
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Comparative Analysis of Wireless Operating
System

Rajdeep Singh Shaktawat

Department of Computer Science

Abstract: In today's era, Wireless Sensor Network (WSN) has become one of the most challenging area of research as its application
range from small data aggregation to large fields (IoT). Wireless Sensor Network is used for diverse applications like agricultural
monitoring, environmental monitoring, military, security, health-care any many more. Operating system (OS) plays a vital role in
creating an efficient and reliable distributed application over the network. Over the years, many operating systems have emerged in the
field of WSN which ease in the development of an application. This paper discusses present operating system for wireless sensor network
and their major advantages with issues. It also addresses the architecture design of various WSN operating systems like Tiny OS,
Contiki, and Lite OS. Paper concludes with the comparative analysis of all WSN operating system on various parameters.

Keywords: Wireless Sensor Network (WSN), Operating System (OS), embedded operating system, System on chip (SoC), Real Time
Operating System (RTOS)

1. Introduction

Advances in the area of Micro-electro-mechanical system
(MEMS) and wireless communication technology leads to
the miniaturization of low power sensor nodes. The nodes
has the capability of sensing, performing various
computations and ease of wireless communication. The
collection of sensors will form an wireless sensor network.
Each sensor node in a sensor network contains a micro
controller chip, sensors, a radio transceiver and a memory as
shown in Figure 1, a typical sensor node. Each node would
sense its environment and would communicate with other
nodes using multi-hop communication. The sensor node can
monitor any type of environment and thus can be used for
habitat monitoring, military, traffic control, home
automation, agricultural monitoring and so on. The energy
provided by the battery or any power source and there is
main memory which is limited in size and used for data
storage, these two are considered as most significant and the
most vital resource of sensor node. The micro-controller
used in a sensor node performs various tasks, processes data
and controls the functionality of other components. Each
sensor is a best example of a System on Chip (SoC). The
deployment of sensors depends upon the application in
which it is used.

Figure 1: Architecture of Sensor Node

Figure 2: Software Architecture of Wireless Sensor
Network

Software architecture of Wireless Sensor Network shown is
Figure 2, depicts the overall software architecture of
wireless sensor network. Each wireless sensor node in
wireless sensor network has an operating system, which act
as an middleware between the hardware of the sensor node
and the application running over operating system. Many
different applications might be deployed on various different
nodes in a network, which work to provide specific services
to the upper layer, the distributed middle ware work to
provide co-ordination between these services running over
different nodes within the same network. Nodes deployed at
different location interact with this distributed middleware to
accomplish the functions provided within the sensor network
application. Basic functions of operating system include
allocation and revoke of resources, make application interact
with the hardware devices, raising the interrupt
management, concurrency control, task scheduling and
networking support. The admin terminal is considered to be
isolated from this architecture it acts just as an interface to
fetch result from sensor network application. The
distributed middleware handles tasks for the entire network
and it acts as network service coordinator
[4][23][28][27][29][18].

Paper ID: ART20163039 1628

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

The traditional operating system which is designed for
workstation and personal computing needs ample of
resources, It is the system software which works between
the application software and hardware of devices. This could
not be the case scenario with sensor nodes in WSNs.
Traditional OS functions are therefore to manage processes,
memory, CPU time, file system, and devices. There are
embedded operating systems like VxWorks [39] and WinCE
[40], but none of them is designed especially for data-centric
WSNs with constrained resources. Sensors mainly have a
slow processor and a limited small memory. There are many
more parameters which should be kept in mind while
designing the operating system for WSN nodes.

This paper investigates various challenging issues which
arise while designing wireless sensor operating system. We
have examined some existing operating systems for WSNs.
The paper contributes by discussing various strengths and
weakness of WSN operating system. The paper is further
divided into sections, which discusses the design issues
related to the operating system of WSN and then presents
some existing operating systems which include TinyOS,
Contiki, Nano-RK, MANTIS, LiteOS. At last comparative
analysis of various WSN operating systems is presented on
various parameters.

2. Issues in Designing an Operating System

Considering various special characteristics of sensor nodes,
there is a requirement of different type of operating system
for wireless sensor network. Following are various issues
needed to be considered when designing operating system
for WSN [14][7][6][37][5][1].

A. Process Management and Scheduling
A traditional operating system provides a separate memory
space for each of its processes to execute. The process
utilizes its own address space to execute its process. Various
storage variables are used in this separate address space,
data is manipulated in this space to fetch out the information
according to the desired process. This method causes
multiple data copying and context switching between
processes. This method cannot be reliable in WSN as WSN
network has a limited amount of memory and power. The
operating system in sensor network should be optimize
enough to provide efficient resource management
mechanisms in order to allocate microprocessor time and
memory space. This scheduling and allocation of processor
time and limited memory should be subjected to some fair
allocation scheme. [11][30]

B. Memory Management
In traditional operating system, memory is allocated
exclusively to each process which helps in the execution of
the task . In WSNs, as sensor nodes have small amount of
memory, we need a different method, which can reduce
memory requirements and should be capable of sharing data.
[22][17]

C. Kernel Model
There are various event-driven models and finite state
machine (FSM) models are used to design the micro kernels
for the WSN. The event-driven model may serve the

purpose of event-driven systems; an event may comprise
receiving a packet, transmitting a packet, detection of an
event of interest, alarms about energy depletion of a sensor
node etc that would be beneficial for WSN. The FSM-based
model in WSN is suitable to realize concurrency, reactivity,
and synchronization. [25]

D. Energy Efficiency
In WSN, every node does not have constant power source,
all are occupied with the limited power supply. With this
limited power supply, the sensor node cannot work
continuously for years. So the WSN operating system
should be able to do optimize power management so that
each sensor node remains active for its maximum life span,
which helps to expand the system lifetime and improve its
performance. For example, the operating system can put the
node to sleep when to network is idle and wake up when any
event occurs which can be interrupted by hardware. [33][36]

E. Application Program Interface
In WSN each sensor node is provided by API or application
programming interface which connect the underlying
hardware with the user. This may allow access and control
of hardware directly, to be optimize system performance.
WSN API provides a well-defined and easy-to-use way to
collect data from WSN nodes, and give commands to them.
Also, service discovery mechanisms and attribute based
queries are enabled. [21]

F. Code Upgrading and Reprogramming
Code Reprogramming enables users to extend or correct
functionality of a sensor network after deployment, at a low
cost. The behavior of sensor nodes and the algorithms on
which they are working may be needed to be adjusted or
changed either for their functionality purpose or for energy
conservation, the WSN operating system should be able to
reprogram and upgrade. [3][26]

G. Limited Memory
The limited amount of memory which accounts to few
kilobytes on a sensor node necessitates the OS to be
designed with only required features. It is a fundamental
characteristic of a sensor network operating system and the
primary reason why so many sophisticated embedded OS
cannot be easily ported to the sensor nodes. [17]

H. Real-Time Guarantee
Most WSN applications are tend for observation or
examination in nature. They are time-sensitive. Thus, the
packets which are to be transmitted are on timely basis. This
approach requires real-time guarantee of data transmission.
[12]

I. Reliability
In most of the applications, the on-site reliability of a sensor
node is not guaranteed as sensor networks are deployed once
and left unattended to operate for a long period of time. The
reliability of the operating system is of great concern to
facilitate developing complex WSN software, with ensuring
the correct functioning of WSN systems. [34]

Paper ID: ART20163039 1629

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3. Existing Operating System for Wireless
Sensor Network and Its Architecture

The basic function of the WSN is to collect information and
to support certain application specific task of the
deployment. For working, WSN needs different sensor node
or mote. Currently, commercially available sensor nodes are
categorized into four groups. [19][20][24]
1) Specialized sensing platforms i.e Spec
2) Generic Sensing platforms i.e Berkeley motes
3) High-bandwidth sensing platforms i.e iMote
4) Gateway platform i.e Stargate
Although these nodes have different characteristics, their
basic hardware components are same like a physical sensor,
a microprocessor, a memory, a radio transceiver and a
battery. Therefore, these hardware components should be
organized in a way that makes them work correctly and
effectively without a conflict in support of the specific
application for which they are designed. So, in that scenario,
each node requires operating system that can control the
hardware, provide hardware abstraction to the application
software and the fill the gap between application software
and hardware. Here, we discuss the architecture of different
operating systems for Wireless Sensor Network like Tiny
Os, Nano – RK, MANTIS, LiteOs and Contiki. [7] [37] [4]
[10] [8][9]

A. Architecture of Tiny OS
Tiny OS [20] [38] was developed in 2000 by the UC
Berkeley and is one of the earliest operating system for the
Wireless Sensor Network. Tiny OS is component base,
application specific operating system. [29] It follows
Monolithic architecture class and uses an event – based
model to support high level of concurrent application in a
very small amount of memory. It also supports
multithreading called as TOS Thread. Tiny OS footprint has
fit in only 400 bytes of memory. It supports non-primitive

FIFO (First-In-First-Out) algorithm for scheduling jobs. It
provides static memory management. Tiny OS manages
shared resources using any of the mechanisms like
Virtualization and Completion Events. The main drawback
of this OS is that it does not provide any support for real
time application. Figure.3 shows the basic architecture of
Tiny OS.

Figure 3: Architecture of Tiny OS

B. Architecture of Nano-RK
Nano- RK[13][16] is Real Time Operating System (RTOS)
from Carnegie Mellon University with the purpose of
running micro control of sensor network. It uses 2 KB RAM
and 18 KB of ROM for performance. Its architecture is
based on Monolithic kernel architecture model. To facilitate
application developer it provides fully preemptive multi-
threading support. Nano-RK provides priority scheduling at
two levels: first at the process level and second at the
network level. Nano-RK provides static memory
management and light weight communication protocol
stack similar to the socket. Using mutexes and semaphores
serialized access, we can share resources. As Nano-RK is a
Real Time Operating System (RTOS), it provides rich
support for real time application. Figure.4 shows the basic
architecture of Nano-RK.

Figure 4: Architecture of Nano-RK

C. Architecture of MANTIS
MANTIS OS[29][35][15] is based on Layered architecture
model. MultimodeAl system for NeTworks of In-situ
wireless Sensor (MANTIS) provide multithreading for
Wireless Sensor Network. MANTIS foot print fit in 500
bytes which include kernel, scheduler and network stack.
MANTIS uses primitive based scheduling with multiple
priority class, and it uses the round robin priority within the
each class. It also allows dynamic memory management.

Here, resource sharing is possible using semaphores.
Figure.5 shows the basic architecture of MANTIS.

Paper ID: ART20163039 1630

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 5: Architecture of MANTIS

D. Architecture of LiteOS
LiteOS[29][31][32] was developed by University of Illinois
with the goal of providing UNIX like environment for
programming in WSN application. Footprint of LiteOS is an
8 MHz CPU, 128 bytes of ROM and 4Kbytes of RAM.
LiteOS follow Modular architecture model. Basically,
LiteOS is partitioned into three subsystems: LiteShell,
LiteFS and Kernel [29]. LiteShell is a UNIX-like shell that
provides support for shell commands meant for file
management, process management etc. A second subsystem
is LitsFS which itself is file system. LiteFS mounts all
neighboring sensor nodes as a file. And last subsystem is
Kernel, which provide concurrency in the form of
multithreading, support for dynamic loading, priority
scheduling, etc. LiteOS is multitasking and multithreading
OS. It follows priority based round robin policy for
scheduling and supports dynamic memory management.
LiteOS provides communication support in the form of files.
Figure.6 shows the basic architecture of LiteOS.

Figure 6: Architecture of LiteOS

D. Architecture of Contiki
Contiki is an open source operating system for network
embedded system. [2] It follows modular architecture. It
uses event driven with optional threading facility for
processes. As Contiki is event driven operating system, it
does follow any sophisticated scheduling algorithms.
Scheduling is based on the event fired. It supports dynamic
memory management and supports number of protocols for
communication. Contiki provides serialized access for
resources sharing. It does not give any support for real-time
applications. Figure.7 shows the basic architecture of
Contiki.

Figure7: Architecture of Contiki

4. Comparison Table for Different Operating
System for WSN

In this section, we present a comparison of different OSes
for WSN. We have done this comparison on the basis of

various features discussed in each operating system in the
above section.

Paper ID: ART20163039 1631

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Table 1: Comparison of different OSs for Wireless Sensor Network
Parameters/ WSN OS Tiny OS Nano – RK OS MANTIS OS LiteOS Contiki OS

Architecture Monolithic Monolithic Layered Modular Modular
Protocol Support Active Message Socket like

abstraction for
networking

At Kernel level COMM layer
Networking layer is user level

File base
communication

uIP, uIPv6 and
Rime

Communication Security
Support

Yes (Tiny Sec) No No No Yes (Contiki Sec)

File System Single Level File
System support

No No LiteFs Coffee file System

Scheduling FIFO Rate Monotonic
and rate

harmonized
scheduling

Five Priority Class Priority based Round
Robin Scheduling

Event are fired as
they occur

Resource Sharing Virtualization and
Completion Events

Serialized Access
through mutexes

Through Semaphores Through
Synchronization

Primitives

Serialized Access

Memory Management Static Static Dynamic Dynamic Dynamic
Memory Protection Yes No No Yes No

Threading support Yes Yes Yes Yes Yes
Event based

Programming Support
Yes No No Yes Yes

Simulator TOSSIM, Power
Tossim

NA AVRORA AVRORA Cooja, MSPSim,
Netsim

Programming Language
Support

Nes C C C LiteC++ C

Sensing Platform support Mica, Mica2, MicaZ,
TelosB, Tmote, XYZ,
IRIS, TinyNode, Eyes,

Shimmer

MicaZ, FireFly Mica2, MicaZ, Telos Micaz, IRIS, AVR,
MCU

Tmote, TelosB,
ESB, AVR, MCU,

MSP430 MCU,

Support for real time
application

No Yes Up tp some extent at process
scheduling level

No No

Database support Yes(Tiny DB) No No No No
Static/Dynamic System Static Static Dynamic Dynamic Dynamic

Open Source Yes Yes Yes Yes Yes

Publication year 2000 2008 2004

web site http://www.tinyos.net http://www.nano-
rk.org

http://mantisos.org http://www.liteos.net http://sics.se/contiki

5. Conclusion

This paper discusses various wireless sensor network
operating system, it also address various issues that has to be
accounted while desiging the operating system for sensor
network. Paper also represents various architecture design of
some popular WSN operating system. A comparative
analysis of various WSN operating system on the basis of
various paramters is also included in paper which will help
and inspire the researchers to design more robust and
efficient operating system for WSN. The OS developers and
the OS users will be able to know the features of various
existing operating sytems of sensor network and can select
the best suitable operating system for their application.

References

[1] A. K. Dwivedi, M. K. Tiwari, O. P. Vyas, “Operating

Systems for Tiny Networked Sensors: A Survey”,

International Journal of Recent Trends in Engineering,
2009,Vol. 1, No:2, pp. 152-157, ISSN 1797- 9617.

[2] B.Gronvall, T.Voigt, “Contiki- a lightweight and
flexible operating system for tiny networked sensors”,

EmNets, 2004.
[3] Adam Dunkels, Niclas Finne, Joakim Eriksson, Thiemo

Voigt, “Run-Time Dynamic Linking for
Reprogramming Wireless Sensor Networks”, Sensys,

2006.
[4] Adi Mallikarjuna Raddy, D Janakiram , G Ashok

Kumar, “Operating System for Wireless Sensor

Networks : A Survey Technical Report”, International

Journal of Sensor Networks, 2009, Vol. 5, Issue 4, pp.
236-355, ISSN: 1748-1287.

[5] Ajay Jangra, Swati, Richa, Priyanka, “Wireless Sensor

Network (WSN): Architectural Design issues and
Challenges”, (IJCSE) International Journal on

Computer Science and Engineering, 2010, Vol. 2, No:
9, pp. 3089-3094, ISSN : 0975-3397.

[6] Anil Kumar Sharma, Surendra Kumar Patel,
Gupteshwar Gupta, “Design Issues and Classification of

WSNs Operating Systems”, nternational Journal of

Smart Sensors and Ad Hoc Networks (IJSSAN), 2012,
Vol. 2, Issue: 3,4, pp. 71-75, ISSN No. 2248-9738.

Paper ID: ART20163039 1632

http://www.tinyos.net/
http://www.nano-rk.org/
http://www.nano-rk.org/
http://mantisos.org/
http://www.liteos.net/
http://sics.se/contiki

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[7] Antonio Augusto Frohlich, Lucas Franicsco Wanner, ”

Operating Systems Supports for Wireless Sensor
Networks”, Journal of Computer Science, 2008, pp.

272-281, ISSN 1549-3636.
[8] Chih-chieh Han, Ram Kumar, Roy Shea, Eddie Kohler,

Mani Srivastava, “A Dyanamic Operating System for

Sensor Nodes”.

[9] Cintia B. Margi, Marcos A. Simplico Jr, Mats Naslund,
“Impact of Operating Systems on Wireless Sensor

Networks (Security) Applications and Testbeds”,

Proceedings of 19th International Conference on
Computer Communications and Networks (ICCCN),
2010, pp. 1-6, ISSN : 1095-2055.

[10] D.Manjunath, A Review of Current Operating System
for Wireless Sensor Networks.

[11] David Shuman, Mingyan Liu, “Optimal Sleep

Scheduling for a Wireless Sensor Network Node”,

Fortieth Asilomar Conference on Signals, Systems and
Computers, 2006. Pp. 1337 – 1341, ISSN: 1058-6393.

[12] Emanuele Toscano, Orazio Mirabella, Lucia Lo Bello,
“An Energy-efficient Real-Time Communication
Framework for Wireless Sensor Networks”, Real Time

Networks, 2007.
[13] Eswaran, A. Rowe, A.Rajkumar, “Nano-RK : An

Energy - Aware Resource -Centric RTOS for Sensor
Network”, 26th IEEE Real-Time Systems Symposium,
2005.

[14] Frank Golatowski, Jan Blumenthal, Matthias Handy,
Marc Haase, Hagen Burchardt, Dirk Timmermann,
“Service-Oriented Software Architecture for Sensor
Networks”, In Proc. Int. Workshop on Mobile

Computin, 2003.
[15] H.Abrach, S.Bhatti, J.Carlson, H.Dai, J.Rose, A.Sheth,

B.Shucker, J.Deng, R.Han, “MANTIS: System Support

for MultiModAl NeTworks of In-situ Sensors”,

International Workshop on Wireless Sensor Networks
and Applications, 2003, ISSN: 1549-3474.

[16] Hojung cha, Sukwon Choi, Inuk Jung, Hyoseung Kim,
Hyojeong Shing, Jaehyun Yoo, Chanmin Yoon,
“RETOS: Resilient, Expandable and Threaded
Operating System for Wireless Sensor Networks”, The

International Conference on Information Processing in
Sensor Networks (IPSN 2007), pp. 148-157, ISBN:
978-1-59593-638-7.

[17] Hong Min, Sangho Yi, Yookun Cho, Jiman Hong, “An

Efficient Dynamic Memory Allocator for Sensor
Operating Systems”, Proceedings of the 2007 ACM

symposium on Applied computing, 2007, pp. 1159-
1164, ISBN:1-59593-480-4.

[18] I.F. Akyildiz, Weilian Su; Sankarasubramaniam, Y.;
Cayirci, E, “Wireless sensor networks: a survey”,

 Communications Magazine, IEEE , 2002, Vol.40,
pp.102-114, ISSN: 0163-6804.

[19] J.Hill, M.Hortion, R.Kling, L.Krishnamurthy, “The

Platforms Enabling Wireless Sensor Networks”,

Communications of the ACM, 2004, Vol.47 No. 6, pp.
41-46, ISSN · 0001-0782.

[20] J.Hill, r.Szewezyk, A.Woo, S.Hallar, D.Culler, K.Pister,
“System Architecture Directions for Networked

Sensors”, ACM SIGOPS Operating Systems Review,

2000, Vol. 34 No. 5, pp. 93-104, ISSN 0163-5980.

[21] Jari K. Juntunen, Mauri Kuorilehto, Mikko Kohvakka,
Ville A. Kaseva, Marko Hännikäinen, Timo D.
Hämäläinen, “WSN API: Application Programming

Interface for Wireless Sensor Networks”, The 17th

Annual IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications
(PIMRC’06), Vol. 8, No. 6, ISSN : 1796-2056.

[22] John A. Stankovic, “Wireless Sensor Networks”,

Computing & Processing (Hardware/Software) Journal,
2008, vol. 41, issue 10, pp. 92-95, ISSN : 0018-9162.

[23] Kazem Sohraby, Daniel Minoli, Taieb Znati, “Wireless

Sensor Networks: Technology, Protocols and
Applications”, Wiley Publications, 2007, ISBN 978-0-
471-74300-2.

[24] Lalit Saraswat, Pankaj Singh Yadav, “A Comparative

Analysis of Wireless Sensor Network Operating
Systems”, International Journal of Engineering and

Technoscience, 2010, Vol. 1, No:1, pp. 41-47, ISSN:
1861-2121.

[25] Lin Gu, John A. Stankovic, “t-kernel: Providing
Reliable OS Support to Wireless Sensor Networks”, In

Proc. of the 4th ACM Conf. on Embedded Networked
Sensor Systems, 2006, pp.1-14.

[26] Milosh Stolikj, Pieter J. L. Cuijpers, Johan J. Lukkien,
“Energy-aware reprogramming of sensor networks
using incremental update and compression”, The 3rd

International Conference on Ambient Systems,
Networks and Technologies (ANT-2012), 2012.

[27] Mohamed Watfa, Mohamed Moubarak, Ali Kashani,
“Operating system designs in future wireless sensor
networks”, Journal of Networks, 2010, Vol. 10, No: 1,

pp. 1201-1214.
[28] Mokhtar Aboelaze, Fadi Aloul, “Current and Future

Trends in Sensor Networks: A Survey”, Second IFIP

International Conference on Wireless and Optical
Communications Networks, 2005. WOCN 2005,
pp.551-555, ISBN: 0-7803-9019-9.

[29] Muhammad Omer Farooq, Thomas Kunz, “Operating

Systems for Wireless Sensor Network : A Survey”,

Sensors, 2011, Vol.11, pp. 5900-5930, ISSN 1424-
8220.

[30] Ping Yi, Ting Zhu, Bo Jiang, Bing Wang, Towsley,
D., “DEOS: Dynamic energy-oriented scheduling for
sustainable wireless sensor networks”, IEEE

International Conference on Communications (ICC),
2012, pp. 3335 – 3339.

[31] Q.Cao, T.F.Adbelzaher, J.A.Stankovic, “The LiteOS

Operating System: towards Unix -like abstraction for
wireless sensor networks”, ACM IEEE IPSN, 2008.

[32] Qing Cao, Tarek Abdelzaher, John Stankovic, Tian He,
“LiteOS, A Unix-like Operating System and
Programming Platform for Wireless Sensor Networks”.

[33] RATHNA. R, SIVASUBRAMANIAN. A, “Improving

Energy Efficiency In Wireless Sensor Networks
Through Scheduling and Routing”, International Journal

Of Advanced Smart Sensor Network Systems (IJASSN
), 2012, Vol. 2, No. 1, pp. 21-27, ISSN : 2231 – 4482.

[34] Robin Kim, Junho Song, Billie F. Spencer, Jr,
“Reliability Analysis of Wireless Sensor Networks”,

The 6th International Workshop on Advanced Smart
Materials and Smart Structures Technology, 2011, ISSN
1660-9336.

Paper ID: ART20163039 1633

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[35] S.Bhatti, J.Carlson, H.Dai, J.Deng, J.Rose, A.Sheth,
B.Shucker, C.Gruenwald, A.Torgerson, R.Han,
“MANTIS OS: An embedded multithreaded operating

system for wireless micro sensor platforms”,

ACM/Kluwer Mobile Network Applicaton Journal,
2005, Vol.10, pp.563-579, ISSN: 1572-8153.

[36] Shashidhar Rao Gandham, Milind Dawande, Ravi
Prakash, S. Venkatesan, Energy Efficient Schemes for
Wireless Sensor Networks with Multiple Mobile Base
Stations, Wireless Networks, Springer, 2011, Vol. 17,
Issue 8, pp. 1809-1819.

[37] Thang Vu Chien, Hung Nguyen, Thanh Nguyen Huu,
“A Comparative Study on Operating System for

Wireless Sensor Networks”, ICACSIS, 2011, pp.73.78,

ISBN 978-979-1421-11-9.
[38] “tiny os”, http://tinyos.net
[39] “VxWorks OS Development”,

www.windriver.com/products/vxworks/
[40] WinCE,

http://www.microsoft.com/windowsembedded/enus/win
dows-embedded.aspx

Paper ID: ART20163039 1634

http://tinyos.net/
http://www.windriver.com/products/vxworks/

