
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Survey Based on Performance-Bug Detection
S. Maheswari1, Dr. K. Chitra2

1Research Scholar, Dept of Computer Science, Bharathiar University, Coimbatore, TN, India

2Asst. Professor Dept of Computer Science, Govt Arts College, Melur, Madurai Dt, TN, India

Abstract: Software testing is the process of executing a program or system to discover the intent of bugs. Software testing is an activity
designed to assess the properties or capabilities of a program or system and to determine the results that meet its requirements. Software
performance is critical to how the user perceives the quality of the software product. Performance bugs are programming bugs that
cause significant performance degradation, resulting in poor user experience and low system performance bugs. Designing effective
techniques for handling bugs in yield design require a thorough understanding of how bugs are detected, reported and fixed. In this
paper, to study how performance bugs, reported by developers to discover and develop fixation, and the results compared with non
performance bugs. This paper conducts a detailed study of a sample of real-world performance bugs randomly from three sets of
representative programs (Chrome, Mozilla and Apache). The results of this study serve as a guide for future work to prevent, expose,
discover and correct performance bugs. First, found that there is little evidence that bug fixes are more likely to introduce new
functional bugs to correct for erratic irregularities, which means that developers may not need more attention to correcting the
performance of the bugs. Second, although fixing performance bugs is about as bug-prone as fixing nonperformance bugs, fixing
performance bugs is more difficult than fixing non-performance bugs, indicating that developers need better tool support for fixing
performance bugs and testing performance bug patches. Third, unlike many insects, a large percentage of performance bugs are
detected by reasoning code, not by the user observing the negative effects of bugs or via profiles. The results show that the techniques
that help developers need to test performance, better test beds and better profiling techniques to find performance bugs.

Keywords: Automation Tool, Performances Bug, Testing.

1. Introduction

Software testing is the main activity of evaluating and
executing software with a view to find out bugs. It is the
process where the system requirements and system
components are exercised and evaluated manually or by
using automation tools to find out whether the system is
satisfying the specified requirements and the differences
between expected and actual results are determined.

Software performance is important to the overall success of a
software project. Performance bugs called programming
bugs that create significant performance degradation hurt
software performance and quality. They lead to poor user
experience, degrade application responsiveness, lower
system throughput, and waste computational resources. Even
expert programmers introduce performance bugs, which
have already caused serious problems. Well tested
commercial products such as Internet Explorer, Microsoft
SQL Server, and Visual Studio are also affected by
performance bugs.

Therefore, both industry and the research community have
spent great effort on addressing performance bugs. For
example, many projects have performance tests, bug tracking
systems have special labels for performance bugs, and
operating systems such as Windows 7 provide built-in
support for tracking operating system performance. In
addition, many techniques are proposed recently to detect
various types of performance bugs.

To understand the effectiveness of these techniques and
design new effective techniques for addressing performance
bugs requires a deep understanding of performance bugs. A
few recent papers study various aspects of performance bugs,

such as the root causes, bug types, and bug sources, which
provide guidance and inspiration for researchers and
practitioners. However, several research questions have not
been studied at all or in depth, and answers to these
questions can guide the design of techniques and tools for
addressing performance bugs in the following ways:

Based on maxims such as “premature optimization is the root

of all evil”, it is widely believed that performance bugs
greatly differ from non-performance bugs, and that patching
performance bugs carries a much greater risk of introducing
new functional bugs. A natural question to ask is compared
to fixing non-performance bugs, whether fixing performance
bugs is indeed more likely to introduce new functional bugs.
If fixing performance bugs is not more bug prone than fixing
non-performance bugs, then developers may not need to be
over-concerned about fixing performance.

Different from most non-performance bugs, whose
unexpected behaviors are clearly defined, e.g., crashes, the
definition of performance bugs is vague, e.g., how slow is
qualified as a performance bug. Therefore, are performance
bugs more difficult to fix than non-performance bugs? For
example, are performance bug patches bigger? Do
performance bugs take longer to fix? Do more developers
and users discuss how to fix a performance bug in a bug
report? Many techniques are proposed to help developers fix
bugs, typically with a focus on nonperformance bugs. If
performance bugs are more difficult to fix, we may need
more support to help developers fix them.

Since the definitions of expected and unexpected behaviors
for performance bugs are vague compared to those of
nonperformance bugs, are performance bugs less likely to be
discovered through the observation of unexpected behaviors

Paper ID: ART20163118 1403

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

than non-performance bugs? Are performance bugs
discovered dominantly through profiling because many
profiling tools are available and used? If performance bugs
are less likely to be discovered through the observation of
unexpected behaviors compared to non-performance bugs, or
performance bugs are rarely discovered through profiling,
then it is important for researchers and tool builders to
understand the reasons behind the limited utilization of these
techniques and address the relevant issues. If developers
resort to other approaches to discover performance bugs, we
may want to provide more support for those approaches to
help developers detect performance bugs.

To answer these and related questions, we conduct a
comprehensive study to compare performance and non-
performance bugs regarding how they are discovered,
reported, and fixed.

The manual effort needed to study more performance bugs is
an inherent limitation of our and any similar study.
Nonetheless, the lessons learned from comparing these bugs
should provide a good initial comparison between
performance and nonperformance bugs on discovering,
reporting, and fixing them.

2. Motivation

Slow and inefficient software can easily prevent users from
causing economic losses. While researchers spent decades
improving software performance transparently, bugs
continue to reduce the performance of a wide range of high-
performance computing resources and waste in this area. At
the same time, the preliminary performance of the current
support for the fight against bugs is due to the poor
understanding of the actual performance of the bug.

We refer to performance bugs, and where changing relatively
simple source code can significantly speed software flaws
while preserving functionality. These shortcomings cannot
be done by the state, resulting in inconvenience to the end-
user compiler being optimized.

There is a performance bugs in widely released software. For
example, Mozilla Developer has set a monthly user-reported
5-60 performance bug for the past 10 years. Because almost
nothing to do to help developers avoid bugs with the
performance of the wrong kind of popularity is unavoidable.
In addition, the performance test is mainly based on the
black box test invalid and design manual entry, so that most
performance bugs escaped.

Performance bugs lead to performance degradation,
increased latency, and wasted resources in this area. In the
past, they have caused several well-known failures, resulting
in hundreds of millions of software projects were abandoned.
To make matters worse, performance problems are
expensive to diagnose because its symptoms do not stop.
Software companies may need to work hard for a few
months to find a pair of bugs that cause hundreds of
milliseconds to delay performance in their service's 99th
percentile latency period.

The following trends will lead to erroneous performance
issues that are most critical in the future:

Hardware: Over the years, Moore's Law states that
hardware will make software end time fast without software
development work. In the era of multi-core, when it is
impossible for each core to be faster, the bug is particularly
detrimental to performance.

Software: The ever-complex changes in software systems
and workloads provide new opportunities for new challenges
and challenges in waste performance and diagnostics.

Energy Efficiency: Increased energy costs provide powerful
economic parameters to avoid performance bugs. When a
person is willing to sacrifice the quality of service, reduce
energy consumption, ignoring the performance of the bug is
inexcusable. For example, to correct a double run-time bug,
you may halve the carbon footprint of the purchase and
operate the computer.

You may return a bug that has not been reported as
frequently as possible by a functional bug, and they will not
cause a malfunction detention bug. However, given the
initial support for bug-fighting performance, it is now time to
pay more attention to them as we enter a new world of
computational resource constraints.

3. Characteristics of performance Bugs

Many empirical studies have carried out the traditional
mistakes that result in incorrect functional software, called
functional bugs. These studies have successfully guided the
design of functional software testing, functional fault
detection and fault diagnosis.

Main Characteristics are,
Bug Avoidance. Two-thirds of the bugs studied were
developed by misunderstandings about the workload or
performance characteristics of API developers. More than a
quarter of the bug from previous correct code, because of the
workload or changing the API. In order to avoid
performance bugs, developers need to annotate system
performance-oriented and change impact analysis.

Performance Testing. Almost half of the research insects
are required with special features and large scale inputs to
embody. The combined use of the input functional tests takes
into account the large scale significant improvements in the
state of the art performance test generation scheme.

Bug Detection. Recent work has demonstrated the potential
for bug detection performance. Our research has found
common root causes with erroneous real-world performance
structural patterns that can help improve coverage and bug
detection performance accuracy.

Bug Fixing and Detection. Almost half of the inspection
bug fixes include reusable efficiency rules that can help
detect and correct performance bugs.

Paper ID: ART20163118 1404

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Comparison with functional bugs. Performance bugs tend
to be hidden much longer in software functional bugs. Unlike
functional bugs, performance bugs cannot be modeled as
rare events, since they are not small parts that can be
activated using almost any input.

4. Related Work

Adrian Nistor et al. In order to improve performance and
detect performance problems, several techniques identify
slow code runs that expand or increase execution time.
Unlike all these technologies, CARAMEL enables novel
design decisions to focus on performance bugs with both
simple and non-intrusive hardware. In particular,
CARAMEL detects a performance bug with a CondBreak
file. These bugs are not included in the previous work. For
automatic bug fixes, several recent techniques have been
proposed to automatically fix bugs. It uses genetic
programming, and LASE uses edits that are similar to
previous edits. Other techniques use methods such as SMT,
semantic analysis, software contracts, developer input, and
others to fix bugs. Unlike these technologies, CARAMEL
automatically fixes performance bugs. In addition, with its
unique attributes of detected bugs, CARAMEL successfully
solved 149 of the 150 bugs. CARAMEL detects a
performance bug with the CondBreak file: When a condition
becomes true during a loop execution, it simply breaks
through the loop. CARAMEL in real-world applications,
including 11 popular Java applications (Ant, Groovy,
JMeter, Log4J, Lucene, PDFBox, Sling, Solr, Struts, Tika
and Tomcat) and 4 widely used C / C ++ applications
(Chromium, GCC, Mozilla, and MySQL). CARAMEL found
61 new performance bugs in Java applications and 89 new
performance bugs in C / C ++ applications. In these bugs, the
developer has defined 51 performance bugs and 65
performance bugs in the C / C ++ application. CARAMEL
has made a promising first step in detecting performance
bugs with non-intrusive software [1].

Qi Luo et al. The performance tests for enterprise
applications are manual, labor-intensive, expensive, and not
particularly effective. Several methods are proposed to
improve the efficiency of performance testing. For example,
the function and parameter values of the operating profile
schema have been introduced to test the probability of
occurrence of a distribution of the most commonly used
operations. Rule-based techniques are effective to identify
performance bottlenecks by identifying problematic patterns
of source code because of misinterpretation or invocation of
sequence problems with API calls. However, these
techniques always work for a specific type of performance
bottleneck and are not widely used in industry. In practice,
one of the primary methods of performance is intuitive
testing, which is the tester's intuition and experience in the
exercise of AUT, to guess possible bugs. Intuitive testing
was first introduced in 1970 to take advantage of the
expertise of test engineers with a focus on prone to bugs and
related system functions without the need to write test
specifications for time-consuming methods. As a result, the
pre-investment and the indirect costs of the process can be
reduced. When you run many different test cases and

observe the behavior of the application, the tester intuitively
perceives that some test case may have performance
bottlenecks exposed in the future. However, one of the main
risks of intuitive evidence is the loss of key people (ie, key
testers). When they leave the company's knowledge and
experience of test engineers are gone. Culturing new tests
takes time and is expensive. Therefore, it is necessary to
automatically reveal the performance bottleneck with
distilled test cases to avoid wasting time and money in the
properties. These attributes are automatically extracted to
describe how the performance of the application will affect
these rules for the secondary goals of our methods [2].

Oswaldo Olivo et al. Some recent projects use analysis
software to automatically detect performance bugs. Some of
them detect the use of useless temporary objects that are
more focused on the use of invalid or incorrect data sets and
others who use dynamic analysis to identify memory-
expensive computations. The instrument uses a dynamic
detection to determine the "repeatable" calculation by
monitoring the repetitive access to the memory, in part a
similar pattern. The work is based on the observation that the
following set of duplicate paths may be an erroneous
performance. The method is purely static, so it has no run-
time overhead and does not require the programmer to
provide a performance test. The tool analyzes PerfChecker
static Android applications to determine common
performance bugs. Unlike the clear, punctured-check
detection and delay fulfillment obligations of the graphical
user interface, leakage and swollen memory failures. The
Perspective tool helps users diagnose performance problems
related to configuration settings. X-ray uses a technique
called comprehensive performance, which combines the
dynamic analysis of information flow performance overhead.
CLARITY different, X-ray dynamic analysis, and focus on
the user's bug, rather than the developer's performance
problems. Trace analysis is a technique for identifying the
cause of performance anomalies. For example, the Trace
Analyzer tool builds performance traces that can capture
different performance times during program execution.
Another approach involves impact analysis and tracing
causal relationships to discover patterns related to
performance issues. These techniques can be revealed in a
variety of performance anomalies, but are not fully
automated [3].

Sebastiano Panichella et al. Lack of evidence, and
proposed a technique based on static down-regulation to
generate code annotations describing faults and their causes.
To generate a human-readable document that throws an
unexpected exception. However, these methods need to test
failed or thrown Java unexpected exception. This does not
occur when the auto-generated test case, as an automatically
generated assertion reflects the actual behavior of the class.
Therefore, if the current behavior fails, the resulting
assertions do not fail because they reflect incorrect behavior.
Comprehension is also very much related to the size of the
trial and the number of assertions. For these reasons, prior
work on automated testing focused on (i) reducing the
number of generated tests to minimize post-processing, and
(ii) reducing the number of assertions using mutant analysis
or split testing multiple claims. In order to improve the

Paper ID: ART20163118 1405

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

generated code, a read-test unit based on the use of a
particular domain model is constructed based on human
judgment of the readability of the post-evidence processing
technique. Use the language model to generate a more
readable input string. It shows that abstracts are an important
complement to and enhance the readability of automatically
generated component test cases [4].

Mario Linars et al. For the bug performance of automatic
detection and other works of the design approach to identify
significant performance bugs (ie, the delay can be perceived
by the user) of the inspection rules, investigate 109 bugs,
automatic identification performance bug five systems. He
proposes to use performance counters and perform log
events to link memory leaks to specific intervals of memory
performance to diagnose methods. There has also been
support for performance bottlenecks in in-situ visual
propositions in understanding Java applications. The survey
found that fewer bugs were detected in the desktop
application using the configuration file. They also found that
many performance bugs are based on code reasoning rather
than direct observation of most of the recognition. Our
results emphasize that, in the case of Android applications,
people rely heavily on user reviews, manual execution and
direct observation [5].

Xue Han et al. There has been a recent performance testing,
debugging, fixing and preventing erroneous work. For
example, a loop is determined that computes a repetitive
pattern with memory access. The stack trace of the lightning
protection call stack is found with the high performance
impact call sequence to generate test case actions. Select the
test case performance test. While the above techniques are
encouraging and effective, they assume the default settings
and do not take into account performance bugs due to
configuration. Use common learning techniques to detect
regressions due to specific changes in the environment. His
work has focused on specific system configurations when we
delve into a variety of configurations. From the performance
modeling point of view, there has been a lot of work in
building performance models for different purposes, such as
using learning methods and influencing performance
profiles, creating performance model profiles and
performance modeling using static and dynamic program
analysis technology. All of these techniques provide a good
idea of the factors involved in the performance model.
However, our study further examines how bugs are
configured with performance and therefore complementary
[6].

5. Terminologies of Performance Bug-
Detection

The NaiveBayes categorized by software bugs showed an
average accuracy of several data sets of 83.47. We set MC1,
PC2 and PC5 data, which precision results are more than
95%, the performance is very good. The PC3 with the worst
performance of the data set used, with an accuracy of less
than 50% can be seen. MLP (Multilayer Perceptron) also
performed well for MC1 and PC2 and achieved overall
accuracy of 89.14% on several data sets. SVM (Support

Vector Machine) and bagging performed very well,
compared to machine learning and other methods, and
obtained about 89% of the overall accuracy. Adoboost gets
88.59 accuracy, bagging gets around 88.47 to achieve
accuracy of 89386, decision trees, random forests get 89.08,
get 88.33 in J48 and unsupervised learning KNN (K Nearest
Neughbor) 71.99 RBF To the basis function to 87.29 K-
means. Compared to machine learning methods such as
MLP, the SVM and bagging performance of all the datasets
selected is still good. The lower accuracy is achieved by the
KNN method.

The best MAE (Maekawa’s) is implemented by the SVM
method on multiple data sets 0.10 and 0.00 to obtain all data
for the MAE PC2. MAE is the worst KNN method for 0.27.
K-means, MLP, random forest and J48 also increased around
MAE 0.14. In the case of this measure, F is greater and
better.

This higher F gain is achieved by approximately 0.94 SVM
and bagging method. The worst-case F obtained by the KNN
method is in multiple data sets 0.82. Identify software
defects early in the software lifecycle to help software
quality assurance and direct measures to improve process
management software. The cash forecast bug depends
entirely on the good forecasting model. This study includes
different machine learning methods that can be used to
predict against bugs. Software for analyzing the performance
of different algorithms in multiple datasets. Sky SVM, MLP
and bagging techniques performed well in the database.
Appropriate methods for selecting experts in the field of
prediction bug must consider several factors, such as the data
set, the problem domain, the uncertainty of the data set, or
the nature of the project. You can combine multiple
technologies with more accurate results.

5.1 Performance indicators

In this study, performance metrics such as accuracy, absolute
mean bug, and measurement were used based on the
accuracy and memory. The precision can be defined as the
correct identification bug divided by the total number of
bugs, calculated by the following formula:

Accuracy = (TP TN) / (TP TN FP FN)
Accuracy (%) = (Software Bug Correct Classification / Total
Software Bug) * 100

Accuracy is a measure of the correction and is the
relationship between the bug and the actual number of
software bugs that the software correctly categorizes the
categories assigned to it. It is calculated by the following
formula:

Precision = TP /(TP+FP)
Recall is the correct classification of software bugs and falls
within the scope of their relationship between software
defects. It represents the machine learning method, the
ability to seek extension, and is calculated by the following
equation.

Recall = TP / (TP + FN)
F-measure is a combined measure of recall and precision,
and is calculated by using the following equation.

F = (2 * precision * recall) / (Precision + recall)

Paper ID: ART20163118 1406

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

6. Case Studies

This section describes the faulty design of our study. For a
particular project, we first extract the necessary data for your
warehouse bugs. Next, we determine the random sampling of
100 performance bugs and 100 non performance bug reports.
We then study the sampling bug to determine the different
sizes and can be used to compare the bug performance of the
fusing bug and the sub-size in the non-executing process.
Finally, we proceeded based on these analyzes of our sub-
dimensions. This section describes each of these steps.

6.1. Choosing Data from System

In our case study, we studied the web browsers Mozilla
Firefox and Google Chrome, as these are the two most
popular web browsers for public data tracking system bugs.
We specialize in web browsers, and performance is one of
the major software quality requirements for Web browsers
that support multiple platforms and system environments.
For this reason, bug performance is reported in both systems,
and the problem tracking system in both projects is explicitly
marked.

Firefox, we first came to identify the relevant web browser
Firefox bug because Mozilla bug tracking system manages
several projects. It contains 567595 bug reports for merging
all the different components of Mozilla Firefox, SeaMonkey
and Thunderbird Mozilla.

For Chrome Web Browsers, our data is provided from the
dump question tracking chrome challenge 2011 MSR
Extractor.

6.2. Classification of Bug Types

In Bugzilla (Mozilla Firefox's problem tracking system), the
"Keywords" field is marked with "perf" for performance
bugs. In the Google Chrome issue tracker, for performance-
related bugs, the "Label" field is labeled "Performance."
However, in these two projects, this mark is not mandatory,
we found that many performance bugs, there is no such
mark. Therefore, in order to identify performance bugs, we
had to use heuristics. We look for the keywords "perf",
"slow", and "hang" in the bug report "Title" and "Keyword"
fields. Although the keyword 'perf' gave us a "performance"
bug report in its header, we found that there are many bug
reports that contain "perfect", "execute" or "execute" and
nothing related to performance issues. We have to use
regular expressions to automatically exclude these keywords
from the list.

6.3. Identification of bug report and comment dimensions

Before we can compare the performance of the bug and did
not perform, we must first establish the criteria for
comparison. The ability to record the repository in different
areas and bug logs is a good start, but our research requires
knowledge of the testers and the way developers work
together and think about bugs (none). This knowledge is part
of the natural language content of the discussion and

misinterpretation, but we do not know of any classifications
or other work to analyze the qualitative data for bug
reporting. Therefore, we conducted a sampling of the data to
determine the classification of this manual study.

In order to determine if a particular system has a statistically
significant higher percentage of bug rate performance
associated with a sub-size (e.g., lock) than an unrelated bug,
greater than the sub-size, a & quot; performance joint
confidence interval & quot; or & quot; . This measure is
often used to compare two separate samples. If the bug-rate
performance, rather than the difference in the performance of
the sub-size than the comparison calculated bug, the
difference is considered statistically significant.

7. Performance Tool Studies

Httperf: Httperf is a high-performance testing tool for
measuring and analyzing the performance of any Web
service and Web application.

NeoLoad: NeoLoad is a load and performance testing
software designed to improve the quality of Web and mobile
applications by actually simulating users and analyzing
server behavior.

QTEST: a network test tool loaded complete and accurate
analysis of applications. It supports all Windows platforms.
The original user interface (UI) is easy to use and
understand, and is used to host on-demand or OnPremise
applications. It is compatible with all Windows platforms.

Open STA: OpenSTA refers to the open system test
architecture. OpenSTA is a distributed test structure that
allows you to create and run performance tests to evaluate
the network application environment (WAE) and production
system.

Load Storm: The LoadStorm test tool is the least expensive
performance and available load. In this tool, we are going to
create our own test plan, test criteria and test program
options. Through this tool, you can end all the costly
performance testing tools.

Load Impact: LoadImpact is a load testing tool that is
primarily used in cloud-based services. This also helps to
optimize the site and improve the performance of any Web
application.

QEngine (ManageEngine): QEngine (ManageEngine) is a
tool, the most common, easy-to-use performance test that can
automatically test their Web applications for and load.

Load UI: Loading UI is another kind of load testing
software and open source is used to measure the
performance of Web applications. This tool works well with
the soap UI integration of functional testing tools.

Load Runner: HP is a product that can be used for
performance testing tools. This allows you to purchase HP
software from HP Products.

Paper ID: ART20163118 1407

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

8. Conclusion

The bug performance presented in this article has been
applied in real-world applications. This paper reports our
findings and finds some unique performance characteristics
in the application of the results of the bug. It also identifies
common patterns of bugs that can support bug detection,
performance testing and debugging related research. The
study covers the functional, broad-spectrum and future
performance of the study provides guidance - prevention
errors, performance testing, and fault detection and so on.
Under the guidance of this study, we explored the
performance implications of the bug detection performance
based on the rule of implied efficiency through patches, and
found a number of previously unknown performance
problems. This work has only the starting point,
understanding and operational performance bugs. We want
to deepen our understanding of performance bugs, and pay
more attention to performance bugs.

References

[1] Adrian Nistor, Po-Chun Chang, Cosmin Radoi, Shan
Lu,” CARAMEL: Detecting and Fixing Performance

Problems That Have Non-Intrusive Fixes”, IEEE/ACM

37th IEEE International Conference on Software
Engineering, 2015.

[2] Qi Luo, Aswathy Nair ·Mark, Grechanik, Denys
Poshyvanyk, “FOREPOST: finding performance

problems automatically with feedback-directed learning
software testing”,Springer,2015.

[3] Oswaldo Olivo, Isil Dillig, Calvin Lin, “Static Detection

of Asymptotic Performance Bugs in Collection
Traversals”, 2015.

[4] Sebastiano Panichella, Annibale Panichella, Moritz
Beller, Andy Zaidman,Harald C. Gall, “The Impact of

Test Case Summaries on Bug Fixing Performance: An
Empirical Investigation”, IEEE/ACM 38th IEEE

International Conference on Software Engineering,
2016.

[5] Mario Linares-Vásquez, Christopher Vendome Qi Luo
and Denys Poshyvanyk by How Developers Detect and
Fix Performance Bottlenecks in Android Apps, 2015
IEEE ICSME 2015

[6] Xue Han and Tingting Yu by An Empirical Study on
Performance Bugs for Highly Configurable Software

Systems, ISBN,ESEM '16 ,September 08-09, 2016.
[7] Guo, C., Zhang, J., Yan, J., Zhang, Z., and Zhang, Y.

2013. Characterizing and detecting resource leaks in
Android applications. In Proc. ACM/IEEE Int’l Conf.

Automated Soft. Engr. ASE '13, 389-398.
[8] Hao, S., Li, D., Halfond, W.G.J., and Govindan, R.

2013. Estimating mobile application energy
consumption using program analysis. In Proc. 35th Int’l

Conf. Soft. Engr. ICSE '13. 92-101.
[9] Adiu, Surendra & Geethanjali, N. (2013) “Classification

of defects in software using decision tree algorithm”,

International Journal of Engineering Science and
Technology (IJEST), Vol. 5, Issue 6, pp. 1332-1340.

[10] Dommati, Sunil J., Agrawal, Ruchi., Reddy, Ram M. &
Kamath, Sowmya (2012) “Bug classification: Feature

extraction and comparison of event model using Naïve
Bayes approach”, International Conference on Recent

Trends in Computer and Information Engineering
(ICRTCIE'2012), pp. 8-12.

[11] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie,
“Performance debugging in the large via mining

millions of stack traces,” in ICSE, 2012.

[12] E. Coppa, C. Demetrescu, and I. Finocchi, “Input-
sensitive profiling,” in PLDI, 2012.

[13] D. Zaparanuks and M. Hauswirth, “Algorithmic

profiling,” in PLDI’12.

[14] J. Oh, C. J. Hughes, G. Venkataramani, and M.
Prvulovic, “LIME: A framework for debugging load

imbalance in multi-threaded execution,” in ICSE, 2011.

[15] N. Siegmund, S. S. Kolesnikov, C. K¨astner, S. Apel, D.
S. Batory, M. Rosenm ¨uller, and G. Saake, “Predicting
performance via automated feature-interaction
detection,” in ICSE, 2012.

[16] M. Jovic, A. Adamoli, and M. Hauswirth. Catch me if
you can: performance bug detection in the wild. In
OOPSLA, 2011.

[17] N. Meng, M. Kim, and K. S. McKinley. Systematic
editing: generating program transformations from an
example. In PLDI, 2011.

[18] G. Xu, N. Mitchell, M. Arnold, A. Rountev, E.
Schonberg, and G. Sevitsky. Finding low-utility data
structures. In PLDI, 2010.

[19] M. Attariyan and J. Flinn. Automating configuration
troubleshooting with dynamic information flow analysis.
In OSDI, 2010.

[20] W. Baek and T. M. Chilimbi. Green: a framework for
supporting energy-conscious programming using
controlled approximation. In PLDI, 2010.

[21] Jin G, Song L, Shi X, et al. Understanding and detecting
real-world performance bugs[J]. ACM SIGPLAN
Notices, 2012, 47(6): 77-88.

[22] Nistor A, Ravindranath L. SunCat: Helping developers
understand and predict performance problems in
smartphone applications[C]//Proceedings of the 2014
International Symposium on Software Testing and
Analysis. ACM, 2014: 282-292.

[23] Nistor A, Chang P C, Radoi C, et al. CARAMEL:
Detecting and Fixing Performance Problems That Have
Non-Intrusive Fixes[C]. ICSE, 2015.

[24] Roussel K, Song Y Q, Zendra O. RIOT OS Paves the
Way for Implementation of High-Performance MAC
Protocols[J]. arXiv preprint arXiv:1504.03875, 2015.

[25] Casado L, Tsigas P. Contikisec: A secure network layer
for wireless sensor networks under the contiki operating
system[M]//Identity and Privacy in the Internet Age.
Springer Berlin Heidelberg, 2009: 133-147.

[26] A. Diwan, M. Hauswirth, T. Mytkowicz, and P. F.
Sweeney, “Traceanalyzer: A system for processing

performance traces,” Softw. Pract. Exper., vol. 41, no.
3, March 2011.

[27] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie,
“Performance debugging in the large via mining
millions of stack traces.” in ICSE, June 2012.

[28] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind,
“Vertical profiling: Understanding the behavior of

object-priented applications,” in OOPSLA, October
2004.

Paper ID: ART20163118 1408

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[29] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.
Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood,
“Pin: Building customized program analysis tools with

dynamic instrumentation,” in PLDI, June 2005.
[30] A. Muzahid, D. Suarez, S. Qi, and J. Torrellas,

“Sigrace: signature- based data race detection,” in ISCA,
June 2009.

[31] A. Nistor, L. Song, D. Marinov, and S. Lu, “Toddler:

Detecting performance problems via similar memory-
access patterns,” in ICSE, June 2013.

Paper ID: ART20163118 1409

