimisation 
model is developed and used. The optimisation model is an 
outer driven whereas the simulation is an inner driven one. 
The computer programming code was written for DE using 
Matlab and EPANET (Rossman 2000) is linked via the 
EPANET Toolkit. The complete programme performs a 
hydraulic network analysis at each function evaluation to 
determine the pressure head at the nodes. The algorithm is 
applied to two well-known benchmark network. 

Figure 4: Computational module for differential evolution 
algorithm
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The implementation strategy of DE for optimal design of the 
water distribution network is presented in Fig. 4. It can be 
seen from Fig. 4. that all the initial solution vectors consist 
of discrete pipe sizes. From the initial population, two 
solution vectors are randomly selected and the difference 
between each of the parameters is determined. The weighted 
vector is obtained by multiplying by the mutation constant 
and it is added to the third randomly selected vector from the 
initial population to get a noisy vector. Furthermore, a new 
solution vector is obtained by performing crossover, which 
basically selects the pipe diameter either from the noisy 
vector or target vector, according to the selection
probability. The selection probability is randomly generated 
in order to compare with the crossover constant. If it is less 
than or equal to the crossover constant, the pipe diameter is 
selected from the noisy vector, otherwise from the target 
vector. The overall cost of the new solution (Called a trial 
vector) is calculated after converting the pipe diameters 
selected from the noisy vector to the nearest commercial size 
.As this conversion of continuous diameter to discrete 
diameter occurs within the optimisation (i.e. before the 
selection of the vector for the next generation), this does not 
affect the goal of optimisation. 

5. Results and Discussion 

5.1 Two loop network 

The Differential Evolution technique is applied to solve the 
two-loop network problem. Different trial runs are 
performed with different initial random seeds, for each set of 
selected operator constants by setting a population size as 
20. The mutation constant is varied from 0.6–0.9 in 0.1 
increments and similarly the crossover constant is varied 
from 0.3–0.5 in increments of 0.1.The termination criterion 
for the optimisation is arbitrarily set to 500 generations. As 
the population size is set to twenty, each generation consists 
of 20 function evaluation. From the trials, the least cost of 
$4,19,000 is found out which coincides with global optimal 
solution reported in the literature. The optimal diameters for 
links 1-8 are found and listed in Table 1. 

5.1.1 Mutation and Crossover Probability 
Different combinations of constants are considered for the 
mutation and crossover probability. Table 2 provides the 
results of an average of different trial runs for each 
combination of constants. In the evaluation process, one of 
the trials having a weighting factor (mutation probability) of 
0.6 and crossover constant of 0.5 has provided an optimal 
solution of $4,19,000 at the expense of 5,300 function 
evaluations. 

Table 1: Optimal diameters for two-loop network 
Pipe no. Diameter(mm)

1 457.2
2 254
3 406.4
4 101.6
5 406.4
6 254
7 254
8 25.4

5.1.2 Function evaluation 
The proposed DE algorithm yielded the best solution as 
$419,000 with an average function evaluation of 5,526. 
Table.6 compares the results with those obtained using the 
earlier techniques with respect to the optimal solution 
obtained and the average number of function evaluations 
taken to get the global optimum. Table.3 shows that the 
Differential Evolution algorithm performed well in finding 
the optimal solution more quickly than previous techniques. 
Figure.5 shows the evolution process for the two loop 
network corresponding to the least function evaluations 
obtained in the trial runs. 

Table 2: Results of the trial runs for two-loop network 
Mutation 

rate
Crossover 
probability

Average number of function 
evaluation in getting least cost solution

0.6 0.3 5,350
0.6 0.4 5,780
0.6 0.5 5,300
0.7 0.3 5,420
0.7 0.4 5,428
0.7 0.5 6,008
0.8 0.3 5,560
0.8 0.4 5,715
0.8 0.5 5,564
0.9 0.4 5,323
0.9 0.5 5,600

Table 3: Solution for two loop network 
Author Technique 

used
Cost
($)

Average no. of
function evaluation

Savic & Walter (1997) GA 4,19,000 65,000
Cunha & sousa (1999) SA 4,19,000 25,000

Eusuff & Lansey (2003) SFLA 4,19,000 11,155
Present work DE 4,19,000 5,300

5.2 Hanoi network 

Similar to the previous case study, 300 trial runs are 
performed by keeping the population size as 100 with 
weighting factors ranging from 0.6–0.9 (mutation rate) and 
crossover constant ranging from 0.3–0.5. The termination 
criterion for the algorithm is arbitrarily set to 500 
generations. In each combination of constants, 30 trials are 
performed with different initial random seeds. The network 
solution having a least cost of $60,81,087 was obtained. The 
optimal diameter and the nodal pressure heads for the 
solution having cost of $6.081 million while analysing using 
EPANET version 2 are listed in the Table4. 
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Figure 5: Evolution process of two loop network 

5.2.1 Mutation and Crossover Probability  
Different combinations of constants are considered for the 
mutation and crossover probability. Table.5. provides the 
results of an average of different trial runs for each 
combination of constants. The average number of function 
evaluations corresponding to the least cost is determined as 
49,550. In the evaluation process, one of the trials having a 
weighting factor (mutation probability) of 0.6 and crossover 
constant of 0.4 has provided an optimal solution of 
$60,81,087 at the expense of 28,000 function evaluations 

5.2.2 Function evaluation 
The results obtained using DE algorithm and those 
previously reported in literature are shown in Table.6. The 
table shows that the Differential Evolution algorithm 
performed well in finding the optimal solution more quickly 
than previous techniques.Fig.6 shows the evolution process 
for the Hanoi network corresponding to the least function 
evaluations obtained in the trial runs. 

Figure 6: Evolution process of Hanoi network 

Table 4: Pipe diameter and nodal pressure heads for 
solution of Hanoi network obtained using EPANET. 

Pipe / Node no. Diameter (mm) Pressure (m)
1 1016 100
2 1016 97.14
3 1016 61.67
4 1016 56.92
5 1016 51.02

6 1016 44.81
7 1016 43.35
8 1016 41.61
9 1016 40.23

10 762 39.20
11 609.6 37.64
12 609.6 34.21
13 508 30.01
14 406.4 35.52
15 304.8 33.72
16 304.8 31.30
17 406.4 33.41
18 609.6 49.93
19 508 55.09
20 1016 50.61
21 508 41.26
22 304.8 36.10
23 1016 44.52
24 762 38.93
25 762 35.34
26 508 31.70
27 304.8 30.76
28 304.8 38.93
29 406.4 30.13
30 304.8 30.42
31 304.8 30.70
32 406.4 33.18
33 406.4
34 609.6

Table 5: Results of the trial run for Hanoi network 
Mutation

rate
Crossover
probability

Average number of function evaluation 
in getting least cost solution

0.6 0.3 30,718
0.6 0.4 28,000
0.6 0.5 53,150
0.7 0.4 42,300
0.7 0.5 63,532
0.8 0.3 40,450
0.8 0.4 50,840
0.8 0.5 56,680
0.9 0.3 46,632
0.9 0.4 52,800
0.9 0.5 61,120

Table 6: Solutions for Hanoi network
Author Technique 

used
Cost
($)

Average no. of
function evaluation

Savic & Walter (1997) GA 6,073,000 1,000,000
Cunha & sousa (1999) SA 6,056,000 53,000

Geem et al. (2002) HS 6,056,000 200,000
Present work DE 6,081,087 49,550

6. Conclusions 
  
The developed simulation optimization model gives better 
performance to the optimization problem. The following are 
the conclusions derived from the present work. 
1) For the two loop network the global optimal solution of 

$4,19,000 is obtained with an average function 
evaluation of 5,300 for the mutation probability of 0.6 
and crossover probability of 0.4. 

2) In the Hanoi network the least cost solution of 
$60,81,087 is obtained with an average function 
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evaluation of 28,000 for the mutation probability of 0.6 
and crossover probability of 0.4.  

3) The DE obtained best known solution in fewer 
evaluations than other optimization algorithms, including 
GA, SA, SFLA, and HS. The result shows that the 
proposed DE algorithm can be effectively used to solve 
complex WDN design problems with better efficiency 
with least function evaluation. 
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