
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Rank SVM Based Tracking and Mapping Bug
Reports to Relevant Files

Dr. S. Preetha1, N. Gangarajam2

1Assistant Professor, Department of Computer Science, Sri Ramakrishna College of Arts & Science for Women, Coimbatore District

2Research Scholar, Department of Computer Science, Sri Ramakrishna College of Arts & Science for Women, Coimbatore District

Abstract: Once the bug occurred, it is a difficult process to localize the bug. It is taking the long time for placing the bug. So the
tedious process of placing the bugs taking more time. Sometimes this time taken is more than fixing the bugs.A tool for ranking all the
source files of a project with respect to how likely to contain the cause of the bug world enable developers to narrow down their search
and potentially could lead to a substantial increase in productivity. Adaptive Rank SVM approach that leverages domain knowledge
through functional decompositions of source code files into methods, API descriptions of library components used in the code, the bug-
fixing history, and the code changes history. Given a bug report, the ranking score of each source file is computed as a weighted
combination of an array of features encoding domain knowledge, where the weights are trained automatically on previously solved bug
reports using Learning-to-rank Technique.

Keywords: Ranking Model, Filtering, Pairwise approach

1. Introduction

A software bug or defect is a coding mistake that may cause
an unintended or unexpected behavior of the software
component. Upon discovering an abnormal behavior of the
software project, a developer or a user will report it in a
document, called a bug report or issue report. A bug report
provides information that could help in fixing a bug, with the
overall aim of improving the software quality. A large
number of bug reports could be opened during the
development life-cycle of a software product.

Software errors cost the U.S. industry 60 billion dollars a
year according to a study conducted by the National Institute
of Standards and Technology . One contributing factor to the
high number of errors is the limitation of resources for
quality assurance (QA). Such resources are always limited
by time, e.g., the deadlines that development teams face, and
by cost, e.g., not enough people are available for QA. When
managers want to spend resources most effectively, they
would typically allocate them on the parts where they expect
most defects or at least the most severe ones.

Dynamic bug localization techniques suffer from the
drawback that they are based on the availability of two
control flows — the passing control flow and the failing
control flow. This may not be satisfied in real-world
scenarios. The static methods, on the other hand, are usually
customized to detect irregularities in a particular
programming language following a particular coding
convention, which makes them rather restrictive in scope.

If the bug report is constructed as a query and the source
code files in the software repository are viewed as a
collection of documents, then the problem of finding source
files that are relevant for a given bug report can be modeled
as a standard task in information retrieval (IR). As propose
to approach, it as a ranking problem, in which the source
files (documents) are ranked with respect to their relevance
to a given bug report (query). In this context, relevance is

equated with the likelihood that a particular source file
contains the cause of the bug described in the bug report.

The ranking function is defined as a weighted combination
of features, where the features draw heavily on knowledge
specific to the software engineering domain in order to
measure relevant relationships between the bug report and
the source code file. While a bug report may share textual
tokens with its relevant source files, in general there is a
significant inherent mismatch between the natural language
employed in the bug report and the programming language
used in the code.

Ranking methods that are based on simple lexical matching
scores have sub optimal performance, in part due to lexical
mismatches between natural language statements in bug
reports and technical terms in software systems. Our system
contains features that bridge the corresponding lexical gap
by using project specific API documentation to connect
natural language terms in the bug report with programming
language constructs in the code.

1.1 Learning to rank

Bug reporting is using the Learning to Rank application
which is called as Machine Learned Ranking(MLR). It is the
application of Machine learning which is used in Ranking
models for Information RetrivalSystem(IR).

The Ranking Model purpose is to rank that is produce a
permutation of items in new, unknown list in a way which is
―Similar‖ to ranking in the training data in some sense.

Learning to Ranking Algorithms mainly used for IR System
but also in some other area also.

Learning to rank has emerged as an active and growing area
of research both in information retrieval (IR) and machine
learning (ML). The goal of learning to rank is to
automatically learn a ranking model from training data, such
that the model can sort objects (e.g., documents) according
to their degrees of relevance, preference, or importance as

Paper ID: ART20162935 914

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

defined in a specific application. Many IR problems are by
nature ranking problems, and many IR technologies can be
potentially enhanced by using learning to rank techniques.

1.2 Application

Ranking is a central part of many information retrieval
problems, such as document retrieval, collaborative filtering,
sentiment analysis, and online advertising. A possible
architecture of a machine-learned search engine is shown in
the figure 1 to the right.

Figure 1: Machine-Learned Ranking Search Engine

Training data is used by a learning algorithm to produce a
ranking model which computes the relevance of documents
for actual queries. Usually users expect a search query to
complete in a very few minutes, which makes it impossible
to complex ranking model on each document in the corpus,
So two-Phase scheme is used.

First phase a small number of potentially relevant documents
are identified using simpler retrieval models which is used
for fast query evaluation such as Vector Space Model,
Boolean Model weighted AND and BM25.This phase is
called as Top-document Retrieval method.

In Second Phase, a more accurate but computationally
expensive Machine-Learned model is used to re-rank these
documents.

Information Retrieval Quality
Information retrieval quality is usually evaluated by the
following three measurements:
1) Precision
2) Recall
3) Average Precision
For a specific query to a database, let be the set of relevant
information elements in the database and be the set of the
retrieved information elements.

1.3 Approaches in Learning to Rank

A. Point wise approach
In this case it is assumed that each query-document pair in
the training data has a numerical or ordinal score. Then
learning-to-rank problem can be approximated by a
regression problem given a single query-document pair,
predict its score.

A number of existing supervised machine learning
algorithms can be readily used for this purpose. Ordinal
regression and classification algorithms can also be used in
point wise approach when they are used to predict score of a
single query-document pair, and it takes a small, finite
number of values.

B. Pair wise approach
In this case learning-to-rank problem is approximated by a
classification problem learning a binary classifier that can
tell which document is better in a given pair of documents.
The goal is to minimize average number of inversions in
ranking. Refer to the above technique as pair wise preference
ranking or round robin ranking. It is a straight-forward
generalization of pair wise or one-against-one classification,
aka round robin learning, which solves multi-class problems
by learning a separate theory for each pair of classes.

In previous work, Furnkranz (2002) showed that, for rule
learning algorithms, this technique is preferable to the more
commonly used one-against-all classification method, which
learns one theory for each class, using the examples of this
class as positive examples and all others as negative
examples. Round robin has also been successfully used in
other fields, in particular in the area of Support Vector
Machines(SVM) (Hsu and Lin, 2002, and references therein.
Furnkranz (2002) for a brief survey of related work on pair
wise classification.

More importantly, however, Furnkranz (2002) showed that,
despite its complexity being quadratic in the number of
classes, the algorithm is no slower than the conventional
one-against-all technique.

C. The pair wise transform
As proved in (Herbrich 1999), if consider linear ranking
functions, the ranking problem can be transformed into a
two-class classification problem. For this form the difference
of all comparable elements such that our data is transformed
into (x′k,y′k)=(xi−xj,sign(yi−yj)) for all comparable pairs.
This way transformed our ranking problem into a two-class
classification problem.

The following plot shows this transformed dataset, and color
reflects the difference in labels, and our task is to separate
positive samples from negative ones. The hyperplane {x^T
w = 0} separates these two classes.

Figure 2: Transformed Dataset

As see in the above figure 2, this classification is separable.
This will not always be the case, however, in our training set
there are no order inversions, thus the respective

Paper ID: ART20162935 915

https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Document_retrieval
https://en.wikipedia.org/wiki/Collaborative_filtering
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Ordinal_regression
https://en.wikipedia.org/wiki/Ordinal_regression
https://en.wikipedia.org/wiki/Ordinal_regression
https://en.wikipedia.org/wiki/Classification_%28machine_learning%29
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/Permutation#Inversions
http://www.mendeley.com/research/support-vector-learning-ordinal-regression/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

classification problem is separable and it will now finally
train a Support Vector Machine (SVM) model on the
transformed data.

Figure 3: Trained With SvmOn Transformed Dataset

This model is known as RankSVM. will then plot the
training data together with the estimated coefficient w^ by
RankSVM. This Trained SVM Transformed Dataset shown
in the below figure 3.

1.4 Ranking SVM

A Ranking SVM is a variant of the support vector machine
algorithm, which is used to solve certain ranking problems
(via learning to rank). The Ranking SVM algorithm is a
learning retrieval function that employs pair-wise ranking
methods to adaptively sort results based on how 'relevant'
they are for a specific query. The Ranking SVM function
uses a mapping function to describe the match between a
search query and the features of each of the possible results.
This mapping function projects each data pair (such as a
search query and clicked web-page, for example) onto a
feature space. These features are combined with the
corresponding click-through data (which can act as a proxy
for how relevant a page is for a specific query) and can then
be used as the training data for the Ranking SVM algorithm.
Generally, Ranking SVM includes three steps in the training
period:
1) It maps the similarities between queries and the clicked

pages onto a certain feature space.
2) It calculates the distances between any two of the vectors

obtained in step 1.
3) It forms an optimization problem which is similar to a

standard SVM classification and solves this problem with
the regular SVM solver.

1.5 Building the Benchmarks

This is the dataset that was used to evaluate the learning-to-
rank approach. The dataset contains bug reports and the
corresponding commit history for six open source Java
projects: AspectJ, Birt, Eclipse Platform UI, JDT, SWT, and
Tomcat.

For each of the subject systems, as created a benchmark to
evaluate the impact analysis techniques. The benchmark
consists of a set of change requests that has the following
information for each change request: a natural language

query (change request summary) and a gold set of methods
that were modified to address the change request.

The benchmark was established by a human investigation of
the change requests (done by one of the authors), source
code, and their historical changes recorded in version-control
repositories. Subversion (SVN) repository commit logs were
used to aid this process. For example, keywords such as Bug
Id in the commit messages/logs were used as starting points
to examine if the commits were in fact associated with the
change request in the issue tracking system that was
indicated with these keywords.

2. Literature Survey

A. Looking For Bugs in All the Right Places
The continue investigating the use of a negative binomial
regression model to predict which files in a large industrial
software system are most likely to contain many faults in the
next release. A new empirical study is described whose
subject is an automated voice response system. Not only is
this system’s functionality substantially different from that

of the earlier systems studied (an inventory system and a
service provisioning system), it also uses a significantly
different software development process. Instead of having
regularly scheduled releases as both of the earlier systems
did, this system has what are referred to as ―Continuous

Releases‖.

These predictions were based on file characteristics that
could be objectively assessed, including the size of the file in
terms of the number of lines of code (LOC), whether this
was the first release in which the file appeared, whether files
that occurred in earlier releases had been changed or
remained unchanged from the previous release, how many
previous releases the file occurred in, how many faults were
detected in the file during the previous release, and the
programming language in which the file was written.

The model is constructed using logistic regression, and does
not predict which parts of the code are most likely to contain
faults. Instead it predicts either failure or non failure for a
given maintenance request. The model, implemented as a
web-based tool available to project management, is used to
help schedule the implementation of a given maintenance
request, and to determine the level of testing resources to
apply to validate the implementation.

The paper presents the regression formulas used to create the
prediction model and describes the use of the tool in a
software maintenance environment, but does not report a
success rate for the model’s predictions Graves et al. (2014)

performed a study to determine characteristics of modules
that are associated with faults, and constructed and evaluated
several models for predicting the number of faults that
would appear in a future version of the modules. Their study
used the fault history of a large telecommunications system
containing approximately 1.5 million LOC, organized into
80 modules, containing a total of about 2500 files. The
prediction models were used to make fault predictions for a
single two year time interval, based on the system’s history

for the preceding two years. They found that module size
was a poor predictor of fault likelihood, while the most

Paper ID: ART20162935 916

https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Ranking
https://en.wikipedia.org/wiki/Learning_to_rank

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

accurate predictors included combinations of the module’s

age, the number of changes made, and the ages of the
changes. The authors also described the application of their
models to a one year interval in the middle of the original
two year interval and found that certain parameter values
differed by an order of magnitude between the two time
periods. Our results in and in the present paper partly agree
and partly conflict with. File age and previous changes were
positive indicators of fault-proneness in our studies as well
as that of, but in contrast to, have consistently found file size
to be a strong predictor of fault-proneness.

3. Methodology And Implementation

A. Existing System
In learning to rank a number of categories are given and a
total order is assumed to exist over the categories. Labeled
instances are provided. Each instance is represented by a
feature vector, and each label denotes a rank. Existing
methods fall into two categories. They are referred to in this
paper as ―point-wise training‖ and ―pair-wise training‖. In

point-wise training, each instance (and its rank) is used as an
independent training example. The goal of learning is to
correctly map instances into intervals.

A tool for ranking all the source files of a project with
respect to how likely they are to contain the cause of the bug
world enable developers to narrow down their search and
potentially could lead to a substantial increase in
productivity. Adaptive ranking approach that leverages
domain knowledge through functional decompositions of
source code files into methods, API descriptions of library
components used in the code, the bug fixing history, and the
code change history.

Given a bug report, the ranking score of each source file is
computed as a weighted combination of an array of features
encoding domain knowledge, where the weights are trained
automatically on previously solved bug reports using a
learning –to-rank technique.

B. Vector Space Representation
If suppose regard the bug report as a query and the source
code file as a text document, then can employ the classic
Vector Space Model(VSM) for ranking, a standard model
used in information retrieval. In this model, both the query
and the document are represented as vectors of term weights.

Given an arbitrary document d(a bug report or a source code
file), compute the term weights wt,d for each term t in the
vocabulary based on the classical tf.idf weighting scheme in
which the term frequency factors are normalized.

The term frequency factor tf (t,d) represents the number of
occurrences of term t in document d, whereas the document
frequency factor dft represents the number of documents in
the repository that contains term t. In VSM, a bug report use
both its summary and description to create the VSM
representation. For a source file, use its whole content-code
and comments. To tokenize an input document, first split the
text into a bag of words using white space.

Then remove punctuation, numbers and standard IR stop
words such as conjunctions or determiners. In general, most
of the text in a bug report is expressed in natural language
(eg. English), whereas most of the content of a source code
file is expressed in a programming language (eg.java). Since
the inner product used in the cosine similarity function has
non-zero terms only for tokens that are in common between
the bug report and the source file, this implies that the
surface lexical similarity feature described 1) the source
code has expensive, comprehensive comments or 2) the bug
report includes snippets of code or programming language
constructs such as names of classes or methods.

For each method in a source file, extract a set of class and
interface names from the explicit type declarations of all
local variables. Using the project API specification, the
textual descriptions of these classes and interfaces, including
the descriptions of all their direct or indirect super classes or
super interfaces.

For each method m create a document m.api by
concatenating the corresponding API descriptions. Finally,
take the API specifications of all methods in the source file s
and concatenate them into an overall document.

While a bug report may share textual tokens with its relevant
source files, in general there is a significant inherent
mismatch between the natural language employed in the
bug report and the programming language used in the code.

Ranking methods that are based on simple lexical matching
scores have suboptimal performance, in part due to lexical
mismatches between natural and programming language
statements in bug reports and technical terms in software
systems.

The resulting ranking function is a linear combination of
features, whose weights are automatically trained on
previously solved a bug reports using a learning-to-ranking
techniques.

To avoid contaminating the training data with future bug-
fixing information from previous reports, created fine-
grained benchmarks by checking out the before –fix versions
of the project for every bug report.

Drawbacks of Vector space Model
1) Weighting is intuitive but not very formal.
2) The order in which the terms appear in the document is

lost in the vector space representation.

C. Proposed System
Ranking SVM is a typical method of learning to rank. Then
point out that there are two factors one must consider when
applying Ranking SVM, in general a ―learning to rank‖

method, to bug mapping. First, correctly ranking bugs on the
top of the result list is crucial for an Information Retrieval
system. One must conduct training in a way that such ranked
results are accurate. Second, the number of relevant bugs can
vary from query to query. One must avoid training a model
biased toward queries with a large number of relevant bugs.

Paper ID: ART20162935 917

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

D. Metrics: Support Vector Machine (SVM)
Representation
Support Vector Machine (SVM) is a classification technique
based on statistical learning theory. A support vector
machine constructs a hyper plane or set of hyper planes in a
high or infinite-dimensional space, which can be used for
classification, regression, or other tasks. Intuitively, a good
separation is achieved by the hyper plane that has the largest
distance to the nearest training data point of any class (so-
called functional margin), since in general the larger the
margin the lower the generalization error of the classifier.

SVM is a machine-learning method, based on the principle
of structural risk minimization, which performs well when
applied to data outside the training set. They formulate MC
detection as a supervised-learning problem and apply SVM
to develop the detection algorithm.

The proposed algorithm works as follows:
1) Create a set of bug reports one from each repository in
such a way that the similarity score between any pair or
reports is smaller than the specified threshold. Label this
repository as the set of negative examples.

2) Create a set of bug reports in such a way that the
similarity score between each one of them is greater than the
specified threshold. This can be formed using a single master
reports and all its duplicates. However, bug reports from
other repositories are to be prioritized having nearly equal
score as that of the master and duplicates.

3) Name this set as training set and train an SVM based
classifier on this set.

4) Test the accuracy of SVM on any incoming bug report.
Positive and negative examples are created using this bucket
structure for training of the support vector machine, which is
a linear classifier. Positive examples can be created using a
master bug report and its duplicates, or two duplicates from
the same bucket. Negative examples can be created using
reports from distinct buckets. Thus the number of negative
examples fairly exceeds the number of positive examples.
Therefore, the negative examples should be chosen suitably
to accommodate nearly all the distinct pairs.

In above Point 4, results corresponding to Java bug
repository are considered. Topic modeling is done using
SVM to model the topics which are non-functional
requirements of the software. Textual and categorical
features are analyzed along with the semantic features to
extend the feature set and to perform triaging more
accurately.

If regard the bug report as a query and the source code file
as a text document, then can employ the Support Vector
Machine (SVM) for ranking, a standard model used in
information retrieval. In this model, both the query and the
document are represented as vectors of term weights.

Given an arbitrary document d (a bug report or a source code
file), compute the term weights w t,d for each term t in the
vocabulary based on the classical tf.idf weighting scheme in
which the term frequency factors are normalized, as follows:

(i) Surface Lexical Similarity
For a bug report, use both its summary and description to
create the SVM representation. For a source file, use its
whole content – code and comments. To tokenize an input
document, first split the text into a bag of words using white
spaces. Then remove punctuation, numbers, and standard IR
stop words such as conjunctions or determiners.

Compound words such as ―WorkBench‖ are split into their

components based on capital letters, although more
sophisticated methods such as could have been used here
too. The bag of words representation of the document is then
augmented with the resulting tokens – ―Work‖ and ―Bench‖

in this example – while also keeping the original word as a
token. Finally, all words are reduced to their stem using the
Porter stemmer, as implemented in the NLTK 1 package.

This process will reduce derivationally related words such as
―programming‖ and ―programs‖ to the same stem

―program‖, which is known to have a positive impact on the

recall performance of the final system.

E. Class Name Similarity
A bug report may directly mention a class name in the
summary, which provides a useful signal that the
corresponding source file implementing that class may be
relevant for the bug report. Our hypothesis is that the signal
becomes stronger when the class name is longer and thus
more specific

F. Collaborative Filtering Score
It has been observed in that a file that has been fixed before
may be responsible for similar bugs. For example, these
three reports describe similar defects and therefore share
many keywords with report 378535 Consequently, it is not
surprising that source file StackRenderer.java.

G. File Revision History
The source code change history provides information that
can help predict fault-prone files. For example, a source
code file that was fixed very recently is more likely to still
contain bugs than a file that was last fixed long time in the
past, or never fixed.

H. Structural Information Retrieval
By computing similarities with each method and then
maximizing across all methods in a source file, feature φ 1

alleviates the problem of the small similarities that result for
localized bugs, when using a straightforward cosine
similarity formula in which the normalization factor is
correlated with the length of the file.

A related problem may occur when the bug report is very
similar with a particular type of content from a source file
(e.g. comments, method names, or class names) and
dissimilar with everything else, yet the cosine similarity with
the entire file is very small due to its large size. To model
such cases, follow the structural IR approach of that all., in
which a source code file s is parsed into four document
fields: all class names in s.class, all methods names in
s.method, all variable names in s.variable, and all comments
in s.comment.

Paper ID: ART20162935 918

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

For example, a field such as s.method is equivalent with a
document that contains all the method names defined in the
source code file s. The summary and the description of a bug
report r are used to create two query fields: r.summary and
r.description, respectively.

I. The File Dependency Graph
Expect complex code to be more prone to bugs than simple
code. Thus, the complexity of the source code contained in a
file can provide another useful signal with respect to the
likelihood that the file contains bugs. An accurate measure
of code complexity would require a good representation of
the semantics of the code.
Since a comprehensive semantic analysis of code is currently
not feasible, resort to a characterization of code complexity
based on syntactic features. For example, a proxy measure
for the complexity of a source code file can be defined.

J. Feature Scaling
Features with widely different ranges of values are
detrimental in machine learning models. Feature scaling
helps bring all features to the same scale so that they become
comparable with each other.

K. Implementation
The implementation is performed for the given technique
using Java as the programming language and MySql as the
local database to store the processed information. The
implementation is performed in the five stages.
1) Retrieving and Parsing the Software Bugs: In the first

step the software bugs are retrieved at local system and
parsing using tokenization for extracting the bug
attributes and their corresponding values.

2) Creating local database for selected attributes: The
extracted attributes are filtered for analysis and saved in
the local database.

3) Eliminating the possible spams: In this stage the textual
bug attributes are analyzed for possible spam. The
information which is likely to be spam is ignored and
never used for calculating the ranking of team members.

4) Generating Metadata for Ranking: Once the possible
spams are eliminated the next step is to prepare the
metadata for ranking. This includes counting the number
of team members; number of bugs for each member,
number of comments for each member etc. is performed
in this stage.

5) Implementing the ranking algorithm: With the help of
metadata generated in previous stage and using various
user implemented in java.

4. Results and Discussion

The first step in our adapted system is to rank all the source
code files for every bug report in the dataset. The ranking
performance on these 45 Eclipse bug reports is lower than
the performance, which was obtained on the 6,495 Eclipse
bug reports from our fine-grained benchmark dataset.

The main reason for this difference is that the 45 bug reports
are from 2004 and therefore there is not much historical
information that can be used for computing features that are
based on collaborative filtering or the file revision history. In

particular, there is less opportunity for exploiting duplicated
bug reports.

Use a dataset of 157 bugs from 4 popular software projects
to evaluate our approach against the baselines. These
projects are AspectJ, Ant, Lucene, and Rhino. All four
projects are medium-large scale and implemented in Java.
AspectJ, Ant, and Lucene contain more than 300 kLOC,
while Rhino contains almost 100 kLOC. Table 3 describes
detailed information of the four projects in our study.

The 41 AspectJ bugs are from the iBugs dataset which were
collected by Dallmeier and Zimmermann . Each bug in the
iBugs dataset comes with the code before the x (pre- x
version), the code after the x (post- x version), and a set of
test cases. The iBugs dataset contains more than 41 AspectJ
bugs but not all of them come with failing test cases. Test
cases provided in the iBugs dataset are obtained from the
various versions of the regression test suite that comes with
AspectJ.

The remaining 116 bugs from Ant, Lucene, and Rhino are
collected by ourselves following the procedure used by
Dallmeier and Zimmermann. For each bug, collected the
pre- x version, post- x version, a set of successful test cases,
and at least one failing test case.

For example the number of classes and function are calling
from the main program then the calling of methods and
programs are showing the results as follows.

Figure 4: Calling Main Program Example

Here some of the sample programs are calling from the main
program. From the main program what are all the sub
programs are calling and what are all the sub programs are
interlinked with the Main program all the details are
showing in the following Parser Dependency Graph figure 5.

Paper ID: ART20162935 919

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 5: Parser Dependency Graph

From this figure 5, the dependency of the sub programs are
visualized. Once the program ready to execute then, the
Benchmark Dataset loaded for the comparision of the Bug
similarity Calculation. This will lead to the program to
compare with the expected bugs which is available in the
Original Data View as shown in the figure 6. So that Bug Id
and Description will shown clearly in the output for the
resultant window. After the similarity calculation the time
comparion will happen.

Figure 6: Original Data View

Figure 7: Time Comparision –Graph view

Figure 8: Time Comparision-Result View

From the figure 7 shows the Time Comparision Graph View.
From this figure 8, what is the Prediction Time and Bug
Similarity Time,Compile Time and The Term Frequency vs
Document Frequency Time all the details are showing in
milliseconds.

Figure 9: Output Image

The above figure 9 shows the expected Bug similarity Result
for the Addition functions and this will happen for all the
sub programs what are all the programs are interlinked with
the main programs and the same process is happening for all
the classes and methods.

A failing test case is often included as an attachment to a bug
report or committed along with the x in the post- x version.
When a developer receives a bug report, he/she needs to
replicate the error described in the report. In this process, he
is creating a failing test case. Unfortunately, not all test cases
are documented and saved in the version control systems.

5. Conclusion and Future Enhancement

Locating bugs is important, difficult, and expensive,
particularly for large-scale software projects. To address
this, natural language information retrieval (IR) techniques
are increasingly being used to suggest potential faulty source
files given bug reports. While these techniques are very
scalable, in practice their effectiveness remains low in
accurately localizing bugs to a small number of files.

Paper ID: ART20162935 920

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 5 Issue 11, November 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Our key insight is that structured IR-based on code
constructs, such as class and method names, enables more
accurate bug localization. Our Project embodies this insight,
builds on an open source IR toolkit, requires only the source
code and bug reports, and takes advantage of bug similarity
data if available. When bug similarity data is not used, the
off-the-shelf IR took it (unmodified) already exceeds state-
of-the-art tool, Bug Locator’s accuracy.

In our future research, would like to explore the following
areas to further improve our model: bug report
summarization and learning parameters. Bug Report
Summarization. In this paper, showed how the performance
of bug localization improves by focusing on condensed
information such as bug summaries, class names, or method
names.

However, still used exactly the same long bug descriptions
from bug reports. Such summarized bug descriptions may
further improve the performance of bug localization.

References

[1] G. Antoniol and Y.-G.Gueheneuc, ―Feature

identification: A novel approach and a case study,‖ in

Proc. 21st IEEE Int. Conf.
Softw.Maintenance,Washington, DC, USA, 2005, pp.
357–366.

[2] S. K. Bajracharya, J. Ossher, and C. V. Lopes,
―Leveraging usage similarity for effective retrieval of
examples in code repositories,‖in Proc. 18th ACM

SIGSOFT Int. Symp. Found. Softw. Eng., NewYork,
NY, USA, 2010 pp. 157–166.

[3] R. M. Bell, T. J. Ostrand, and E. J. Weyuker, ―Looking

for bugs in all the right places,‖ in Proc. Int. Symp.
Softw.Testing Anal., NewYork, NY, USA, 2006, pp.
61–72.

[4] T. J. Biggerstaff, B. G. Mitbander, and D. Webster,
―The concept assignment problem in program

understanding,‖ in Proc. 15th Int.Conf. Softw. Eng., Los

Alamitos, CA, USA, 1993, pp. 482–498.
[5] D. Binkley and D. Lawrie, ―Learning to rank improves

IR in SE,‖in Proc. IEEE Int. Conf. Softw. Maintenance

Evol., Washington, DC,USA, 2014, pp. 441–445.
[6] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker,

―Mining source code to automatically split identifiers
for software analysis,‖in Proc. 6th IEEE Int. Working

Conf. Mining Softw. Repositories,Washington, DC,
USA, 2009, pp. 71–80.

[7] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic,
―An information retrieval approach to concept location

in source code,‖ in Proc. 11th Working Conf. Reverse

Eng., Washington, DC, USA, 2004,pp. 214–223.
[8] B. Dit, M. Revelle, and D. Poshyvanyk, ―Integrating

information retrieval, execution and link analysis
algorithms to improve feature location in software,‖

Empirical Softw. Eng., vol.18, no. 2,pp. 277–309, 2013.
[9] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk,

―Feature location in source code: A taxonomy and

survey,‖ J. Softw.: Evol.Process, vol. 25, no. 1, pp. 53–

95, 2013.
[10] T. Dasgupta, M. Grechanik, E. Moritz, B. Dit, and D.

Poshyvanyk,―Enhancing software traceability by

automatically expanding corpora with relevant
documentation,‖ in Proc.IEEE Int. Conf. Softw.

Maintenance, Washington, DC, USA,2013, pp. 320–

329.
[11] H. Cleve and A. Zeller, ―Locating causes of program

failures,‖ in Proc. 27th Int. Conf. Softw. Eng., New

York, NY, USA, 2005,pp. 342–351.

Paper ID: ART20162935 921

