
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Creation of Algorithms for Making Test Cases, and
Implementing using JAVA which can be Applied to
Each Phase of SDLC to Ensure Quality Assurance

Supriya Shrivastava

Shri Ram Institute of Technology, Rajiv Gandhi Technical University, Bhopal (M.P) India

Abstract: Creation of algorithms for making test cases and implementing using high level language such as JAVA which can be
applied to each phase of SDLC to ensure quality assurance”. These are test-like programs that automatically check whether an
implementation conforms to a specific rule. These rules are implemented directly in the target programming language in the form of
tests.

Keywords: Software quality Assurance (SQA). Capability Maturity Model Integration (CMMI), Software Development Life Cycle
(SDLC), International Organization for Standardization (ISO), Rational Unified Process (RUP)

1. Introduction

The current software development practice is still accident-
prone. For instance, projects are completed too late; they
exceed their budgets; or they require substantially more
resources than expected. The intrinsic reason is that we have
inadequate understanding of our objective world and its
characteristics. Those problems are addressed as the software
crisis.

As software is integrated more frequently into every aspect of
our lives, as it grows more quickly in size and function, as its
failure in operations causes increasingly devastating
consequences, and as schedules and budgets are continually
reduced despite the need for high-quality, reliable, and secure
software, advanced and innovative technologies must be
developed to achieve software quality assurance more
effectively and efficiently. It is also critical for the industry
and academia to work together to conduct cooperative
research to reduce the gap between state-of-the-art analyses
and practice applications.

Software quality assurance (SQA) consists of a means of
monitoring the software engineering processes and methods
used to ensure quality. The methods by which this is
accomplished are many and varied, and may include ensuring
conformance to one or more standards, such as ISO 9000 or a
model such as CMMI.

Software quality assurance (SQA) contains, different ways of
having a continuous check on software engineering
processes, and methods used to certify quality.

Software Quality Assurance of large size software involves
checking and assuring if many aspects like the design,
coding, testing and performance of the software are as per the
specifications. There are many attempts done all over the
world to quantify the quality of the software and many
quality metrics have been evolved. The quality attributes are
measured in various ways. Two of these ways in which
performance can be gauged are -

 By measuring the time required for execution of the
functions and

 By the number of problems found during testing.

There are many QA methodologies like the standard
Waterfall SDL based on the standards laid down by the
IEEE, CMMI (Capability Maturity Model Integration) based
on the guideline of the SEI, V-model, Incremental model,
RUP (Rational Unified Process), Agile Method of Software
Development, Test-based development method, Rapid
Action Development model etc.

Software Development Life Cycle

2. Quality Assurance Techniques

Basic quality assurance techniques are:
 Application of Standards

Paper ID: ART20162962 898

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

 Definition and delivery of end products
 Traceability

The competitive market place today demands the best of
everything - Quality, Cost and Schedule. The on time
delivery of an error-free product at minimal cost is standards
that demanding customers expect and good suppliers
continually strive to meet. It is no easy task to strike an
effective balance where quality is accomplished without
sacrificing schedules and incurring unplanned costs - and to
do so consistently, release after release.

In a software development project, errors can be injected at
any stage during development. For each phase, there are
different techniques for detecting and eliminating errors that
originate in that phase. However, no technique is perfect, and
it is expected that some of the errors of the earlier phases will
finally manifest themselves in the code. This is particularly
proved because in the earlier phases most of the verification
techniques are manual because no executable code exists.
Ultimately these remaining errors will be reflected in the
code. Hence the code developed during the coding activity, it
is likely to have some requirements errors and design errors,
in addition to the errors introduced during the coding
activity. Because the code is frequently the only product that
can be executed and whose actual behavior can be observed,
testing is the phase where the errors remaining from all the
previous phases must be detected. Of the development cost,
an example distribution of effort with the different phases is
shown in following table:

Table 1: Effort Distribution
Requirements 10%

Design 20%
Coding 50%
Testing 50%

The exact numbers will differ with organization and the
nature of the process.

However, there are some observations we can make. First is
that coding consumes only a small percentage of the
development effort. This is against the common naïve notion
that developing software is largely concerned with writing
programs and that programming is the major activity.

The second important observation from the data about effort
distribution with phases is that testing consumes the most
resources during development.

Overall, we can say that the goal of the process should not be
to reduce the effort of design and coding, but to reduce the
cost of testing and maintenance. Both testing and
maintenance depend heavily on the design and coding of
software, and these costs can be considerably reduced if the
software is designed and coded to make testing and
maintenance easier.

Question arises, what are the sources of the defects?

The source of the defects can be many: oversight wrong

assumptions use of inappropriate technology,
communication gap among the project engineers, etc. These
defects usually get detected much later in the life cycle. For
example, a design defect might go unnoticed till we reach the
coding or testing phase.

Once a defect is detected, the engineers need to go back to
the phase where the defect had occurred and redo some of the
work done during that phase and the subsequent phases to
correct the defect and its effect on the later phases. It
ultimately increases the cost, because for example, the defect
was occurred in the coding, so the development team needs
to work again on this. It will also unnecessarily increase the
delay in schedule.

3. Early Defect Removal and Defect
Prevention

Table 2: Effort Distribution
Requirements 20%

Design 30%
Coding 50%

As we can see, errors occur throughout the development
process. However the cost of correcting errors of different
phases is not the same and depends on when the error is
detected and corrected.

The main moral of this section is that we should attempt to
detect errors that occur in a phase during that phase itself and
should not wait until testing to detect errors.
Detecting errors soon after they have been introduced is
clearly an objective that should be supported by the process.
However, even better is to provide support for defect
prevention. It is generally agreed that all the defect removal
methods that exist today are limited in their capability and
cannot detect all the defects that are introduced. Furthermore,
the cost of defect removal is generally high, particularly if
they are not detected for a long time. Clearly, then, to reduce
the total number of residual defects that exist in a system at
the time of delivery and to reduce the cost of defect removal,
an approach is to prevent defects from getting introduced and
stop moving those defects to carry forward to next phase of
SDLC.

References

[1] Jo˜ao Brunet, Dalton Guerrero, Jorge Figueiredo,
“Design Tests: An Approach to Programmatically Check

your Code Against Design Rules” published in IEEE

ICSE’09, May Vancouver, Canada 978-1-4244-3494-7
[2] Yuri Kharmov, “The Cost of Code Quality” published in

IEEE 2006 0-7695-2562-8/06
[3] Naeem Seliya Taghi M. Khoshgoftaar and Shi Zhong,

“Analyzing Software Quality with Limited Fault-
Proneness Defect Data” published in IEEE 2005 1530-
2059/05

[4] Luigi Benedicenti, Victor Wei Wang, Raman Paranjape,
“A Quality Assessment Model for Java Code” published

in IEEE 2002 0-7803 -75 14-9/02

Paper ID: ART20162962 899

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[5] Xuefen Fang, “Using A Coding Standard to Improve

Program Quality” SRA Key Technology Laboratory,
Inc, Published in IEEE 2001

[6] Charles H. Wells Russell Brand and Lawrence
Markosian, “Customized Tools for Software Quality
Assurance and Reengineering” Published in IEEE 1995

0-8186-7111-4/95
[7] Per Runeson and Peter Isacsson, “Software Quality

Assurance-Concepts and Misconceptions” published in

IEEE 1998 1089-6503/98
[8] S.Murugesa, “Attitude Towards Testing: A Key

Contributor to Software Quality” 0-7803-2608-3
[9] Raymond Day and Thomas McVey, “A Survey of

Software Quality Assurance” published in IEEE AES

Magazine, November 1986
[10] FLETCHER J. BUCKLEY and ROBERT POSTON,

“Software Quality Assurance” published in IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING,
VOL. SE-10, NO. 1, JANUARY 1984

[11] Rathna K. Prasad, “Towards A Zero-Defect Product -
The End-To-End Test Process” AT&T Bell Laboratories

0-7803-2608-3
[12] Pankaj Jalote, “An Integrated Approach to Software

Engineering” 81-7319-271-5
[13] Sterling J. McCullough, “SOFTWARE QUALITY

ASSURANCE METHODOLOGY EVALUATION
AND SELECTION” published in IEEE CH2984-
319110000-0364 1991

Author Profile

Supriya Shrivastava is an Assistant Professor in IT
branch in Shri Ram College Jabalpur (M.P. India)
since 2010. Had completed MCA in 2006 from
Jabalpur Engineering College, Jabalpur.

Paper ID: ART20162962 900

