ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Relationship between Rainfall-Runoff using SCS-CN and Remote Sensing Technique in Upper-Helmand River Basin, Afghanistan

Khan Mohammad Takal¹, Sushil Kumar Mittal², Jyoti Sarup³

¹ Pg Student, M. Tech Water Resources Engineering, Civil Department, MANIT, Bhopal,

²Ex-Professor of MANIT and Professor LNCT, Civil Department, Bhopal, India

3Associated Professor of Civil Department, MANIT, Bhopal, India

Abstract: For the design of hydraulics structures, rainfall-runoff relationship is one of the most important aspects. The present study revealed the runoff estimation using SCS-CN method with Arc-GIS and remote sensing for Upper-Helmand river basin, Afghanistan. SCS-CN method can be effectively used for the runoff estimation which is now being used worldwide. It depends upon only few number of parameters, such as Curve Number (CN) and precipitation. The LULC map and HSG map are prepared using Arc-GIS for Upper-Helmand river basin to Generate CN.

Keywords: SCS (Soil Conservation Service), CN (Curve Number), Arc-GIS, Upper-Helmand, LULC (Land Use Land Cover), HSG maps

1. Introduction

Runoff occurred when the rainfall intensity (I) is more than the rate of infiltration (f) at the surface soil. After saturation of soil excess water flows over the land surface to nearby channels [8]. Such a process of runoff is referred as Hortonian runoff who has firstly described it. Two conditions must be satisfied to generate Hortonian flow, first one the rainfall intensity should be more than the rate of losses on the land surface (I>f) and secondly, the time required for saturation of the surface soil must be lesser then the duration of rainfall [5]. Manmade activities and urbanization may modify the nature of land surface and accordingly the runoff processes. Curve number (CN) is the method which combines the climatic factor and watershed parameters in one entity [10]. Using SCS-CN method, it is observed that in general, good correlation has been found between observed and computed runoff [11]. If conventional hydrological data are insufficient for the purpose of design of water resources system, then remote sensing data are of great use [13]. The runoff Curve Number (CN) can be effectively used in the practical models to calculate surface runoff [16]. When rainfall data of only five rain gauge stations are available the ANN model is best option for run off estimation in comparison SCS-CN model [2]. The results of SCS-CN model could have been improved if more rain gauges are available in a large catchment. For runoff processing following steps can be summarized:

- Extraction of satellite image for the studied area.
- Digital Image Processing (DIP) for satellite images.
- Surface soil map preparation for studied area.
- LULC map preparation for the study area.
- Curve Number map generation for the studied area.
- Runoff estimation using appropriate equation.

2. Brief Literature Review of the Study

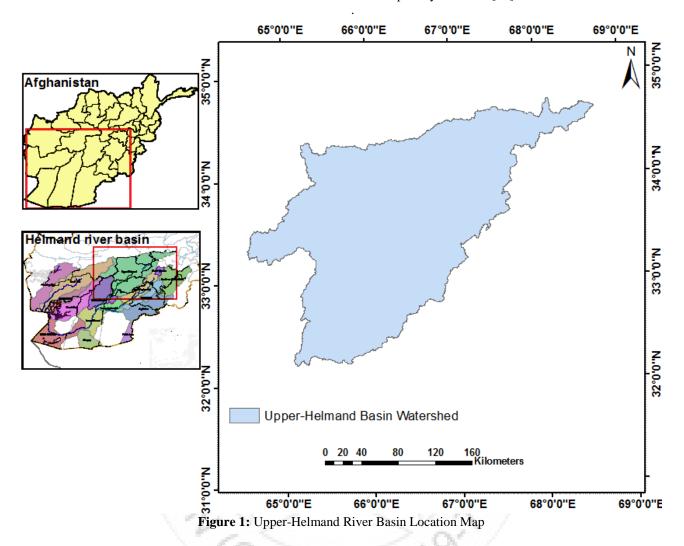
Shadeed et al. (2010) [15], Sekhar et al. (2014) [14], Ahmad et al. (2015) [1], Bhuktar et al. (2015) [3] used GIS based SCS-CN model for runoff estimation. They have used daily rainfall and CN values as inputs to the model to calculate daily runoff. Various thematic layers such as hydrologic soil, land use, and watershed boundary have been created in GIS environment and used to derive curve number by Jasima et al. (2015) [7], Vinithra et al. (2013) [17], Kudoli et al. (2015) [9]. As per knowledge of the investigators, so far nobody has used the SCS-CN model and GIS technique for assess of surface runoff for the Upper-Helmand river basin. Therefore, the present study was carried to investigate the relationship between Runoff – Rainfall using SCS-CN curves and Remote Sensing technique for Upper-Helmand river basin.

3. Study Area

The study area is located between latitudes 32.254 to34.653 N and longtitude 65.092 to 68.687 E with an area of 46,793 Km² (Fig. 1). Hight of the area is varring from 968 m to 5036 m w.r.t mean sea level. The Upper-Helmand river basin area is embodied by large hills, burried pediments, vallies and alluvial plains. The soil textures is silty clay, sandy, loamy and alluvium. The upper-Helmand river basin originated in a westerly extension of the Hindu Kush mountain range near Paghman about 40 kilometers west of Kabul and runs southwesterly for about 590 kilometers to the reservoir of Kajaki dam. The river water runoff comes mostly from rainfall at the average elevations of the basin in winter and spring season and from snow melting of from the glaciers of at the high altitude of mountains which escalate to elevations of 5036 meters. Range of Annual precipitations varies between 100mm to 400mm and precipitate mostly at higher altitudes during winter and spring [4]. The Mountains cause

Volume 5 Issue 11, November 2016

www.ijsr.net


Licensed Under Creative Commons Attribution CC BY

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

many local variations,though the upper-Helmand river basin is categorized by a dry continental climate. The temperatures of this rigions is varing from minus (-)10 $^{\circ}$ C in winter to plus (+) 34 $^{\circ}$ C in summer. The fluctuations in temperature are not uniform in character all over the whole basin.

The catchment is very important in the context of serving inter-sectorial demands including drinking, irrigation and hydropower generation. There is one major reservoir exist in the drainage basin with storage capacity of 1,844 Mm³ at the current spillway elevation [12].

4. Methodology

The study is complemented in three stages; Stage-1, all data (spatial and non-spatial) are collected from different sources, Stage-2, the articles with related layers of hydrologic soil group and land use maps prepared along with overlaid with one another. The overlaid endings are allocated by curve numbers, and finally Stage-3, the runoff is estimated based on rainfall occurred in study area.

4.1 Data Acquisition

Land use land cover map is downloaded from the United State Geological Survey (USGS) Land Cover Institute (LCI). Soil map, Soil properties such as soil types, structure and texture are obtained from Food and Agriculture Organization (FAO) soil map. DEM (Digital Elevation model) is derived from ASTER (Advanced Space borne Thermal Emission and Reflection Radiometer) and 36 years rainfall data is downloaded from global weather.

4.2 Land Use and Land Cover (LULC) Map:

In hydrologic modeling, Land Use Land Cover (LULC) information is used to know detection values or surface roughness. For the prediction of water holding capacity and percolation, land-use information is combined with the hydrologic characteristics of soils on the land surface. From vegetated land- use types, such as forest, the amount of expected runoff is not only affected by the surface, soil and physical properties, but also by the intercept capacity of the vegetation present, (Lynn; 2009). As a result, for the runoff process land use and land cover are important characteristics which also affects evapo-transpiration, erosion and infiltration. Land use labels that shows how a land is used (such as for residence, agriculture, or industry) the land cover labels also shows the materials (such as rocks, vegetation, water...etc.) that present on the surface. For an area the land cover may be evergreen forest, but the land use may be various combination of activity such as recreation, oil extraction...etc. (Jalil, 2002). (Fig.2). the area corresponding to each land cover and land use is given in Table 1

Volume 5 Issue 11, November 2016 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

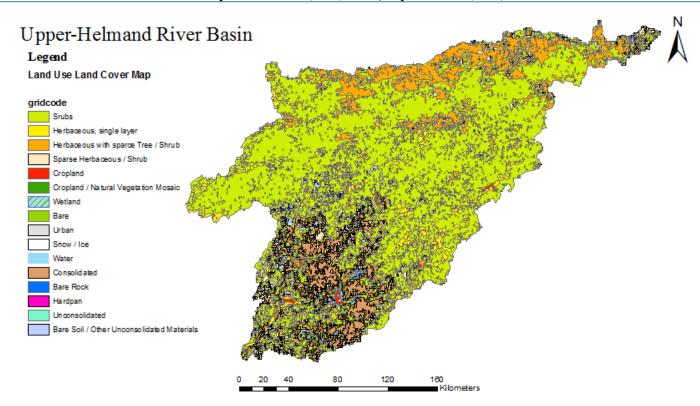


Figure 2: Upper-Helmand river basin - land use land covers Map

Table 1: Land Cover Classification

SN	Land Cover	Colour	Area (Km ²)
		Comb	
1	Srubs		29420.63
2	Herbaceous, sinle layer		3270.00
3	Herbaceous with sparce Tree		5826.69
4	Sparse Herbaceous/Shrub		3001.97
5	Cropland	1	213.98
6	Cropland/Natural Vegetation		0.56
7	Wetland		114.29
8	Bare		17.78
9	Urban		67.60
10	Snow/Ice	10	0.82
11	Water		13.47
12	Consolidated	1	3850.79
13	Bare Rock		7.41
14	Hardpan		0.82
15	Unconsolidated		178.59
16	Other Materials		807.58

4.3 Soil

The soil map obtained from Food and Agriculture Organization (FAO) has been classified into two hydrologic groups, such as Group C (92%) and Group D as (8 %) as shown in Fig. 3. Accordingly, area wise the soil classification is given Table 2.

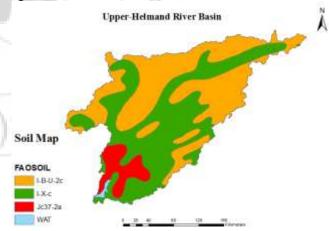


Figure 3: Upper-Helmand river basin soil map

Table 2: Soil classification as per Soil Map of Food and Agriculture Organization (FAO)

Record	Colour	Mapping	Dominant soil type	Associated soil type	Texture	Slope Class	HSG	Area
Number	Comb	Unit Name						(Km^2)
3503		I-B-U-2c	Iithosols	Cambisols Rankers	Medium	Steeply dissected to mountainous	С	22,348
3512		I-X-c	Iithosols	Xerosols	Medium	Steeply dissected	С	20,767
3525		Jc37-2a	Calcaric Fluvisols	Calcaric Fluvisols	Medium	Level to rolling	D	3,473
6997		WAT	Water				D	204

Volume 5 Issue 11, November 2016 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

4.4 Curve Number Values

In Arc-GIS to create a curve number, extra tools are necessary. For creation of curve number values and its calculation, original version of Arc-GIS does not provide any tool. However, these tools namely, Arc Hydro, Hec-GeoHMS and HEC-HMS used with Arc-GIS program are available in ESRI website for updating Arc-GIS [6]. The required data are Land Cover Land Use (LULC) and Hydrologic Soil Group (HSG) maps. Arc-GIS and Arc Hydro tools are used to obtain the preliminary analysis such as calculation of Agreedem, Fill Sink, and Fill Direction from Data Management Tool (DMT). These data were collected and uploaded to Arc-GIS for further calculations. Accordingly, the curve numbers based on land cover land use and soil maps are generated and shown in Fig.4 and also given in Table. 3.

4.5 SCS - CN Method

SCS-CN method is carried out based on two parameters rainfall data and Curve Number (CN) ranges from 0 to 100. The most important parameter in CN is Antecedent Soil Moisture Condition (AMC). However, antecedent soil moisture condition is classified into the antecedent moisture classes AMC I, AMC II and AMC III, that illustrate dry, average and wet conditions respectively. All classes (AMC I, AMC II, AMC III) are based on five-day antecedent rainfall amount and season category and are given in Table.4

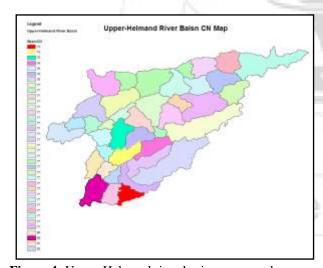


Figure 4: Upper-Helmand river basin curve number map

Table 3: CN Classification

No	Area (Km²)	CN	No	Area (Km²)	CN
1	795	74	20	1604	77
2	1043	75	21	942	77
3	1171	76	22	3129	77
4	1072	76	23	1231	77
5	746	76	24	1147	77
6	992	76	25	1286	77
7	3763	76	26	1526	77
8	291	77	27	587	77
9	279	77	28	1029	77
10	1002	77	29	2727	77
11	1605	77	30	1421	77

12	520	77	31	1110	77
13	1091	77	32	469	77
14	569	77	33	768	77
15	517	77	34	1028	77
16	2247	77	35	529	80
17	1269	77	36	1326	80
18	1395	77	37	827	81
19	3264	77	38	467	82

Table 4: AMC determination for CN

	Total Rain Classification of AMC in Previous 5 days					
AMC	Dormant Season Growing Season					
I	Less than 13 mm	Less than 35 mm				
II	13 to 28 mm	35 to 52.5 mm				
III	More than 28 mm	More than 52.5 mm				

4.6 Direct Runoff Depth Estimation

Direct runoff depth (D) is calculated by The SCS-CN method using following expression:

$$D = \frac{(P - 0.2 \text{ S})^2}{P + 0.88} \tag{1}$$

 $D = \frac{(P - 0.2 \text{ S})^2}{P + 0.9 \text{S}}$ (1) In Eq. (1), P is the total rainfall in mm in antecedent 5 days and S is dimensionless parameter known as potential maximum retention, which can be obtained using Eq. (2). The parameter depends on the soil vegetation and land use of the catchment and the AMC in the catchment is just prior to the commencement of the rainfall event. The Soil Conservation Service (SCS) of USA expresses the potential maximum retention (S) as dimensionless parameter for easiness in practical application. The SCS conducted number of empirical studies and specified that S can be calculated using equation (2) as follow:

$$S = \frac{25400}{CN} - 254 \tag{2}$$

The constant 254 is used to define (S) in mm. Curve number CN depends on soil type, LULC, and AMC which ranges from 0 to 100. A 100 CN value represents a condition of zero potential retention and CN = 0 represent an infinitely abstracting catchment.

A composite curve number of a catchment with catchment which have different soil types and LCLU is determined by weighting the curve number values for the different subcatchment in proportion to the land area associated with each and is given by Eq. (3) as follows:

$$CN_{c} = \frac{CN_{1}A_{1} + CN_{2}A_{2} + \dots + CN_{i}A_{i} + \dots + CN_{n}A_{n}}{\sum_{i=1}^{n} A_{i}}$$
(3)

For the average condition (AMC II), runoff curve numbers is taken from land use and soil type. However, for other two condition, dry (AMC I) and wet (AMC III) following equations are used for obtaining equivalent curve numbers.

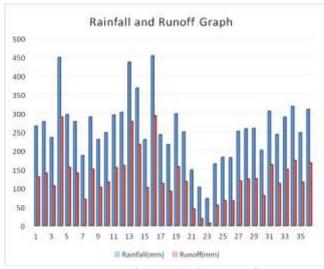
$$CN (I) = \frac{CN (II)}{2.334 - 0.01334CN (II)}$$
(4)

And

Volume 5 Issue 11, November 2016

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY


DOI: 10.21275/ART20163142 Paper ID: ART20163142 1533 Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

$$CN (III) = \frac{CN (II)}{0.427 + 0.00573 CN (II)}$$
 (5)

5. Result and Discussion

The estimated AMC I, AMC II and AMC III, the corresponding curve numbers are 58.89, 77.67 and 88.89. As per the growing five - day's rainfall, curve number falls in Antecedent Soil Moisture Condition III (AMC III). Hence the runoff is estimated and the mean runoff of the 35 years is 129.78 mm per year. Runoff estimation is given in Table.5 for 35 years.

The rainfall and correspondingly runoff is also shown (blue colour) (red colour)

Figure 5: Graph of Rainfall and Runoff of Upper-Helmand River basin

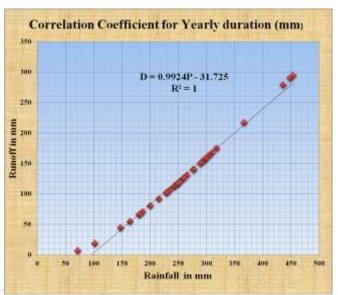


Figure 6: Correlation Graph of Rainfall and Runoff

Table 5: 35 years runoff estimation by SCS-CN method.

	Annul Precipitation	CN		Runoff	Area	Runoff	Runoff
Year	(mm)	(AMC- III)	PMR S	(mm)	(Km ²)	(Mm^3)	(Mhm)
1979	265.81	58.89	177.31	130.15	46793	6,090.28	0.609
1980	277.76	58.89	177.31	139.91	46793	6,547.01	0.655
1981	235.13	58.89	177.31	105.76	46793	4,948.60	0.495
1982	449.45	58.89	177.31	289.85	46793	13,562.80	1.356
1983	296.67	58.89	177.31	155.59	46793	7,280.54	0.728
1984	278.09	58.89	177.31	140.18	46793	6,559.46	0.656
1985	187.17	58.89	177.31	69.95	46793	3,273.29	0.327
1986	290.62	58.89	177.31	150.55	46793	7,044.54	0.704
1987	230.26	58.89	177.31	101.98	46793	4,771.89	0.477
1988	248.38	58.89	177.31	116.17	46793	5,435.93	0.544
1989	295.88	58.89	177.31	154.93	46793	7,249.47	0.725
1990	302.73	58.89	177.31	160.67	46793	7,518.24	0.752
1991	436.83	58.89	177.31	278.38	46793	13,026.40	1.303
1992	367.76	58.89	177.31	216.68	46793	10,139.15	1.014
1993	229.60	58.89	177.31	101.46	46793	4,747.83	0.475
1994	453.93	58.89	177.31	293.93	46793	13,753.82	1.375
1995	243.16	58.89	177.31	112.05	46793	5,242.95	0.524
1996	216.52	58.89	177.31	91.47	46793	4,280.33	0.428
1997	298.68	58.89	177.31	157.27	46793	7,359.17	0.736
1998	250.24	58.89	177.31	117.65	46793	5,505.37	0.551
1999	148.44	58.89	177.31	43.97	46793	2,057.45	0.206
2000	102.31	58.89	177.31	18.30	46793	856.45	0.086
2001	72.23	58.89	177.31	6.31	46793	295.41	0.030
2002	164.70	58.89	177.31	54.48	46793	2,549.50	0.255

Volume 5 Issue 11, November 2016 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

2003	182.49	58.89	177.31	66.65	46793	3,118.81	0.312
2004	181.20	58.89	177.31	65.75	46793	3,076.51	0.308
2005	251.94	58.89	177.31	119.01	46793	5,568.65	0.557
2006	258.72	58.89	177.31	124.44	46793	5,822.71	0.582
2007	259.90	58.89	177.31	125.38	46793	5,867.05	0.587
2008	201.08	58.89	177.31	79.98	46793	3,742.56	0.374
2009	305.73	58.89	177.31	163.20	46793	7,636.51	0.764
2010	243.73	58.89	177.31	112.50	46793	5,264.09	0.526
2011	289.90	58.89	177.31	149.95	46793	7,016.53	0.702
2012	318.54	58.89	177.31	174.06	46793	8,144.62	0.814
2013	248.43	58.89	177.31	116.21	46793	5,437.83	0.544
2014	310.56	58.89	177.31	167.28	46793	7,827.40	0.783

6. Conclusion

The SCS-CN method is widely used method for the estimation of surface runoff for a given rainfall event in a catchment. The advantage of the Remote Sensing and GIS bass application of SCS-CN model is that, most powerful, faster and reliable method for the determination of the amount of runoff from rainfall event for complex mix LUL watershed with different type of soil.

Originally SCS-CN method was developed for the humid region which has quit characteristics deferent with arid to semiarid region. Therefore, the *Ia* value in SCS-CN method formula had been investigated, and verified for dry condition.

For the calculation of composite CN in the present study, Remote Sensing and GIS approach was used. Therefore the input data which has a significant role in the processing of generate complex CN are easily carried out in Arc-GIS such as Soil map, Land use/Land cover map, HSG map and Curve Number map for Upper-Helmand region.

As per the growing five days' rainfall a composite curve number for whole catchment is fall under AMC I and its value is as 58.89.

The mean runoff of the 35 years is 129.78mm per year.

References

- [1] Ahmad, Ishtiyaq., Verma, Vivek., Verma, Kumar. Mukesh. (2015), "Application of Curve Number Method for Estimation of Runoff Potential in GIS Environment", 2nd International Conference on Geological and Civil Engineering, IPCBEE vol.80.
- [2] Bhadra et al. (2010) "Rainfall–Runoff Modelling: Comparison of Two Approaches with Different Requirements", Water Resor Manage @ Springer, pp 39-52.
- [3] Bhuktar et al. (2015) "computation of Runoff by SCS-CN Method and GIS", International Journal of Engineering Studies and Technical Approach, Volume 01, No.6.
- [4] Favre et al. (2004) "Watershed atlas of Afghanistan" Kabul, Afghanistan, Afghanistan Information Management Service, 183 p.
- [5] Harton, R.E (1933) "The role of infiltration in the Hydrologic cycle" Transactions of the American geophysical union, 14: 446-460.

- [6] Hillier Amy, 2011. Manual for working with ArcGIS 10.
- [7] Jasima, P., Katpatal, Y.B, (2015), "GIS based Runoff Estimation of Venna River Basin, Maharashtraby SCS Curve Number Method", Journal of Civil Engineering and Environmental Technology, Volume 2, Number 12, pp. 22-26.
- [8] Kirkby, M.J. 1985. "Hill slope hydrology in Hydrological forecasting", M.G. Anderson and T.B. Burt, eds. John Wiley and sons, New York, New York, 37-75.
- [9] Kudoli, B. Anand., Oak, A.R., (2015) "Runoff Estimation by Using GIS Based Technique and Its Comparison with Different Methods- A Case Study on Sangli Micro Watershed", International Journal of Emerging Research in Management & Technology, ISSN: 2278-9359 (Volume-4, Issue-5).
- [10] Kumar et al. (2010) "Analysis of Runoff for watershed Using SCS Curve Number Method and Geographical Information System!", International Journal of Engineering Science and Technology, PP-3947 -3654.
- [11] Nayak et al. (2012) "SCS Curve number method in Narmada basin". International Journal of Geomatics and Geoscience, pp219-228.
- [12] Perkins et al. (1970) "Hydrographic and sedimentation survey of Kajakai Reservoir, Afghanistan": U.S. Geological Survey Water-Supply Paper 1608–M, 43 p.
- [13] Pradhan et al. (2010) "Estimation of Rainfall Runoff using Remote Sensing and GIS in and around Singtam, east Sikkiml", International Journal of Geomatics and Geoscience, pp 466-476.
- [14] Sekhar et al. (2014) "Estimation of Runoff using NRCS-CN and Remote Sensing" International Journal of Latest Trends in Engineering and Technology Vol. 3 Issue 4.
- [15] Shadeed, Sameer., Almasri, Mohammad. (2010), "Application of GIS-based SCS-CN method in West Bank catchments, Palestine" Water Science and Engineering, 3(1): 1-13 doi: 10.3882/j.issn.1674-2370.2010.01.001.
- [16] Tripathi et al. (2002) "Runoff Modeling of a small Watershed Using data and GISI", Journal of Indian Society of remote sensing, pp 37-62.
- [17] Vinithra et al. (2016), "Rainfall- Runoff Modelling Using SCS-CN Method: A Case Study of Krishnagiri District, Tamilnadu" International Journal of Science and Research, ISSN: 2319-7064.

Volume 5 Issue 11, November 2016

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY