
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Improving Compression Methods for Arabic Text
Using Dedicated Character Mapping

Hedaya Ghanim Alshammar1, Dina Hamad Alghurair2

1Higher Institute of Telecommunication and Navigation, HITN, PAAET, Ardia Block4, Street 602, Kuwait

2Higher Institute of Telecommunication and Navigation, HITN, PAAET, Ardia Block4, Street 602, Kuwait

Abstract: Natural Language Text Compression methods have been discussed thoroughly in the literature in the past years, different
methodologies have been implemented and introduced, most however focused on English and European languages. Rather few studies
have focused on Arabic Language, some methods used statistical approaches, other methods used dictionary based compression
techniques, while some used features of the Arabic language and derivation rules in attempt to increase compression ratio. In this
paper, we will introduce several statistical methods for natural language and apply it on Arabic text. We will also provide
implementation for each of these methods and give a comparison between them in terms of performance, compression ratio, resource
requirements for running the algorithms and areas and application and usage. Golomb , Elias Gamma Code, Huffman methods are to
be implemented, and compared as a sample statistical algorithms, We will also introduce a dedicated Arabic Character Mapping
technique to be used in the Elias, Golomb and Huffman algorithms, which will show through the results a major improvement to the
compression ratio in comparison to the original methods when applied on binary data ignoring the language underneath, the
improvement introduced will show that it can be superior even to LZW when used on small Arabic Sample Files, two sets of data will be
tested, first set uses random Arabic text, the second set will use real texts from complete Arabic stories and books.

Keywords: Arabic Text Compression; Golomb Code; Elias Code; Huffman Code; Improved Arabic Character Mapping

1.Introduction

Arabic is one of the most widely spoken languages around
the world; hundreds of millions of people speaking Arabic
worldwide as their native language, and hundreds of millions
speaking it as a secondary language, still not many studies
have focused on Arabic text compression and analysis, this
makes it an open rich field of research, beginning with text
analysis, language parsing, text compression, text
recognition, speech recognition, and so goes the list.

The vast need and presence for Arabic content on the World
Wide Web, and the continuous increase of Arabic based User
Interfaces whether it was in machines or other daily services,
makes such studies a necessity and an important field to
improve application performance and response, and to save
resources.

In today‟s technology, compression is one of the major
aspects being focused on, whether the data is in text format,
in signal form, multimedia or any other kind of data. The
need for faster application response, better data transmission
and space saving that stimulates such studies, so that there
will be fewer chances for data loss and more reliable data
storage and transmission.

Keeping in mind, this particular problem focuses on data
compression in such a way that the encoded data after
compression includes fewer bits than the original one.

Several techniques have been proposed yet to encode the
original data that is to represent the data, so that it is
compressed as compared to the original one.

Compression can be either lossy or lossless. Lossless
compression reduces bits by identifying and eliminating
statistical redundancy. No information is lost in lossless
compression. Lossy compression however reduces bits by
identifying unnecessary information and removing it taking
into account human perception or target application
requirements. [1]

This paper aims to compare different compression techniques
and their applications on Arabic text. The techniques
followed in this proposed project are Elias‟ Gamma code,

Huffman Code, Golomb code, LZW will also be tested.

We will also present an Arabic Character Mapping
Technique which will be used in Golomb, Elias and Huffman
coding methods, that will substantially improve the
compression ratios of these methods in comparison to the
rough binary approach, the mapping will include all Arabic
characters, including the diacritics and numbers, the results
will show that our Golomb method with the Arabic Character
mapping is superior to Huffman on Binary data on all sample
data files of all different sizes, whereas Huffman when using
the Character Mapping will surpass all other methods in
average including the rough LZW on binary data.

2.Text Compression Methodologies

Text compressions is another branch of general data
compression focusing on natural language scripts, the
research has been evolving and used in several areas
including search engines; but it also helped in reducing the
time to search for the words through the compressed texts
(Turpin and Moffat 1997) [2], which helped in creating a
new research area of searching compressed text and

Paper ID: ART20163069 DOI: 10.21275/ART20163069 1379

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

compressed text databases where both indexes and text files
are stored in a compressed format.

Golomb code is a lossless coding technique which was
invented by Solomon W. Golomb [3] for languages or
alphabets that have a geometric solution, the Golomb codes
should provide optimal prefix code, it is most suitable for
cases where small values are much used than higher values,
thus providing different coding patterns where small values
produce small codes while high values produce higher
values, the method uses a very simple approach to produce
these codes making it very suitable for applications which
have limited resources. Several variations of Golomb
encoding have been produced and proposed by several
research society members.

The first step in computing Golomb Code is to calculate the
three quantities [29]

 (1)
Imagine an input data stream that consists of positive integers
where the probability of integer n appearing in the data is
P(n) = (1−p)n−1p, for some 0 ≤ p ≤ 1. It can be shown that
the Golomb code is an optimal code for this data if b is
chosen such that

(1 − p)b + (1 − p)b+1 ≤ 1 < (1 − p)b−1 + (1 − p)b. (2)

Many techniques have been proposed in literature with an
aim to utilize the data compression advantages. Normally
coding a natural number n ∈ N = {1,2,3,...}; its binary
representation needs a [log2(x)] + 1 bits, In [2], authors
proposed that that if a large expected length of the Elias
gamma code considers the entropy, thus it will be clearly
non-optimal. The following formula shows this behavior

lim E [lδ(X)]/ log N= 1 (3)
N→∞

It clearly shows that for very large N, the expected length of
the Elias delta code approaches the Entropy, thus, is
asymptotically optimal.

Authors in [4] proposed a research about all the encoding
schemes depicted Gamma encoding technique to be a useful
tool in case of posting lists, as it decreases the size of posting
list 8 times smaller than the original one. This is useful in
case of time saving as loading the compressed posting lists
form the disk to the main memory, which requires lower
time. This in turn decreased the response time of the program
greatly. Time is the major factor in today‟s technology.

Authors in [5] proposed that besides dynamic slicing, the
compact byte code generated by variable code encoding
scheme finds its advantages in Code Optimization, Program
Visualization, Record addresses of objects , Trace the
sequence of target addresses

In [6], Byte length variation also results in a lossless
compression that is able to achieve comparable efficiency as
that of JPEG and is used after Discrete Cosine
Transformation (DCT).

A hybrid technique was introduced in [7] where it employs
several methods in attempt to achieve better coding results
for Arabic text, where the researchers proposed that Using
techniques borrowed from other languages or general data
compression techniques while ignoring the proper features of
Arabic has limited results in terms of compression ratio and
speed. So they presented a hybrid technique that uses the
features of Arabic language to improve the compression ratio
of Arabic texts. The technique used works in several phases.
In the first one, the text file is split into four different files
using a multilayer model-based approach where semantics of
the words are taken into account and their derivation is
deduced to produce stem words or return words to their
original form, while defining which rule used and save the
entire process data. In the second phase, each one of these
four files is compressed using the Burrows-Wheeler
compression algorithm, which proved to be effective in terms
of compression ration when applied to Text Files, which in
turn uses a special technique, to represent text block into
different format that is suitable for compression, it uses
combined method dedicated for text where text letters are
transformed into another format to reduce redundancy [7].

Huffman encoding was used in text compression as well, like
it was used in general data compression, in [8], where the
idea came from that not all characters or bytes require the
same amount of space to be stored, thus variable length codes
could be created to represent each variation with small value
bytes requiring less space, Huffman encoding produces a
Huffman table which contains the character encoding values
that match each character, this table will become part of the
encoded stream, at the beginning of the stream, so the
decoder needs to read the Huffman table first before it begins
decoding the text stream again, Huffman codes can also be
fixed codes, sorted in a Trie where leafs are the final
characters, the Trie data structure which is very suitable for
text compression and storage, the Trie nodes are binary, 0 or
1, thus scanning the input stream as bits will have a one way
traversal route to the leaf which contains the target character.

Dr. Huffman invented an algorithm to create this Trie, and to
obtain an optima Trie as well, the generation of the Huffman
table with optimal trei requires the scanning of the entire
input file, and creating a weighted character list, so this is the
first pass through the file, afterwards, the trie is created based
on these weights, the algorithm is simple and straight
forward, where each character becomes a node in the trie
with initial weight that matches the number of occurrences,
then the two least weights are combined into one node with
the weight as the sum of both weights, the step is repeated
tell we get one final node, thus the Trie is created.

Huffman encoding builds its trie based on the probability of
character occurrence in the Text, without which you cant
really employ this method, however in many circumstances
this is not possible, for instance when we are dealing with
network stream of text, so methods like Lempel-Ziv-Welch
are employed to solve such problem, which uses adaptive
algorithms as the encoding happens, LZW [9] which is a
variable length coding method, it tries to avoid some of the
drawbacks of Huffman encoding, the method also employs a
string table that maps symbol sequences to/from an N -bit

Paper ID: ART20163069 DOI: 10.21275/ART20163069 1380

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

index. The string table has 2^N entries and the transmitted
code can be used at the decoder as an index into the string
table to retrieve the corresponding original symbol sequence.
The sequences stored in the table can be arbitrarily long. The
algorithm is designed in such a way that the string table can
be reconstructed at the decoder end based on information in
the encoded stream, the table itself, while is central to the
encoding and decoding, is never sent with the data, this is the
most important thing to understand in the LZW algorithm,
the algorithm, begins with an initial table which represents
the entire character spectrum then keeps changing it as it
goes by and as needed the algorithm is The encoder
algorithm is designed to find the longest possible match in
the string table before it makes a transmit statement.

In [10] A morphological compression system is built for
Arabic text files, which makes use of the morphological
structure of the Arabic language and its features. This
concept of compression technique reduces the size of data by
replacing some words in the Arabic text by their
morphological representation. In Arabic, this representation
consists of a root or so called stem word and a pattern
combination, which is coded, into the compressed file. The
word is morphologically handled by isolating it from all its
prefixes and suffixes first, returning it back to its origin in
text such as ((يعملون - which means (working-> work) (عمل)
pronounced as (Yamaloon- Amel), then the result is reduced
to its root and or stem pattern form. A cascaded arrangement
of both Word-Based and Character-Based techniques is
applied. This mixing is to enhance the compression ratio,
where one of the word-based techniques is used to compress
the word, and the character-based technique is used for the
words that could not be reduced (i.e., compressed) using any
of the word-based techniques, such as Huffman, LZW or any
traditional methods.

In [11] a multilayer model-based approach is applied for text
compression. It uses linguistic features and information to
develop a multilayer decomposition model of the text in
order to achieve better compression ratios. This new method
is illustrated for the of the Arabic language, where it can be
utilized by any other language on similar principles and
approach, where the majority of words are generated
according to the Semitic root-and-pattern scheme by
retrieving the stim or the word, similar to the method
discussed earlier in [19]. Text is then split into three
linguistically homogeneous layers representing the three
categories of words: derivative such as(سزحان, يكتبان, يفعلون),
nonderivative such as (كزسي, حارة, بيت) and functional words
such as (لذلك, كان, ان). A fourth layer, called the Mask layer, it
is introduced to aid with the reconstruction of the original
text from the three layers at the decoder end. Suitable
traditional compression techniques are then applied to the
different layers in order to maximize the compression ratio.
The proposed approach has been evaluated and tested in
terms of the compression ration it provides and its execution
time or performance and resources usage. Results are viewed
along with sample Arabic texts to illustrate the performance
of this new approach. The novelties of the compression
technique presented in this article are that (first) the
morphological structure of words may be used to support
better compression ratio and to improve the performances of

traditional compression techniques by making use of the
specific language features(Arabic in such case); (2) search
for words can be done on the compressed text directly
through the appropriate one of its layers; and (3) applications
such as text mining and document classification can be
performed directly on the compressed texts.

In [12] the author proposed a method for short text
compression (suited for message communication, mobile text
messages, data control and interfacing) combining the
benefits of pre-processing of the data, entropy statistical
method reduction through splitting of files and hybrid
dynamic coding: A new technique is proposed in this study
that uses the fact that Arabic texts have single case letters and
one form to write. Experimental tests had been performed on
short Arabic texts and a comparison with the well-known
plain Huffman compression was made to measure the
performance of the proposed schema for Arabic short text.

In [13] evaluation of the efficiency of LZW and BWT
techniques for different categories of Arabic text files of
different sizes has been applied and briefed. Comparing these
techniques on Arabic and English text files is introduced.
Additional to exploiting morphological features of the Arabic
language to boost the performance of LZW techniques. They
found that the enhanced LZW was the best one for all
categories of the Arabic texts, then the traditional LZW
standard and BWT respectively.

[14] presented another study of Morphological analysis of
Arabic words allows decreasing the storage requirements of
the Arabic dictionaries, a more efficient method for encoding
of diacritical Arabic text, suggestion of faster spelling and
efficient Optical character recognition. All these factors
allow efficient storage and archival of multilingual digital
libraries that include Arabic texts.

The paper presented a lossless compression algorithm based
on the affix analysis that takes advantage of the statistical
studies of the diacritical Arabic morphological features. The
algorithm decomposes a given Arabic word into its stem and
its affixes. The affixes which can either e prefix, infix and
suffix are the redundant elements of the word which are
coded independently using patterns. The roots are stored in
the root dictionary which comes as part of the algorithms and
only their codes are stored and transferred. Also, they
maintained categorized affix dictionaries and their valid
combinations to validate and generate the morphological
forms during encoding and decoding using a list of patterns
and codes. Since the goal is lossless reproducible Arabic text
from the patterns and codes, stemming is not an option and
noise words (high frequency words) cannot be filtered out.

3.Arabic Character Mapping for Improving
Compression Ratio

We present a character mapping technique for mapping
Arabic Characters (in our implementation we introduce 56
different Arabic Characters, to include the Alphabet, the
Diatrics, the Arabic letters, we also include four more
characters the „\t‟ „\r‟ „\n‟ „ „ which also have high statistical

Paper ID: ART20163069 DOI: 10.21275/ART20163069 1381

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

presence in the Arabic Text as well), more characters could
also be included like stop marks to reflect the highest
statistical distribution of each character.

The mapping was tested in two tiers, the first one where
characters are alphabetically ordered according to the Arabic
language, followed by the diacritics and the Arabic Numbers,
which yielded great results in comparison to the binary
approach.

Table 1: ordered character mapping, first tier of tests

[' ',1] [ر',11'] [ف',21'] [' ً',31] [ء',41'] ['٤',51]

[ا',2'] [ز',12'] [ق',22'] [' ً',32] [ئ',42'] ['٥',52]

[ب',3'] [س',13'] [ك',23'] [' ً',33] [ة',43'] ['٦',53]

[ت',4'] [ش',14'] [ل',24'] ['‘',34] [أ',44'] ['٧',54]

[ث',5'] [ص',15'] [م',25'] [' ً',35] ['\t',45] ['٨',55]

[ج',6'] [ض',16'] [ن',26'] [' ً',36] ['\r',46] ['٩',56]

[ح',7'] [ط',17'] [ه',27'] ['~',37] ['٠',47] [إ',57']

[خ',8'] [ظ',18'] [و',28'] [' ً',38] ['١',48] ['\n',58]

[د',9'] [ع',19'] [ي',29'] [آ',39'] ['٢',49]

[ذ',10'] [غ',20'] [' ً',30] [ؤ',40'] ['٣',50]

This mapping is essential for the improved Golomb, Elias
and Huffman Custom implementations, All remaining
characters that are found in the input stream will be mapped
to a higher value numbers, by adding its unsigned character
value to the maximum of the mappings which is 61 in our
implementation.

Thus allowing our algorithm to adapt to encoding all sorts of
characters while still giving the priority to Arabic Characters
since they will be found most in the input stream thus
expected to have higher frequency count.

The second tier of tests were on running the character
mapping while giving the priority to the characters which
have higher frequency in the Arabic Text, following a
statistical study over the Arabic Character, over a huge set of
Arabic texts, we have also made our own statistical data
analysis of the Arabic character frequency and compared it to
[15], we however used a larger dataset of over 10million
characters of Arabic texts(file set in [18] through [28]),
which showed a slight difference in the results in [15] for few
characters, as shown in figure 1, we also included the space
character since it has the highest frequency in any text, thus
giving smaller numbers to the most frequent characters, while
higher numbers for the less frequent numbers, whereas
diacritics and Arabic numbers will be given sequential
random frequencies that follows the Arabic characters,
considering they are used less often.

Figure 1: Arabic Character frequencies using our analysis

program

Table 2:improved arabic character mapping values

['',1] [ع',11'] [ج',21'] [ض',31'] [' ٌ',41] ['٠',51]

[ا',2'] [ف',12'] [ذ',22'] [ء',32'] ['‘',42] ['١',52]

[ل',3'] [أ',13'] [إ',23'] [غ',33'] [' ٌ',43] ['٢',53]

[ي',4'] [ت',14'] [ى',24'] [ئ',34'] [' ٌ',44] ['٣',54]

[ن',5'] [ق',15'] [ص',25'] [آ',35'] ['~',45] ['٤',55]

[م',6'] [د',16'] [ث',26'] [ظ',36'] [' ٌ',46] ['٥',56]

[و',7'] [ك',17'] [خ',27'] [ؤ',37'] [ء',47'] ['٦',57]

[ه',8'] [س',18'] [ش',28'] [' ٌ',38] ['\t',48] ['٧',58]

[ب',9'] [ح',19'] [ز',29'] [' ٌ',39] ['\r',49] ['٨',59]

[ر',10'] [ة',20'] [ط',30'] [' ٌ',40] ['\n',50] ['٩',60]

The character mapping previously mentioned will boost the
Elias, Golomb, and Huffman substantially, especially Elias
Method which the frequency transformation of characters is
the essence of the Elias encoding method, this will show the
using such statistical mapping will boost Elias Encoding up
to 3 times in some experiments, where as boosts its
compression ratio by at least two times in the remaining data
files in comparison to the rough binary approach of encoding
the Arabic Unicode text files.

The usage of the previous Arabic Character mapping method,

allows to create a dedicated statistical method for

transforming the Arabic characters into numbers of low

values, thus allowing the statistical methods like Golomb,

Elias and Huffman to make use of this transformation to

improve compression ratio, especially the Elias Code.

4.Experiments and Results

Our test results are based upo Unicode Arabic text files ,the
average compression ration improvement over traditional
binary encoding of the same file is 1:2 and some times 1:3
for Elias, the major improvement over the binary approach is
the Elias Encoding, where creating the mapping gives Elias
encoding method exactly what it requires to perform at its
best.

We have created 2 data sets, first one is a group of 6 Unicode
Arabic text files, generated randomly using the website in
[16], where different texts were generated and stored in a text
file, creating different files of different volumes ranging from
1KB to 1007KB, the second test set, are text files of real

Paper ID: ART20163069 DOI: 10.21275/ART20163069 1382

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Arabic stories, taken from different textual sources and saved
in Unicode text format, so they can be used in our
comparative study and analysis, this set includes 11 test files
of increasing volume from 9KB to 1317KB.

We have created a separate implementation for Elias and
Golomb, where as the Huffman and LZW are borrowed from
[17] and created another adaptation for Huffman to include
the Arabic Character Mapping for the Huffman algorithm
only.
So Golomb, Elias and Huffman all have two different
implementations, one that works on Binary files and another
that work on Unicode Arabic text files, and the comparison
thus is given for 7 different algorithms, the Bit stream
reading library is unified amongst the 7 algorithms to have a
fair performance comparison.

The following diagrams will show a comparison between the
different compression algorithms.

The first set is for Normal mapping, where characters are
mapped according to their alphabetical order, tests are
applied over two data sets, the mapping is as described in
table1 for the V2 version of the algorithm.

V2 name of the algorithm denotes the usage of Arabic
Character mapping (Elias V2, Golomb V2, Huffman V2), the
file size in the tables bellow is in Bytes.

Table 3: Data set 1, random arabic texts, traditional methods

vs. Normal mapping, compression ratio comparison

File

Name File Size Golomb Elias Huffman LZW Golomb V2 Elias V2 HuffmanV2

r1.txt 322 71% 69% 66% 72% 28% 41% 56%

r2.txt 5670 80% 98% 47% 57% 46% 42% 30%

r3.txt 16110 80% 98% 47% 46% 45% 42% 29%

r4.txt 51590 80% 98% 46.00% 37% 45.00% 42% 28%

r5.txt 154812 79% 98% 46.00% 30% 45.00% 42% 28%

r6.txt 1030884 80% 98% 46.00% 23% 45.00% 42% 28%

Average 78% 93% 50% 44% 42% 42% 33%

Compression Ratio Overview

The above table shows how the V2 version of the algorithms
have improved after using the character mapping, where
Elias took the most advantage of this.

Table 4: Data set 1, random arabic texts, traditional methods

vs. Improved mapping, compression ratio comparison

File Name File Size Golomb Elias Huffman LZW Golomb V2 Elias V2 HuffmanV2

r1.txt 322 71% 69% 66% 72% 28% 42% 56%

r2.txt 5670 80% 98% 47% 57% 43% 35% 30%

r3.txt 16110 80% 98% 47% 46% 43% 35% 29%

r4.txt 51590 79% 98% 46.00% 30% 43.00% 35% 28%

r5.txt 154812 79% 98% 46.00% 30% 45.00% 42% 28%

r6.txt 1030884 80% 98% 46.00% 23% 43.00% 35% 28%

Average 78% 93% 50% 43% 41% 37% 33%

Compression Ratio Overview

The above table shows how changing the character mapping
order according to the highest frequency boosts the Elias by
additional 5% in average and the Golomb by additional 1%

in the average results, but it didn‟t change the Huffman

ratios.

Figure 2: Data set 1, Random Arabic Texts, Traditional
Methods vs. Normal Mapping, Compression ratio

comparison

Figure 3: Data set 1, Random Arabic Texts, Traditional
Methods vs. Improved Mapping, Compression ratio

comparison

Figure 2 and 3 draws the table 3 and 4 and only coveys the
information graphically.

The figure bellow, shows the encoding time for the different
algorithms, it clearly shows that all algorithms have
practically very close encoding time except for the LZW,
which increases encoding time dramatically with the increase
of the file size, but at the same time, its compression ratio
also increases due the fact that the more data comes in, the
longer character lists are created and new codes are added to
the coding table, thus creating new codes for longer lists as
the steam scanning moves forward.

Figure 4: Data set 1, Random Arabic Texts, Normal
Mapping, Encoding Time comparison

Paper ID: ART20163069 DOI: 10.21275/ART20163069 1383

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Since the LZW has a special curve, we have created another
diagram without the LZW, so that we can take a closer look
at the remaining algorithms performance, thus the figure
bellow is only for Huffan,Golom, Elias and their V2
counterparts.

The 6 algorithms performs well, and their performance

Figure 5: Data set 1, Random Arabic Texts, Normal
Mapping, Encoding Time comparison (without LZW), a

closer overview

The figure and table bellow, shows that LZW has the best
decoding time, whereas the Golomb, Elias and Huffman have
similar curves, with Huffman surpassing Golomb and Elias in
decoding time, as the sample file size increases the decoding
time generally in increasing uniformly.

Table 5: Decoding time for the algorithms, lzw average the

best

File Name File Size Golomb Elias Huffman LZW Golomb V2 Elias V2 HuffmanV2

r1.txt 322 0.0026 0.0011 0.0013 0.0009 0.0015 0.0011 0.0010

r2.txt 4832 0.0080 0.0086 0.0121 0.0026 0.0109 0.0045 0.0040

r3.txt 23976 0.0238 0.0098 0.0176 0.0067 0.0113 0.0067 0.0093

r4.txt 155118 0.0102 0.0216 0.0052 0.0055 0.0222 0.0118 0.0091

r5.txt 310242 0.0270 0.0582 0.0185 0.0102 0.0140 0.0323 0.0084

r6.txt 538814 0.0684 0.1143 0.0386 0.0469 0.0424 0.0861 0.0449

average 0.0233 0.0356 0.0156 0.0121 0.0170 0.0238 0.0128

Decoding Time Overview

Figure 6: Data set 1, Random Arabic Texts, Normal
Mapping, Decoding Time comparison

Figure 7: Data set 1, Random Arabic Texts, Normal
Mapping, LZW compression ratio vs. file size.

The above figure shows how LZW compression ratio
increases as the file size increases, which was discussed
earlier and explained why this happens in this method.

Following we will present tests over the second data set,
which contains some real Arabic texts from the literature,
stories, books, this set contains 11 files.

Table 6: 1 data set 2, real arabic texts, traditional methods

vs. Normal mapping, compression ratio comparison

File Name

File Size

(bytes)
Golomb Elias Huffman LZW Golomb V2 Elias V2 HuffmanV2

1.txt 8620 80% 99% 45% 50% 42% 39% 28%

2_story1.txt 15436 80% 99% 47% 47% 90% 46% 30%

3_pubdoc_1

_11756_281

.txt

20242 81% 99% 46% 43% 41% 41% 29%

4_alef-ibn-

arabi.txt
34372 80% 99% 45% 38% 42% 40% 28%

5_lellah_0.t

xt
265512 80% 98% 46% 30% 45% 42% 29%

6_ar_Book_

online_Ale3

tesam.txt

326316 80% 99% 47% 29% 49% 43% 29%

7_bukhla.txt
515288 80% 99% 45.00% 28% 40.00% 40% 28%

8_tahfut.txt 540200 80% 100% 45.00% 26% 40.00% 40% 27%

9_najat.txt 895734 80% 99% 45.00% 25% 40.00% 40% 27%

10_ilhyat.tx

t
975142 80% 99% 45% 24% 45% 42% 28%

11_ar_Fath_

Almajeed.tx

t

1348564 80% 98% 45% 25% 44% 40% 27%

Average 80% 99% 46% 35% 48% 41% 28%

Compression Ratio Overview

Figure 8: Data set 2, Real Arabic Texts, Traditional
Methods vs. Normal Mapping, Compression ratio

comparison

Paper ID: ART20163069 DOI: 10.21275/ART20163069 1384

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Table 7: data set 2, real arabic texts, traditional methods vs.

Improved mapping, compression ratio comparison

File Name

File Size

(bytes)
Golomb Elias Huffman LZW Golomb V2 Elias V2 HuffmanV2

1.txt 8620 80% 99% 45% 50% 37% 32% 28%

2_story1.txt 15436 80% 99% 47% 47% 88% 39% 30%

3_pubdoc_1

_11756_281

.txt

20242 81% 99% 46% 43% 40% 34% 29%

4_alef-ibn-

arabi.txt
34372 80% 99% 45% 38% 40% 32% 28%

5_lellah_0.t

xt
265512 80% 98% 46% 30% 42% 34% 29%

6_ar_Book_

online_Ale3

tesam.txt

326316 80% 99% 47% 29% 46% 36% 29%

7_bukhla.txt
515288 80% 99% 45.00% 28% 38.00% 32% 28%

8_tahfut.txt 540200 80% 100% 45.00% 26% 38.00% 31% 27%

9_najat.txt 895734 80% 99% 45.00% 25% 37.00% 32% 27%

10_ilhyat.tx

t
975142 80% 99% 45% 24% 42% 33% 28%

11_ar_Fath_

Almajeed.tx

t

1348564 80% 98% 45% 25% 41% 32% 27%

Average 80% 99% 46% 35% 45% 34% 28%

Compression Ratio Overview

Figure 9: Data set 2, Real Arabic Texts, Traditional
Methods vs. Improved Mapping, Compression ratio

comparison

5.Arabic Text Compression Algorithms
Applications & Analysis

Our work includes comparison between four methods, LZW,
Elias, Golomb, Huffman, where we only applied the
improvement to the later three, according to our tests, each
encoding algorithm has several different characteristics that
makes it more unique in certain areas than the other, thus
makes it more applicable in that particular scenario.

Golomb and Elias encoding methods are very simple in
implementation, produced great results with small files of
less than 1000bytes, with compression ratios almost as equal
to Huffman and LZW methods, when applied in Binary,
where as Golomb and Elias were far more superior over
small sample files when applying Arabic Character Mapping
technique, it can be easily implemented in hardware, and on
mobile handsets with low memory and low processing
capabilities.
Binary Elias encoding performed the worse in terms of
compression ratio with larger text file, when applied in its

Binary form, which practically no longer reduced the file
size, it became more of an encoding method that only
changed the character encoding without affecting the size
ratio, whereas Binary Golomb stabilized at 80% compression
ratio for larger file sizes and no longer improved or became
worse, while still maintaining good execution time and
memory usage in comparison to the other methods such as
Huffman and LZW.

Elias and Golomb coding methods cant perform properly
without using the Character Mapping of the Arabic
Language, using it made both algorithms superior in every
way to Binary methods of Huffman, LZW, Elias and Golomb
over small samples under 2000 Bytes, this makes them
perfect for mobile and devices with low resources, our
implementation provided a great balance between ratio-
speed-memory usage and simplicity of encoding.

The Huffman encoding method practically had a good
balance of both performance and compression ratio,
stabilizing at 46% for larger file sizes over 20Kbytes, when
applied as Binary algorithm, despite having a more
complicated encoding concept, still the encoding and
decoding implementation only needed few lines of code and
few to encode after building the trei, drawback of this
algorithm is that it needs to know the input file in advance in
order to perform properly, so it doesn‟t suite streaming

applications where only potions of data is being streamed.

Improving Huffman using Arabic Character Mapping has put
Huffman in the lead of all other algorithms, the compression
ratio stabilizes around 28% for larger files.

LZW showed the best compression ratio, superior to any
other method tested here when dealing with larger file sizes.
which stabilized at 24% compression at larger sample files
sizes 300KB+, despite having a randomly generated Arabic
text files and different files with completely different Arabic
content with diacritics, the encoding time however is
increasing exponentially with the increase of input volume.

LZW however showed the best decoding time, the reason
goes to the fact that LZW can encode several characters from
the input stream as one Code-Word, thus decoding one
Codeword could result in several characters, allowing the
decoder to increase the speed of the decoding process as well
as writing the characters to the output stream, the Codeword
length is a vital parameter where 15 showed to give the best
encoding speed and compression ratio of 24% thus reducing
the file size more than 4 times, however the bigger the code
word is the more memory resources the application needs to
withstand the 2^w entries in the symbol table.

LZW didn‟t perform well on small file sizes when using large
code words like 15, thus this algorithm needs to make the
code word dependent on the size of the file to perform
properly.

LZW tests here have been applied with the Arabic Text File
as Binary data, its compression ratio might improve a lot if
we used the Arabic Character Mapping the same way we did
with Golomb Elias, and Huffman, also when making the

Paper ID: ART20163069 DOI: 10.21275/ART20163069 1385

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Codeword parameter variable with the file size, we will get
better results for smaller file sizes than the ones we got
before, however we won‟t for now, in the future we might do.

So the previous facts shows that depending on the target
application, one might need to use LZW if compression ratio
is of most important, or if decoding time is the criteria, when
dealing with large file sizes, whereas Golomb-Elias can be
the best choice if a balance between decoding, encoding,
compression ratio is required.

Golomb and Elias with Arabic Character Mapping produced
the best result in terms of balance of compression ration-
encoding-decoding time, Golomb and Elias surpassed
Huffman in small files less than 1Kilo Bytes.

Huffman with Character Mapping is the best method in
average, the average test results showed that it surpassed the
other methods in average over various sample file sizes, our
custom implementation proved that dedicated methods of
Arabic Text Compression can widely improve the
compression ratios of the algorithms.

6.Future Improvements

This study can be improved by introducing the concept of
stemming, removing the prefixes and suffixes of the Arabic
words, then applying character mapping over the stems of the
words, while encoding the affixes by a special order, several
layers for encoding and decoding each word, that depends on
the word and its derivatives, the addition of such information
will require a more in depth study of the Arabic language and
in cooperation of di]:ctionary and additional information at
the encoder and decoder ends.

7.Acknowledgment

This paper was created based upon a research on Arabic Text
Compression algorithms, in Higher Institute for
Communication and Training, PAAET

References

[1] G. Wade, Signal coding and processing, Cambridge

University Press, 1994

[2] A. Moffat, A. Turpin. (1997). On the implementation of

minimum redundancy prefix codes.IEEE Transactions

on Communications,45, 1200–1207

[3] S.W. Golomb, (1966). , Run-length encodings. IEEE
Transactions on Information Theory, IT--12(3):399--
401

[4] A. Bagherzandi , K. Y. Oktay , “Enhancing Wikipedia

Search Performance Using Elias Gamma Code”, 2010

[5] T. Wang, A. Roychoudhury, “Using Compressed

Bytecode Traces for Slicing Java Programs”, 2004

[6] M. Gorev, P. Ellervee, “Variable byte-length data
compression algorithm”, Electronics Conference (BEC),

2010 12th Biennial Baltic, pp. 353 – 356, 2010
[7] A. Awajan,, A. Enas, Hybrid Technique for Arabic Text

Compression, Global Journal of Computer Science and

Volume 15 Issue 1 Version 1.0 Year 2015

[8] Z., Julie, Huffman Encoding and Data Compression,

May 23, 2012

[9] MIT 6.02 DRAFT, Compression Algorithms: Huffman

and Lempel-Ziv-Welch (LZW),2012

[10] S. Al-Fedaghi, B, Al-Sadoun, “Morphological

Compression of Arabic Texts,” Computer Journal of

Information Processing & Management, vol. 26, no. 2,

pp. 303-316, 1990.

[11] A. Arafat, Multilayer Model for Arabic Text

Compression, the International Arab Journal of

Information Technology, Vol. 8, No. 2, April 2011

[12] O. man , K. Khalaf, Arabic Short Text Compression,

Journal of Computer Science 6 (1): 24-28, 2010

[13] A. Essam, B. Abdullah, a Framework to Automate the

Parsing of Arabic Language Sentences, December 5,

2007

[14] A. Daoud, “Morphological Analysis and Diacritical

Arabic Text Compression,” Computer Journal of the

International Journal of ACM Jordan, vol. 1, no. 1, pp.

41-47, 2010.

[15] [Online] www.intellaren.com/articles/en/a-study-of-

arabic-letter-frequency-analysis, 2016

[16] [Online]: http://generator.lorem-ipsum.info/_arabic ,

2016

[17] S. Robert, W. Kevin, Princeton University, Algorithms

4th Edition 2011

[18] [Online] :

http://qurancomplex.gov.sa/Quran/tafseer/Tafseer.asp?t=

KATHEER&TabID=3&SubItemID=1&l=arb , Tafseer

Ibn Katheer, Second Edition, 2016

[19] [Online]

http://studentform.mediu.edu.my/public/upload/439f4bb

88aee644d85d080a8b9304725.docx, 2016

[20] [Online]:

bukhlahttp://www.muslimphilosophy.com/ip/bukhla.doc.

2016

[21]

[Online]:http://www.muslimphilosophy.com/books/najat.

doc, 2016

[22] [Online]:http://www.muslimphilosophy.com/books/ilhya

t.doc, 2016

[23] [Online]: http://ghazali.org/works/tahfut.doc, 2016

[24] [Online]:

https://d1.islamhouse.com/data/ar/ih_books/single3/ar_B

ook_online_Ale3tesam.doc, 2016

[25] [Online],

http://d1.islamhouse.com/data/ar/ih_books/single/ar_Fat

h_Almajeed.doc, 2016

[26] [Online]:http://www.tasavof.ir/books/download/arabic/ib

n-arabi/alef-ibn-arabi.doc, 2016

[27] [Online]: http://www.ibs.edu.jo/files/lellah_0.doc, 2016

[28] [Online]:

http://www.ucas.edu.ps/Units/Research_Unit/specialFor

ms/8.doc, 2016

[29] S. David, Data Compression: The Complete Reference,

2
nd

 Edition, p. 53, 2000.

Author Profile

Hedaya Ghanim Alshammar is Specialist Trainers in Higher
Institute for Communication and Training, PAAET, Kuwait, having
Masters of Science in Computer Engineering and Information

Paper ID: ART20163069 DOI: 10.21275/ART20163069 1386

http://books.google.com/books?id=CJswCy7_W8YC
http://urchin.earth.li/~twic/Golombs_Original_Paper/
http://urchin.earth.li/~twic/Golombs_Original_Paper/
http://urchin.earth.li/~twic/Golombs_Original_Paper/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Gorev,%20M..QT.&searchWithin=p_Author_Ids:37541397800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Gorev,%20M..QT.&searchWithin=p_Author_Ids:37541397800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Gorev,%20M..QT.&searchWithin=p_Author_Ids:37541397800&newsearch=true
http://www.intellaren.com/articles/en/a-study-of-arabic-letter-frequency-analysis
http://www.intellaren.com/articles/en/a-study-of-arabic-letter-frequency-analysis
http://generator.lorem-ipsum.info/_arabic
http://qurancomplex.gov.sa/Quran/tafseer/Tafseer.asp?t=KATHEER&TabID=3&SubItemID=1&l=arb
http://qurancomplex.gov.sa/Quran/tafseer/Tafseer.asp?t=KATHEER&TabID=3&SubItemID=1&l=arb
http://studentform.mediu.edu.my/public/upload/439f4bb88aee644d85d080a8b9304725.docx
http://studentform.mediu.edu.my/public/upload/439f4bb88aee644d85d080a8b9304725.docx
http://www.muslimphilosophy.com/books/najat.doc
http://www.muslimphilosophy.com/books/najat.doc
http://www.muslimphilosophy.com/books/najat.doc
http://www.muslimphilosophy.com/books/ilhyat.doc
http://www.muslimphilosophy.com/books/ilhyat.doc
http://www.muslimphilosophy.com/books/ilhyat.doc
http://ghazali.org/works/tahfut.doc
https://d1.islamhouse.com/data/ar/ih_books/single3/ar_Book_online_Ale3tesam.doc
https://d1.islamhouse.com/data/ar/ih_books/single3/ar_Book_online_Ale3tesam.doc
http://d1.islamhouse.com/data/ar/ih_books/single/ar_Fath_Almajeed.doc
http://d1.islamhouse.com/data/ar/ih_books/single/ar_Fath_Almajeed.doc
http://www.tasavof.ir/books/download/arabic/ibn-arabi/alef-ibn-arabi.doc
http://www.tasavof.ir/books/download/arabic/ibn-arabi/alef-ibn-arabi.doc
http://www.tasavof.ir/books/download/arabic/ibn-arabi/alef-ibn-arabi.doc
http://www.ibs.edu.jo/files/lellah_0.doc
http://www.ucas.edu.ps/Units/Research_Unit/specialForms/8.doc
http://www.ucas.edu.ps/Units/Research_Unit/specialForms/8.doc

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Systems, Gulf University, Bahrain. Hedaya Ghanim Alshammar is
working in the field of education and research.

Dina Hamad Alghurair is Specialist Trainers in Higher Institute
for Communication and Training, PAAET, Kuwait, having Masters
of Science in Computer Engineering and Information Systems, Gulf
University, Bahrain. Dina Hamad Alghurair is working in the field
of education and research

Paper ID: ART20163069 DOI: 10.21275/ART20163069 1387

