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Abstract: Software testing is the process of executing a program or system to discover the intent of bugs. Software testing is an activity 
designed to assess the properties or capabilities of a program or system and to determine the results that meet its requirements. Software 
performance is critical to how the user perceives the quality of the software product. Performance bugs are programming bugs that 
cause significant performance degradation, resulting in poor user experience and low system performance bugs. Designing effective 
techniques for handling bugs in yield design require a thorough understanding of how bugs are detected, reported and fixed. In this 
paper, to study how performance bugs, reported by developers to discover and develop fixation, and the results compared with non 
performance bugs. This paper conducts a detailed study of a sample of real-world performance bugs randomly from three sets of 
representative programs (Chrome, Mozilla and Apache). The results of this study serve as a guide for future work to prevent, expose, 
discover and correct performance bugs. First, found that there is little evidence that bug fixes are more likely to introduce new 
functional bugs to correct for erratic irregularities, which means that developers may not need more attention to correcting the 
performance of the bugs. Second, although fixing performance bugs is about as bug-prone as fixing nonperformance bugs, fixing 
performance bugs is more difficult than fixing non-performance bugs, indicating that developers need better tool support for fixing 
performance bugs and testing performance bug patches. Third, unlike many insects, a large percentage of performance bugs are 
detected by reasoning code, not by the user observing the negative effects of bugs or via profiles. The results show that the techniques 
that help developers need to test performance, better test beds and better profiling techniques to find performance bugs.
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1. Introduction 

Software testing is the main activity of evaluating and 
executing software with a view to find out bugs. It is the 
process where the system requirements and system 
components are exercised and evaluated manually or by 
using automation tools to find out whether the system is 
satisfying the specified requirements and the differences 
between expected and actual results are determined.  

Software performance is important to the overall success of a 
software project. Performance bugs called programming 
bugs that create significant performance degradation hurt 
software performance and quality. They lead to poor user 
experience, degrade application responsiveness, lower 
system throughput, and waste computational resources. Even 
expert programmers introduce performance bugs, which 
have already caused serious problems. Well tested 
commercial products such as Internet Explorer, Microsoft 
SQL Server, and Visual Studio are also affected by 
performance bugs. 

Therefore, both industry and the research community have 
spent great effort on addressing performance bugs. For 
example, many projects have performance tests, bug tracking 
systems have special labels for performance bugs, and 
operating systems such as Windows 7 provide built-in 
support for tracking operating system performance. In 
addition, many techniques are proposed recently to detect 
various types of performance bugs.  

To understand the effectiveness of these techniques and 
design new effective techniques for addressing performance 
bugs requires a deep understanding of performance bugs. A 
few recent papers study various aspects of performance bugs, 

such as the root causes, bug types, and bug sources, which 
provide guidance and inspiration for researchers and 
practitioners. However, several research questions have not 
been studied at all or in depth, and answers to these 
questions can guide the design of techniques and tools for 
addressing performance bugs in the following ways: 

Based on maxims such as “premature optimization is the root 

of all evil”, it is widely believed that performance bugs 
greatly differ from non-performance bugs, and that patching 
performance bugs carries a much greater risk of introducing 
new functional bugs. A natural question to ask is compared 
to fixing non-performance bugs, whether fixing performance
bugs is indeed more likely to introduce new functional bugs. 
If fixing performance bugs is not more bug prone than fixing 
non-performance bugs, then developers may not need to be 
over-concerned about fixing performance. 

Different from most non-performance bugs, whose 
unexpected behaviors are clearly defined, e.g., crashes, the 
definition of performance bugs is vague, e.g., how slow is 
qualified as a performance bug. Therefore, are performance 
bugs more difficult to fix than non-performance bugs? For 
example, are performance bug patches bigger? Do 
performance bugs take longer to fix? Do more developers 
and users discuss how to fix a performance bug in a bug 
report? Many techniques are proposed to help developers fix 
bugs, typically with a focus on nonperformance bugs. If 
performance bugs are more difficult to fix, we may need 
more support to help developers fix them. 

Since the definitions of expected and unexpected behaviors 
for performance bugs are vague compared to those of 
nonperformance bugs, are performance bugs less likely to be 
discovered through the observation of unexpected behaviors 
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than non-performance bugs? Are performance bugs 
discovered dominantly through profiling because many 
profiling tools are available and used? If performance bugs 
are less likely to be discovered through the observation of 
unexpected behaviors compared to non-performance bugs, or 
performance bugs are rarely discovered through profiling, 
then it is important for researchers and tool builders to 
understand the reasons behind the limited utilization of these 
techniques and address the relevant issues. If developers 
resort to other approaches to discover performance bugs, we 
may want to provide more support for those approaches to 
help developers detect performance bugs.  

To answer these and related questions, we conduct a 
comprehensive study to compare performance and non-
performance bugs regarding how they are discovered, 
reported, and fixed. 

The manual effort needed to study more performance bugs is 
an inherent limitation of our and any similar study. 
Nonetheless, the lessons learned from comparing these bugs 
should provide a good initial comparison between 
performance and nonperformance bugs on discovering, 
reporting, and fixing them. 

2. Motivation 

Slow and inefficient software can easily prevent users from 
causing economic losses. While researchers spent decades 
improving software performance transparently, bugs 
continue to reduce the performance of a wide range of high-
performance computing resources and waste in this area. At 
the same time, the preliminary performance of the current 
support for the fight against bugs is due to the poor 
understanding of the actual performance of the bug. 

We refer to performance bugs, and where changing relatively 
simple source code can significantly speed software flaws 
while preserving functionality. These shortcomings cannot 
be done by the state, resulting in inconvenience to the end-
user compiler being optimized. 

There is a performance bugs in widely released software. For 
example, Mozilla Developer has set a monthly user-reported 
5-60 performance bug for the past 10 years. Because almost 
nothing to do to help developers avoid bugs with the 
performance of the wrong kind of popularity is unavoidable. 
In addition, the performance test is mainly based on the 
black box test invalid and design manual entry, so that most 
performance bugs escaped. 

Performance bugs lead to performance degradation, 
increased latency, and wasted resources in this area. In the 
past, they have caused several well-known failures, resulting 
in hundreds of millions of software projects were abandoned. 
To make matters worse, performance problems are 
expensive to diagnose because its symptoms do not stop. 
Software companies may need to work hard for a few 
months to find a pair of bugs that cause hundreds of 
milliseconds to delay performance in their service's 99th 
percentile latency period. 

The following trends will lead to erroneous performance 
issues that are most critical in the future: 

Hardware: Over the years, Moore's Law states that 
hardware will make software end time fast without software 
development work. In the era of multi-core, when it is 
impossible for each core to be faster, the bug is particularly 
detrimental to performance. 

Software: The ever-complex changes in software systems 
and workloads provide new opportunities for new challenges 
and challenges in waste performance and diagnostics. 

Energy Efficiency: Increased energy costs provide powerful 
economic parameters to avoid performance bugs. When a 
person is willing to sacrifice the quality of service, reduce 
energy consumption, ignoring the performance of the bug is 
inexcusable. For example, to correct a double run-time bug,
you may halve the carbon footprint of the purchase and 
operate the computer. 

You may return a bug that has not been reported as 
frequently as possible by a functional bug, and they will not 
cause a malfunction detention bug. However, given the 
initial support for bug-fighting performance, it is now time to 
pay more attention to them as we enter a new world of 
computational resource constraints. 

3. Characteristics of performance Bugs 

Many empirical studies have carried out the traditional 
mistakes that result in incorrect functional software, called 
functional bugs. These studies have successfully guided the 
design of functional software testing, functional fault 
detection and fault diagnosis. 

Main Characteristics are, 
Bug Avoidance. Two-thirds of the bugs studied were 
developed by misunderstandings about the workload or 
performance characteristics of API developers. More than a 
quarter of the bug from previous correct code, because of the 
workload or changing the API. In order to avoid 
performance bugs, developers need to annotate system 
performance-oriented and change impact analysis. 

Performance Testing. Almost half of the research insects 
are required with special features and large scale inputs to 
embody. The combined use of the input functional tests takes 
into account the large scale significant improvements in the 
state of the art performance test generation scheme. 

Bug Detection. Recent work has demonstrated the potential 
for bug detection performance. Our research has found 
common root causes with erroneous real-world performance 
structural patterns that can help improve coverage and bug 
detection performance accuracy. 

Bug Fixing and Detection. Almost half of the inspection 
bug fixes include reusable efficiency rules that can help 
detect and correct performance bugs. 
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Comparison with functional bugs. Performance bugs tend 
to be hidden much longer in software functional bugs. Unlike 
functional bugs, performance bugs cannot be modeled as 
rare events, since they are not small parts that can be 
activated using almost any input. 

4. Related Work 

Adrian Nistor et al. In order to improve performance and 
detect performance problems, several techniques identify 
slow code runs that expand or increase execution time. 
Unlike all these technologies, CARAMEL enables novel 
design decisions to focus on performance bugs with both 
simple and non-intrusive hardware. In particular, 
CARAMEL detects a performance bug with a CondBreak 
file. These bugs are not included in the previous work. For 
automatic bug fixes, several recent techniques have been 
proposed to automatically fix bugs. It uses genetic 
programming, and LASE uses edits that are similar to 
previous edits. Other techniques use methods such as SMT, 
semantic analysis, software contracts, developer input, and 
others to fix bugs. Unlike these technologies, CARAMEL 
automatically fixes performance bugs. In addition, with its 
unique attributes of detected bugs, CARAMEL successfully 
solved 149 of the 150 bugs. CARAMEL detects a 
performance bug with the CondBreak file: When a condition 
becomes true during a loop execution, it simply breaks 
through the loop. CARAMEL in real-world applications, 
including 11 popular Java applications (Ant, Groovy, 
JMeter, Log4J, Lucene, PDFBox, Sling, Solr, Struts, Tika 
and Tomcat) and 4 widely used C / C ++ applications 
(Chromium, GCC, Mozilla, and MySQL). CARAMEL found 
61 new performance bugs in Java applications and 89 new 
performance bugs in C / C ++ applications. In these bugs, the 
developer has defined 51 performance bugs and 65 
performance bugs in the C / C ++ application. CARAMEL 
has made a promising first step in detecting performance 
bugs with non-intrusive software [1]. 

Qi Luo et al. The performance tests for enterprise 
applications are manual, labor-intensive, expensive, and not 
particularly effective. Several methods are proposed to 
improve the efficiency of performance testing. For example, 
the function and parameter values of the operating profile 
schema have been introduced to test the probability of 
occurrence of a distribution of the most commonly used 
operations. Rule-based techniques are effective to identify 
performance bottlenecks by identifying problematic patterns 
of source code because of misinterpretation or invocation of 
sequence problems with API calls. However, these 
techniques always work for a specific type of performance 
bottleneck and are not widely used in industry. In practice, 
one of the primary methods of performance is intuitive 
testing, which is the tester's intuition and experience in the 
exercise of AUT, to guess possible bugs. Intuitive testing 
was first introduced in 1970 to take advantage of the 
expertise of test engineers with a focus on prone to bugs and 
related system functions without the need to write test 
specifications for time-consuming methods. As a result, the 
pre-investment and the indirect costs of the process can be 
reduced. When you run many different test cases and 

observe the behavior of the application, the tester intuitively 
perceives that some test case may have performance 
bottlenecks exposed in the future. However, one of the main 
risks of intuitive evidence is the loss of key people (ie, key 
testers). When they leave the company's knowledge and 
experience of test engineers are gone. Culturing new tests 
takes time and is expensive. Therefore, it is necessary to 
automatically reveal the performance bottleneck with 
distilled test cases to avoid wasting time and money in the 
properties. These attributes are automatically extracted to 
describe how the performance of the application will affect 
these rules for the secondary goals of our methods [2]. 

Oswaldo Olivo et al. Some recent projects use analysis 
software to automatically detect performance bugs. Some of 
them detect the use of useless temporary objects that are 
more focused on the use of invalid or incorrect data sets and 
others who use dynamic analysis to identify memory-
expensive computations. The instrument uses a dynamic 
detection to determine the "repeatable" calculation by 
monitoring the repetitive access to the memory, in part a 
similar pattern. The work is based on the observation that the 
following set of duplicate paths may be an erroneous 
performance. The method is purely static, so it has no run-
time overhead and does not require the programmer to 
provide a performance test. The tool analyzes PerfChecker 
static Android applications to determine common 
performance bugs. Unlike the clear, punctured-check 
detection and delay fulfillment obligations of the graphical 
user interface, leakage and swollen memory failures. The 
Perspective tool helps users diagnose performance problems 
related to configuration settings. X-ray uses a technique 
called comprehensive performance, which combines the 
dynamic analysis of information flow performance overhead. 
CLARITY different, X-ray dynamic analysis, and focus on 
the user's bug, rather than the developer's performance 
problems. Trace analysis is a technique for identifying the 
cause of performance anomalies. For example, the Trace 
Analyzer tool builds performance traces that can capture 
different performance times during program execution. 
Another approach involves impact analysis and tracing 
causal relationships to discover patterns related to 
performance issues. These techniques can be revealed in a 
variety of performance anomalies, but are not fully 
automated [3]. 

Sebastiano Panichella et al. Lack of evidence, and 
proposed a technique based on static down-regulation to 
generate code annotations describing faults and their causes. 
To generate a human-readable document that throws an 
unexpected exception. However, these methods need to test 
failed or thrown Java unexpected exception. This does not 
occur when the auto-generated test case, as an automatically 
generated assertion reflects the actual behavior of the class. 
Therefore, if the current behavior fails, the resulting 
assertions do not fail because they reflect incorrect behavior. 
Comprehension is also very much related to the size of the 
trial and the number of assertions. For these reasons, prior 
work on automated testing focused on (i) reducing the 
number of generated tests to minimize post-processing, and 
(ii) reducing the number of assertions using mutant analysis 
or split testing multiple claims. In order to improve the 
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generated code, a read-test unit based on the use of a 
particular domain model is constructed based on human 
judgment of the readability of the post-evidence processing 
technique. Use the language model to generate a more 
readable input string. It shows that abstracts are an important 
complement to and enhance the readability of automatically 
generated component test cases [4]. 

Mario Linars et al. For the bug performance of automatic 
detection and other works of the design approach to identify 
significant performance bugs (ie, the delay can be perceived 
by the user) of the inspection rules, investigate 109 bugs,
automatic identification performance bug five systems. He 
proposes to use performance counters and perform log 
events to link memory leaks to specific intervals of memory 
performance to diagnose methods. There has also been 
support for performance bottlenecks in in-situ visual 
propositions in understanding Java applications. The survey 
found that fewer bugs were detected in the desktop 
application using the configuration file. They also found that 
many performance bugs are based on code reasoning rather 
than direct observation of most of the recognition. Our 
results emphasize that, in the case of Android applications, 
people rely heavily on user reviews, manual execution and 
direct observation [5]. 

Xue Han et al. There has been a recent performance testing, 
debugging, fixing and preventing erroneous work. For 
example, a loop is determined that computes a repetitive 
pattern with memory access. The stack trace of the lightning 
protection call stack is found with the high performance 
impact call sequence to generate test case actions. Select the 
test case performance test. While the above techniques are 
encouraging and effective, they assume the default settings 
and do not take into account performance bugs due to 
configuration. Use common learning techniques to detect 
regressions due to specific changes in the environment. His 
work has focused on specific system configurations when we 
delve into a variety of configurations. From the performance 
modeling point of view, there has been a lot of work in 
building performance models for different purposes, such as 
using learning methods and influencing performance 
profiles, creating performance model profiles and 
performance modeling using static and dynamic program 
analysis technology. All of these techniques provide a good 
idea of the factors involved in the performance model. 
However, our study further examines how bugs are 
configured with performance and therefore complementary 
[6]. 

5. Terminologies of Performance Bug-
Detection 

The NaiveBayes categorized by software bugs showed an 
average accuracy of several data sets of 83.47. We set MC1, 
PC2 and PC5 data, which precision results are more than 
95%, the performance is very good. The PC3 with the worst 
performance of the data set used, with an accuracy of less 
than 50% can be seen. MLP (Multilayer Perceptron) also 
performed well for MC1 and PC2 and achieved overall 
accuracy of 89.14% on several data sets. SVM (Support 

Vector Machine) and bagging performed very well, 
compared to machine learning and other methods, and 
obtained about 89% of the overall accuracy. Adoboost gets 
88.59 accuracy, bagging gets around 88.47 to achieve 
accuracy of 89386, decision trees, random forests get 89.08, 
get 88.33 in J48 and unsupervised learning KNN (K Nearest 
Neughbor) 71.99 RBF To the basis function to 87.29 K-
means. Compared to machine learning methods such as 
MLP, the SVM and bagging performance of all the datasets 
selected is still good. The lower accuracy is achieved by the 
KNN method. 

The best MAE (Maekawa’s) is implemented by the SVM 
method on multiple data sets 0.10 and 0.00 to obtain all data 
for the MAE PC2. MAE is the worst KNN method for 0.27. 
K-means, MLP, random forest and J48 also increased around 
MAE 0.14. In the case of this measure, F is greater and 
better. 

This higher F gain is achieved by approximately 0.94 SVM 
and bagging method. The worst-case F obtained by the KNN 
method is in multiple data sets 0.82. Identify software 
defects early in the software lifecycle to help software 
quality assurance and direct measures to improve process 
management software. The cash forecast bug depends 
entirely on the good forecasting model. This study includes 
different machine learning methods that can be used to 
predict against bugs. Software for analyzing the performance 
of different algorithms in multiple datasets. Sky SVM, MLP 
and bagging techniques performed well in the database. 
Appropriate methods for selecting experts in the field of 
prediction bug must consider several factors, such as the data 
set, the problem domain, the uncertainty of the data set, or 
the nature of the project. You can combine multiple 
technologies with more accurate results. 

5.1 Performance indicators 

In this study, performance metrics such as accuracy, absolute 
mean bug, and measurement were used based on the 
accuracy and memory. The precision can be defined as the 
correct identification bug divided by the total number of 
bugs, calculated by the following formula: 

Accuracy = (TP TN) / (TP TN FP FN) 
Accuracy (%) = (Software Bug Correct Classification / Total 
Software Bug) * 100 

Accuracy is a measure of the correction and is the 
relationship between the bug and the actual number of 
software bugs that the software correctly categorizes the 
categories assigned to it. It is calculated by the following 
formula: 

Precision = TP /(TP+FP) 
Recall is the correct classification of software bugs and falls 
within the scope of their relationship between software 
defects. It represents the machine learning method, the 
ability to seek extension, and is calculated by the following 
equation. 

Recall = TP / (TP + FN) 
F-measure is a combined measure of recall and precision, 
and is calculated by using the following equation. 

F = (2 * precision * recall ) / (Precision + recall) 
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6. Case Studies 

This section describes the faulty design of our study. For a 
particular project, we first extract the necessary data for your 
warehouse bugs. Next, we determine the random sampling of 
100 performance bugs and 100 non performance bug reports. 
We then study the sampling bug to determine the different 
sizes and can be used to compare the bug performance of the 
fusing bug and the sub-size in the non-executing process. 
Finally, we proceeded based on these analyzes of our sub-
dimensions. This section describes each of these steps. 

6.1. Choosing Data from System

In our case study, we studied the web browsers Mozilla 
Firefox and Google Chrome, as these are the two most 
popular web browsers for public data tracking system bugs.
We specialize in web browsers, and performance is one of 
the major software quality requirements for Web browsers 
that support multiple platforms and system environments. 
For this reason, bug performance is reported in both systems, 
and the problem tracking system in both projects is explicitly 
marked. 

Firefox, we first came to identify the relevant web browser 
Firefox bug because Mozilla bug tracking system manages 
several projects. It contains 567595 bug reports for merging 
all the different components of Mozilla Firefox, SeaMonkey 
and Thunderbird Mozilla. 

For Chrome Web Browsers, our data is provided from the 
dump question tracking chrome challenge 2011 MSR 
Extractor. 

6.2. Classification of Bug Types 

In Bugzilla (Mozilla Firefox's problem tracking system), the 
"Keywords" field is marked with "perf" for performance 
bugs. In the Google Chrome issue tracker, for performance-
related bugs, the "Label" field is labeled "Performance." 
However, in these two projects, this mark is not mandatory, 
we found that many performance bugs, there is no such 
mark. Therefore, in order to identify performance bugs, we 
had to use heuristics. We look for the keywords "perf", 
"slow", and "hang" in the bug report "Title" and "Keyword" 
fields. Although the keyword 'perf' gave us a "performance" 
bug report in its header, we found that there are many bug 
reports that contain "perfect", "execute" or "execute" and 
nothing related to performance issues. We have to use 
regular expressions to automatically exclude these keywords 
from the list. 

6.3. Identification of bug report and comment dimensions  

Before we can compare the performance of the bug and did 
not perform, we must first establish the criteria for 
comparison. The ability to record the repository in different 
areas and bug logs is a good start, but our research requires 
knowledge of the testers and the way developers work 
together and think about bugs (none). This knowledge is part 
of the natural language content of the discussion and 

misinterpretation, but we do not know of any classifications 
or other work to analyze the qualitative data for bug 
reporting. Therefore, we conducted a sampling of the data to 
determine the classification of this manual study. 

In order to determine if a particular system has a statistically 
significant higher percentage of bug rate performance 
associated with a sub-size (e.g., lock) than an unrelated bug,
greater than the sub-size, a & quot; performance joint 
confidence interval & quot; or & quot; . This measure is 
often used to compare two separate samples. If the bug-rate 
performance, rather than the difference in the performance of 
the sub-size than the comparison calculated bug, the 
difference is considered statistically significant. 

7. Performance Tool Studies 

Httperf:  Httperf is a high-performance testing tool for 
measuring and analyzing the performance of any Web 
service and Web application. 

NeoLoad:  NeoLoad is a load and performance testing 
software designed to improve the quality of Web and mobile 
applications by actually simulating users and analyzing 
server behavior. 

QTEST: a network test tool loaded complete and accurate 
analysis of applications. It supports all Windows platforms. 
The original user interface (UI) is easy to use and 
understand, and is used to host on-demand or OnPremise 
applications. It is compatible with all Windows platforms. 

Open STA: OpenSTA refers to the open system test 
architecture. OpenSTA is a distributed test structure that 
allows you to create and run performance tests to evaluate 
the network application environment (WAE) and production 
system. 

Load Storm: The LoadStorm test tool is the least expensive 
performance and available load. In this tool, we are going to 
create our own test plan, test criteria and test program 
options. Through this tool, you can end all the costly 
performance testing tools. 

Load Impact: LoadImpact is a load testing tool that is 
primarily used in cloud-based services. This also helps to 
optimize the site and improve the performance of any Web 
application. 

QEngine (ManageEngine): QEngine (ManageEngine) is a 
tool, the most common, easy-to-use performance test that can 
automatically test their Web applications for and load. 

Load UI: Loading UI is another kind of load testing 
software and open source is used to measure the 
performance of Web applications. This tool works well with 
the soap UI integration of functional testing tools. 

Load Runner: HP is a product that can be used for 
performance testing tools. This allows you to purchase HP 
software from HP Products. 
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8. Conclusion 

The bug performance presented in this article has been 
applied in real-world applications. This paper reports our 
findings and finds some unique performance characteristics 
in the application of the results of the bug. It also identifies 
common patterns of bugs that can support bug detection, 
performance testing and debugging related research. The 
study covers the functional, broad-spectrum and future 
performance of the study provides guidance - prevention 
errors, performance testing, and fault detection and so on. 
Under the guidance of this study, we explored the 
performance implications of the bug detection performance 
based on the rule of implied efficiency through patches, and 
found a number of previously unknown performance 
problems. This work has only the starting point, 
understanding and operational performance bugs. We want 
to deepen our understanding of performance bugs, and pay 
more attention to performance bugs. 

References 

[1] Adrian Nistor, Po-Chun Chang, Cosmin Radoi, Shan 
Lu,” CARAMEL: Detecting and Fixing Performance 

Problems That Have Non-Intrusive Fixes”, IEEE/ACM 

37th IEEE International Conference on Software 
Engineering, 2015. 

[2] Qi Luo, Aswathy Nair ·Mark, Grechanik, Denys 
Poshyvanyk, “FOREPOST: finding performance 

problems automatically with feedback-directed learning 
software testing”,Springer,2015.

[3] Oswaldo Olivo, Isil Dillig, Calvin Lin, “Static Detection 

of Asymptotic Performance Bugs in Collection 
Traversals”, 2015.

[4] Sebastiano Panichella, Annibale Panichella, Moritz 
Beller, Andy Zaidman,Harald C. Gall, “The Impact of 

Test Case Summaries on Bug Fixing Performance: An 
Empirical Investigation”, IEEE/ACM 38th IEEE 

International Conference on Software Engineering, 
2016.

[5] Mario Linares-Vásquez, Christopher Vendome  Qi Luo 
and  Denys Poshyvanyk by How Developers Detect and 
Fix Performance Bottlenecks in Android Apps, 2015 
IEEE ICSME 2015 

[6] Xue Han and Tingting Yu by An Empirical Study on 
Performance Bugs for Highly Configurable Software 

Systems, ISBN,ESEM '16 ,September 08-09, 2016. 
[7] Guo, C., Zhang, J., Yan, J., Zhang, Z., and Zhang, Y. 

2013. Characterizing and detecting resource leaks in 
Android applications. In Proc. ACM/IEEE Int’l Conf. 

Automated Soft. Engr. ASE '13, 389-398.
[8] Hao, S., Li, D., Halfond, W.G.J., and Govindan, R. 

2013. Estimating mobile application energy 
consumption using program analysis. In Proc. 35th Int’l 

Conf. Soft. Engr. ICSE '13. 92-101.
[9] Adiu, Surendra & Geethanjali, N. (2013) “Classification 

of defects in software using decision tree algorithm”, 

International Journal of Engineering Science and 
Technology (IJEST), Vol. 5, Issue 6, pp. 1332-1340.

[10] Dommati, Sunil J., Agrawal, Ruchi., Reddy, Ram M. & 
Kamath, Sowmya (2012) “Bug classification: Feature 

extraction and comparison of event model using Naïve 
Bayes approach”, International Conference on Recent 

Trends in Computer and Information Engineering 
(ICRTCIE'2012), pp. 8-12.

[11] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie, 
“Performance debugging in the large via mining 

millions of stack traces,” in ICSE, 2012. 

[12] E. Coppa, C. Demetrescu, and I. Finocchi, “Input-
sensitive profiling,” in PLDI, 2012.

[13] D. Zaparanuks and M. Hauswirth, “Algorithmic 

profiling,” in PLDI’12. 

[14] J. Oh, C. J. Hughes, G. Venkataramani, and M. 
Prvulovic, “LIME: A framework for debugging load 

imbalance in multi-threaded execution,” in ICSE, 2011. 

[15] N. Siegmund, S. S. Kolesnikov, C. K¨astner, S. Apel, D. 
S. Batory, M. Rosenm ¨uller, and G. Saake, “Predicting
performance via automated feature-interaction 
detection,” in ICSE, 2012. 

[16] M. Jovic, A. Adamoli, and M. Hauswirth. Catch me if 
you can: performance bug detection in the wild. In 
OOPSLA, 2011. 

[17] N. Meng, M. Kim, and K. S. McKinley. Systematic 
editing: generating program transformations from an 
example. In PLDI, 2011. 

[18] G. Xu, N. Mitchell, M. Arnold, A. Rountev, E. 
Schonberg, and G. Sevitsky. Finding low-utility data 
structures. In PLDI, 2010. 

[19] M. Attariyan and J. Flinn. Automating configuration 
troubleshooting with dynamic information flow analysis. 
In OSDI, 2010. 

[20] W. Baek and T. M. Chilimbi. Green: a framework for 
supporting energy-conscious programming using 
controlled approximation. In PLDI, 2010. 

[21] Jin G, Song L, Shi X, et al. Understanding and detecting 
real-world performance bugs[J]. ACM SIGPLAN 
Notices, 2012, 47(6): 77-88.  

[22] Nistor A, Ravindranath L. SunCat: Helping developers 
understand and predict performance problems in 
smartphone applications[C]//Proceedings of the 2014 
International Symposium on Software Testing and 
Analysis. ACM, 2014: 282-292.

[23] Nistor A, Chang P C, Radoi C, et al. CARAMEL: 
Detecting and Fixing Performance Problems That Have 
Non-Intrusive Fixes[C]. ICSE, 2015. 

[24] Roussel K, Song Y Q, Zendra O. RIOT OS Paves the 
Way for Implementation of High-Performance MAC 
Protocols[J]. arXiv preprint arXiv:1504.03875, 2015. 

[25] Casado L, Tsigas P. Contikisec: A secure network layer 
for wireless sensor networks under the contiki operating 
system[M]//Identity and Privacy in the Internet Age. 
Springer Berlin Heidelberg, 2009: 133-147.

[26] A. Diwan, M. Hauswirth, T. Mytkowicz, and P. F. 
Sweeney, “Traceanalyzer: A system for processing 

performance traces,” Softw. Pract. Exper., vol. 41, no. 
3, March 2011. 

[27] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie, 
“Performance debugging in the large via mining 
millions of stack traces.” in ICSE, June 2012. 

[28] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind, 
“Vertical profiling: Understanding the behavior of 

object-priented applications,” in OOPSLA, October 
2004.

Paper ID: ART20163118 1408



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[29] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. 
Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, 
“Pin: Building customized program analysis tools with 

dynamic instrumentation,” in PLDI, June 2005. 
[30] A. Muzahid, D. Suarez, S. Qi, and J. Torrellas, 

“Sigrace: signature- based data race detection,” in ISCA,
June 2009. 

[31] A. Nistor, L. Song, D. Marinov, and S. Lu, “Toddler: 

Detecting performance problems via similar memory-
access patterns,” in ICSE, June 2013. 

Paper ID: ART20163118 1409




