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Abstract: Once the bug occurred, it is a difficult process to localize the bug. It is taking the long time for placing the bug. So the 
tedious process of placing the bugs taking more time. Sometimes this time taken is more than fixing the bugs.A tool for ranking all the 
source files of a project with respect to how likely to contain the cause of the bug world enable developers to narrow down their search 
and potentially could lead to a substantial increase in productivity. Adaptive Rank SVM approach that leverages domain knowledge 
through functional decompositions of source code files into methods, API descriptions of library components used in the code, the bug-
fixing history, and the code changes history. Given a bug report, the ranking score of each source file is computed as a weighted 
combination of an array of features encoding domain knowledge, where the weights are trained automatically on previously solved bug 
reports using Learning-to-rank Technique. 
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1. Introduction

A software bug or defect is a coding mistake that may cause 
an unintended or unexpected behavior of the software 
component. Upon discovering an abnormal behavior of the 
software project, a developer or a user will report it in a 
document, called a bug report or issue report. A bug report 
provides information that could help in fixing a bug, with the 
overall aim of improving the software quality. A large 
number of bug reports could be opened during the 
development life-cycle of a software product. 

Software errors cost the U.S. industry 60 billion dollars a 
year according to a study conducted by the National Institute 
of Standards and Technology . One contributing factor to the 
high number of errors is the limitation of resources for 
quality assurance (QA). Such resources are always limited 
by time, e.g., the deadlines that development teams face, and 
by cost, e.g., not enough people are available for QA. When 
managers want to spend resources most effectively, they 
would typically allocate them on the parts where they expect 
most defects or at least the most severe ones. 

Dynamic bug localization techniques suffer from the 
drawback that they are based on the availability of two 
control flows — the passing control flow and the failing 
control flow. This may not be satisfied in real-world 
scenarios. The static methods, on the other hand, are usually 
customized to detect irregularities in a particular 
programming language following a particular coding 
convention, which makes them rather restrictive in scope. 

If the bug report is constructed as a query and the source 
code files in the software repository are viewed as a 
collection of documents, then the problem of finding source 
files that are relevant for a given bug report can be modeled 
as a standard task in information retrieval (IR). As propose 
to approach, it as a ranking problem, in which the source 
files (documents) are ranked with respect to their relevance 
to a given bug report (query). In this context, relevance is 

equated with the likelihood that a particular source file 
contains the cause of the bug described in the bug report. 

The ranking function is defined as a weighted combination 
of features, where the features draw heavily on knowledge 
specific to the software engineering domain in order to 
measure relevant relationships between the bug report and 
the source code file. While a bug report may share textual 
tokens with its relevant source files, in general there is a 
significant inherent mismatch between the natural language 
employed in the bug report and the programming language 
used in the code. 

Ranking methods that are based on simple lexical matching 
scores have sub optimal performance, in part due to lexical 
mismatches between natural language statements in bug 
reports and technical terms in software systems. Our system 
contains features that bridge the corresponding lexical gap 
by using project specific API documentation to connect 
natural language terms in the bug report with programming 
language constructs in the code. 

1.1 Learning to rank 

Bug reporting is using the Learning to Rank application 
which is called as Machine Learned Ranking(MLR). It is the 
application of Machine learning which is used in Ranking 
models for Information RetrivalSystem(IR).  

The Ranking Model purpose is to rank that is produce a 
permutation of items in new, unknown list in a way which is 
―Similar‖ to ranking in the training data in some sense.  

Learning to Ranking Algorithms mainly used for IR System 
but also in some other area also. 

Learning to rank has emerged as an active and growing area 
of research both in information retrieval (IR) and machine 
learning (ML). The goal of learning to rank is to 
automatically learn a ranking model from training data, such 
that the model can sort objects (e.g., documents) according 
to their degrees of relevance, preference, or importance as 
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defined in a specific application. Many IR problems are by 
nature ranking problems, and many IR technologies can be 
potentially enhanced by using learning to rank techniques. 
  
1.2 Application 

Ranking is a central part of many information retrieval
problems, such as document retrieval, collaborative filtering,
sentiment analysis, and online advertising. A possible 
architecture of a machine-learned search engine is shown in 
the figure 1 to the right. 

Figure 1: Machine-Learned Ranking Search Engine 

Training data is used by a learning algorithm to produce a 
ranking model which computes the relevance of documents 
for actual queries. Usually users expect a search query to 
complete in a very few minutes, which makes it impossible 
to complex ranking model on each document in the corpus, 
So two-Phase scheme is used.

First phase a small number of potentially relevant documents 
are identified using simpler retrieval models which is used 
for fast query evaluation such as Vector Space Model, 
Boolean Model weighted AND and BM25.This phase is 
called as Top-document Retrieval method.

In Second Phase, a more accurate but computationally 
expensive Machine-Learned model is used to re-rank these 
documents.

Information Retrieval Quality  
Information retrieval quality is usually evaluated by the 
following three measurements: 
1) Precision 
2) Recall 
3) Average Precision 
For a specific query to a database, let be the set of relevant 
information elements in the database and be the set of the 
retrieved information elements. 

1.3 Approaches in Learning to Rank

A. Point wise approach 
In this case it is assumed that each query-document pair in 
the training data has a numerical or ordinal score. Then 
learning-to-rank problem can be approximated by a 
regression problem given a single query-document pair, 
predict its score. 

A number of existing supervised machine learning 
algorithms can be readily used for this purpose. Ordinal 
regression and classification algorithms can also be used in 
point wise approach when they are used to predict score of a 
single query-document pair, and it takes a small, finite 
number of values. 

B. Pair wise approach 
In this case learning-to-rank problem is approximated by a 
classification problem  learning a binary classifier that can 
tell which document is better in a given pair of documents. 
The goal is to minimize average number of inversions in 
ranking. Refer to the above technique as pair wise preference 
ranking or round robin ranking. It is a straight-forward 
generalization of pair wise or one-against-one classification, 
aka round robin learning, which solves multi-class problems 
by learning a separate theory for each pair of classes.  

In previous work, Furnkranz (2002) showed that, for rule 
learning algorithms, this technique is preferable to the more 
commonly used one-against-all classification method, which 
learns one theory for each class, using the examples of this 
class as positive examples and all others as negative 
examples. Round robin has also been successfully used in 
other fields, in particular in the area of Support Vector 
Machines(SVM) (Hsu and Lin, 2002, and references therein. 
Furnkranz (2002) for a brief survey of related work on pair 
wise classification. 

More importantly, however, Furnkranz (2002) showed that, 
despite its complexity being quadratic in the number of 
classes, the algorithm is no slower than the conventional 
one-against-all technique.  

C. The pair wise transform 
As proved in (Herbrich 1999), if consider linear ranking 
functions, the ranking problem can be transformed into a 
two-class classification problem. For this form the difference 
of all comparable elements such that our data is transformed 
into (x′k,y′k)=(xi−xj,sign(yi−yj)) for all comparable pairs. 
This way transformed our ranking problem into a two-class 
classification problem.  

The following plot shows this transformed dataset, and color 
reflects the difference in labels, and our task is to separate 
positive samples from negative ones. The hyperplane {x^T 
w = 0} separates these two classes. 

Figure 2: Transformed Dataset 

As see in the above figure 2, this classification is separable. 
This will not always be the case, however, in our training set 
there are no order inversions, thus the respective 
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classification problem is separable and it will now finally 
train a Support Vector Machine (SVM) model on the 
transformed data. 

Figure 3: Trained With SvmOn Transformed Dataset 

This model is known as RankSVM. will then plot the 
training data together with the estimated coefficient w^ by 
RankSVM. This Trained SVM Transformed Dataset shown 
in the below figure 3.

1.4 Ranking SVM

A Ranking SVM is a variant of the support vector machine
algorithm, which is used to solve certain ranking problems 
(via learning to rank). The Ranking SVM algorithm is a 
learning retrieval function that employs pair-wise ranking 
methods to adaptively sort results based on how 'relevant' 
they are for a specific query. The Ranking SVM function 
uses a mapping function to describe the match between a 
search query and the features of each of the possible results. 
This mapping function projects each data pair (such as a 
search query and clicked web-page, for example) onto a 
feature space. These features are combined with the 
corresponding click-through data (which can act as a proxy 
for how relevant a page is for a specific query) and can then 
be used as the training data for the Ranking SVM algorithm. 
Generally, Ranking SVM includes three steps in the training 
period: 
1) It maps the similarities between queries and the clicked 

pages onto a certain feature space. 
2) It calculates the distances between any two of the vectors 

obtained in step 1. 
3) It forms an optimization problem which is similar to a 

standard SVM classification and solves this problem with 
the regular SVM solver. 

1.5 Building the Benchmarks 

This is the dataset that was used to evaluate the learning-to-
rank approach. The dataset contains bug reports and the 
corresponding commit history for six open source Java 
projects: AspectJ, Birt, Eclipse Platform UI, JDT, SWT, and 
Tomcat.

For each of the subject systems, as created a benchmark to 
evaluate the impact analysis techniques. The benchmark 
consists of a set of change requests that has the following 
information for each change request: a natural language 

query (change request summary) and a gold set of methods 
that were modified to address the change request. 

The benchmark was established by a human investigation of 
the change requests (done by one of the authors), source 
code, and their historical changes recorded in version-control 
repositories. Subversion (SVN) repository commit logs were 
used to aid this process. For example, keywords such as Bug 
Id in the commit messages/logs were used as starting points 
to examine if the commits were in fact associated with the 
change request in the issue tracking system that was 
indicated with these keywords. 

2. Literature Survey

A. Looking For Bugs in All the Right Places 
The continue investigating the use of a negative binomial 
regression model to predict which files in a large industrial 
software system are most likely to contain many faults in the 
next release. A new empirical study is described whose 
subject is an automated voice response system. Not only is 
this system’s functionality substantially different from that 

of the earlier systems studied (an inventory system and a 
service provisioning system), it also uses a significantly 
different software development process. Instead of having 
regularly scheduled releases as both of the earlier systems 
did, this system has what are referred to as ―Continuous 

Releases‖.

These predictions were based on file characteristics that 
could be objectively assessed, including the size of the file in 
terms of the number of lines of code (LOC), whether this 
was the first release in which the file appeared, whether files 
that occurred in earlier releases had been changed or 
remained unchanged from the previous release, how many 
previous releases the file occurred in, how many faults were 
detected in the file during the previous release, and the 
programming language in which the file was written.  

The model is constructed using logistic regression, and does
not predict which parts of the code are most likely to contain 
faults. Instead it predicts either failure or non failure for a 
given maintenance request. The model, implemented as a 
web-based tool available to project management, is used to 
help schedule the implementation of a given maintenance 
request, and to determine the level of testing resources to 
apply to validate the implementation.  

The paper presents the regression formulas used to create the 
prediction model and describes the use of the tool in a 
software maintenance environment, but does not report a 
success rate for the model’s predictions Graves et al. (2014) 

performed a study to determine characteristics of modules 
that are associated with faults, and constructed and evaluated 
several models for predicting the number of faults that 
would appear in a future version of the modules. Their study 
used the fault history of a large telecommunications system 
containing approximately 1.5 million LOC, organized into 
80 modules, containing a total of about 2500 files. The 
prediction models were used to make fault predictions for a 
single two year time interval, based on the system’s history 

for the preceding two years. They found that module size 
was a poor predictor of fault likelihood, while the most 
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accurate predictors included combinations of the module’s 

age, the number of changes made, and the ages of the 
changes. The authors also described the application of their 
models to a one year interval in the middle of the original 
two year interval and found that certain parameter values 
differed by an order of magnitude between the two time 
periods. Our results in and in the present paper partly agree 
and partly conflict with. File age and previous changes were 
positive indicators of fault-proneness in our studies as well 
as that of, but in contrast to, have consistently found file size 
to be a strong predictor of fault-proneness. 

3. Methodology And Implementation

A. Existing System 
In learning to rank a number of categories are given and a 
total order is assumed to exist over the categories. Labeled 
instances are provided. Each instance is represented by a 
feature vector, and each label denotes a rank. Existing 
methods fall into two categories. They are referred to in this 
paper as ―point-wise training‖ and ―pair-wise training‖. In 

point-wise training, each instance (and its rank) is used as an 
independent training example. The goal of learning is to 
correctly map instances into intervals. 

A tool for ranking all the source files of a project with 
respect to how likely they are to contain the cause of the bug 
world enable developers to narrow down their search and 
potentially could lead to a substantial increase in 
productivity. Adaptive ranking approach that leverages 
domain knowledge through functional decompositions of 
source code files into methods, API descriptions of library 
components used in the code, the bug fixing history, and the 
code change history.  

Given a bug report, the ranking score of each source file is 
computed as a weighted combination of an array of features 
encoding domain knowledge, where the weights are trained 
automatically on previously solved bug reports using a 
learning –to-rank technique. 

B. Vector Space Representation 
If  suppose  regard the bug report as a query and the source 
code file as a text document, then can employ the classic 
Vector Space Model(VSM) for ranking, a standard model 
used in information retrieval. In this model, both the query 
and the document are represented as vectors of term weights.  

Given an arbitrary document d(a bug report or a source code 
file), compute the term weights wt,d for each term t in the 
vocabulary based on the classical tf.idf weighting scheme in 
which the term frequency factors are normalized. 

The term frequency factor tf (t,d) represents the number of 
occurrences of term t in document d, whereas the document 
frequency factor dft  represents the number of documents in 
the repository that contains term t. In VSM, a bug report use 
both its summary and description to create the VSM 
representation. For a source file, use its whole content-code 
and comments. To tokenize an input document, first split the 
text into a bag of words using white space.  

Then remove punctuation, numbers and standard IR stop 
words such as conjunctions or determiners.  In general, most 
of the text in a bug report is expressed in natural language 
(eg. English), whereas most of the content of a source code 
file is expressed  in a programming language (eg.java). Since 
the inner product used in the cosine similarity function has 
non-zero terms only for tokens that are in common between 
the bug report and the source file, this implies that the 
surface lexical similarity feature described  1) the source
code has expensive, comprehensive comments or 2) the bug 
report includes snippets of code or programming language 
constructs such as names of classes or methods. 

For each method in a source file, extract a set  of class and 
interface names from the explicit type declarations of all 
local variables. Using the project API specification, the 
textual descriptions of these classes and interfaces, including 
the descriptions of all their direct or indirect super classes or 
super interfaces. 

For each method m create a document m.api by 
concatenating the corresponding API descriptions. Finally, 
take the API specifications of all methods in the source file s 
and concatenate them into an overall document. 

While a bug report may share textual tokens with its relevant 
source files, in general there is a significant inherent 
mismatch between the natural  language employed in the 
bug report and the programming language used in the code.  

Ranking methods that are based on simple lexical matching 
scores have suboptimal performance, in part due to lexical 
mismatches between natural and programming language 
statements in bug reports and technical terms in software 
systems.  

The resulting ranking function is a linear combination of 
features, whose weights are automatically trained on 
previously solved a bug reports  using a learning-to-ranking  
techniques.  

To avoid contaminating the training data with future bug-
fixing information from previous reports, created fine-
grained benchmarks by checking out the before –fix versions 
of the project for every bug report. 

Drawbacks of Vector space Model 
1) Weighting is intuitive but not very formal.
2) The order in which the terms appear in the document is 

lost in the vector space representation.

C. Proposed System 
Ranking SVM is a typical method of learning to rank. Then 
point out that there are two factors one must consider when 
applying Ranking SVM, in general a ―learning to rank‖ 

method, to bug mapping. First, correctly ranking bugs on the 
top of the result list is crucial for an Information Retrieval 
system. One must conduct training in a way that such ranked 
results are accurate. Second, the number of relevant bugs can 
vary from query to query. One must avoid training a model 
biased toward queries with a large number of relevant bugs. 
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D. Metrics: Support Vector Machine (SVM) 
Representation 
Support Vector Machine (SVM) is a classification technique 
based on statistical learning theory. A support vector 
machine constructs a hyper plane or set of  hyper planes in a 
high or infinite-dimensional space, which can be used for 
classification, regression, or other tasks. Intuitively, a good 
separation is achieved by the hyper plane that has the largest 
distance to the nearest training data point of any class (so-
called functional margin), since in general the larger the 
margin the lower the generalization error of the classifier.  

SVM is a machine-learning method, based on the principle 
of structural risk minimization, which performs well when 
applied to data outside the training set. They formulate MC 
detection as a supervised-learning problem and apply SVM 
to develop the detection algorithm.  

The proposed algorithm works as follows: 
1) Create a set of bug reports one from each repository in 
such a way that the similarity score between any pair or 
reports is smaller than the specified threshold. Label this 
repository as the set of negative examples. 

2) Create a set of bug reports in such a way that the 
similarity score between each one of them is greater than the 
specified threshold. This can be formed using a single master 
reports and all its duplicates. However, bug reports from 
other repositories are to be prioritized having nearly equal 
score as that of the master and duplicates. 

3) Name this set as training set and train an SVM based 
classifier on this set. 

4) Test the accuracy of SVM on any incoming bug report. 
Positive and negative examples are created using this bucket 
structure for training of the support vector machine, which is 
a linear classifier. Positive examples can be created using a 
master bug report and its duplicates, or two duplicates from 
the same bucket. Negative examples can be created using 
reports from distinct buckets. Thus the number of negative 
examples fairly exceeds the number of positive examples. 
Therefore, the negative examples should be chosen suitably 
to accommodate nearly all the distinct pairs. 

In above Point 4, results corresponding to Java bug 
repository are considered. Topic modeling is done using 
SVM to model the topics which are non-functional 
requirements of the software. Textual and categorical 
features are analyzed along with the semantic features to 
extend the feature set and to perform triaging more 
accurately. 

If  regard the bug report as a query and the source code file 
as a text document, then  can employ the Support Vector 
Machine (SVM) for ranking, a standard model used in 
information retrieval. In this model, both the query and the 
document are represented as vectors of term weights.  

Given an arbitrary document d (a bug report or a source code 
file),  compute the term weights w t,d for each term t in the 
vocabulary based on the classical tf.idf weighting scheme in 
which the term frequency factors are normalized, as follows: 

(i) Surface Lexical Similarity
For a bug report, use both its summary and description to 
create the SVM representation. For a source file, use its 
whole content – code and comments. To tokenize an input 
document, first split the text into a bag of words using white 
spaces. Then remove punctuation, numbers, and standard IR 
stop words such as conjunctions or determiners. 

Compound words such as ―WorkBench‖ are split into their 

components based on capital letters, although more 
sophisticated methods such as could have been used here 
too. The bag of words representation of the document is then 
augmented with the resulting tokens – ―Work‖ and ―Bench‖ 

in this example – while also keeping the original word as a 
token. Finally, all words are reduced to their stem using the 
Porter stemmer, as implemented in the NLTK 1 package.  

This process will reduce derivationally related words such as 
―programming‖ and ―programs‖ to the same stem 

―program‖, which is known to have a positive impact on the 

recall performance of the final system. 

E. Class Name Similarity 
A bug report may directly mention a class name in the 
summary, which provides a useful signal that the 
corresponding source file implementing that class may be 
relevant for the bug report. Our hypothesis is that the signal 
becomes stronger when the class name is longer and thus 
more specific 

F. Collaborative Filtering Score 
It has been observed in that a file that has been fixed before 
may be responsible for similar bugs. For example, these 
three reports describe similar defects and therefore share 
many keywords with report 378535 Consequently, it is not 
surprising that source file StackRenderer.java. 

G. File Revision History 
The source code change history provides information that 
can help predict fault-prone files. For example, a source 
code file that was fixed very recently is more likely to still 
contain bugs than a file that was last fixed long time in the 
past, or never fixed. 

H. Structural Information Retrieval
By computing similarities with each method and then 
maximizing across all methods in a source file, feature φ 1 

alleviates the problem of the small similarities that result for 
localized bugs, when using a straightforward cosine 
similarity formula in which the normalization factor is 
correlated with the length of the file.  

A related problem may occur when the bug report is very 
similar with a particular type of content from a source file 
(e.g. comments, method names, or class names) and 
dissimilar with everything else, yet the cosine similarity with 
the entire file is very small due to its large size. To model 
such cases, follow the structural IR approach of that all., in 
which a source code file s is parsed into four document 
fields: all class names in s.class, all methods names in 
s.method, all variable names in s.variable, and all comments 
in s.comment. 
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For example, a field such as s.method is equivalent with a 
document that contains all the method names defined in the 
source code file s. The summary and the description of a bug 
report r are used to create two query fields: r.summary and 
r.description, respectively. 

I. The File Dependency Graph 
Expect complex code to be more prone to bugs than simple 
code. Thus, the complexity of the source code contained in a 
file can provide another useful signal with respect to the 
likelihood that the file contains bugs. An accurate measure 
of code complexity would require a good representation of 
the semantics of the code.  
Since a comprehensive semantic analysis of code is currently 
not feasible,  resort to a characterization of code complexity 
based on syntactic features. For example, a proxy measure 
for the complexity of a source code file can be defined. 

J. Feature Scaling 
Features with widely different ranges of values are 
detrimental in machine learning models. Feature scaling 
helps bring all features to the same scale so that they become 
comparable with each other. 

K.  Implementation 
The implementation is performed for the given technique 
using Java as the programming language and MySql as the 
local database to store the processed information. The 
implementation is performed in the five stages.  
1) Retrieving and Parsing the Software Bugs: In the first 

step the software bugs are retrieved at local system and 
parsing using tokenization for extracting the bug 
attributes and their corresponding values.  

2) Creating local database for selected attributes: The 
extracted attributes are filtered for analysis and saved in 
the local database.  

3) Eliminating the possible spams: In this stage the textual 
bug attributes are analyzed for possible spam. The 
information which is likely to be spam is ignored and 
never used for calculating the ranking of team members.  

4) Generating Metadata for Ranking: Once the possible 
spams are eliminated the next step is to prepare the 
metadata for ranking. This includes counting the number 
of team members; number of bugs for each member, 
number of comments for each member etc. is performed 
in this stage.  

5) Implementing the ranking algorithm: With the help of 
metadata generated in previous stage and using various 
user  implemented in java. 

4. Results and Discussion

The first step in our adapted system is to rank all the source 
code files for every bug report in the dataset. The ranking 
performance on these 45 Eclipse bug reports is lower than 
the performance, which was obtained on the 6,495 Eclipse 
bug reports from our fine-grained benchmark dataset.  

The main reason for this difference is that the 45 bug reports 
are from 2004 and therefore there is not much historical 
information that can be used for computing features that are 
based on collaborative filtering or the file revision history. In 

particular, there is less opportunity for exploiting duplicated 
bug reports. 

Use a dataset of 157 bugs from 4 popular software projects 
to evaluate our approach against the baselines. These 
projects are AspectJ, Ant, Lucene, and Rhino. All four 
projects are medium-large scale and implemented in Java. 
AspectJ, Ant, and Lucene contain more than 300 kLOC, 
while Rhino contains almost 100 kLOC. Table 3 describes 
detailed information of the four projects in our study. 

The 41 AspectJ bugs are from the iBugs dataset which were 
collected by Dallmeier and Zimmermann . Each bug in the 
iBugs dataset comes with the code before the x (pre- x
version), the code after the x (post- x version), and a set of 
test cases. The iBugs dataset contains more than 41 AspectJ 
bugs but not all of them come with failing test cases. Test 
cases provided in the iBugs dataset are obtained from the 
various versions of the regression test suite that comes with 
AspectJ.  

The remaining 116 bugs from Ant, Lucene, and Rhino are 
collected by ourselves following the procedure used by 
Dallmeier and Zimmermann. For each bug,  collected the 
pre- x version, post- x version, a set of successful test cases, 
and at least one failing test case. 

For example the number of classes and function are calling 
from the main program then the calling of methods and 
programs are showing the results as follows. 

Figure 4: Calling Main Program Example 

Here some of the sample programs are calling from the main 
program. From the main program what are all the sub 
programs are calling and what are all the sub programs are 
interlinked with the Main program all the details are 
showing in the following Parser Dependency Graph figure 5.
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Figure 5: Parser Dependency Graph 

From this figure 5, the dependency of the sub programs are 
visualized. Once the program ready to execute then, the 
Benchmark Dataset loaded for the comparision of the Bug 
similarity Calculation. This will lead to the program to 
compare with the expected bugs which is available in the 
Original Data View as shown in the figure 6. So that Bug Id 
and Description will shown clearly in the output for the 
resultant window. After the similarity calculation the time 
comparion will happen. 

Figure 6: Original Data View 

Figure 7: Time Comparision –Graph view 

Figure 8: Time Comparision-Result View 

From the figure 7 shows the Time Comparision Graph View. 
From this figure 8, what is the Prediction Time and Bug 
Similarity Time,Compile Time and The Term Frequency vs 
Document Frequency Time all the details are showing in 
milliseconds. 

Figure 9: Output Image

The above figure 9 shows the expected Bug similarity Result 
for the  Addition functions and this will happen for all the 
sub programs what are all the programs are interlinked with 
the main programs and the same process is happening for all 
the classes and methods. 

A failing test case is often included as an attachment to a bug 
report or committed along with the x in the post- x version. 
When a developer receives a bug report, he/she needs to 
replicate the error described in the report. In this process, he 
is creating a failing test case. Unfortunately, not all test cases 
are documented and saved in the version control systems. 

5. Conclusion and Future Enhancement

Locating bugs is important, difficult, and expensive, 
particularly for large-scale software projects. To address 
this, natural language information retrieval (IR) techniques 
are increasingly being used to suggest potential faulty source 
files given bug reports. While these techniques are very 
scalable, in practice their effectiveness remains low in 
accurately localizing bugs to a small number of files. 
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Our key insight is that structured IR-based on code 
constructs, such as class and method names, enables more 
accurate bug localization. Our Project embodies this insight, 
builds on an open source IR toolkit, requires only the source 
code and bug reports, and takes advantage of bug similarity 
data if available. When bug similarity data is not used, the 
off-the-shelf IR took it (unmodified) already exceeds state-
of-the-art tool, Bug Locator’s accuracy. 

In our future research, would like to explore the following 
areas to further improve our model: bug report 
summarization and learning parameters. Bug Report 
Summarization. In this paper, showed how the performance 
of bug localization improves by focusing on condensed 
information such as bug summaries, class names, or method 
names. 

However, still used exactly the same long bug descriptions 
from bug reports. Such summarized bug descriptions may 
further improve the performance of bug localization. 
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