Developing the Laboratory Inquiry Activity Based Lecturing Guidebook for the Basic Analytical Chemistry Material

Sri Wardani¹, Sri Susilogati Sumarti²

¹,²Chemistry Department of Maths and Natural Science of Semarang State University, Sekaran Campus Gunungpati Semarang 50229, Indonesia

Abstract: This study aims to generate a guidebook of basic analytical chemistry lecture using laboratory inquiry-based activity that can increase the Multiple Intelligence of chemistry teacher candidates. Multiple Intelligence which should be developed relating to the lecture of basic analytical chemistry laboratory improve logical mathematical intelligence, and interpersonal, intrapersonal intelligences. This study uses the design of the 4D model development (define, design, develop, and disseminate), of Thiagarajan et al, (1974). The basic analytical chemistry lecturing guidebook using laboratory inquiry-based activity developed was validated by two lecturers and three students, with the validator average 3.43-3.73 result with valid criteria. After obtaining a validated model, it then was used by 12 students of the 6th semester, with the result that there was little revision on the work instructions, while the contents are understandable enough. Therefore, it is considered as appropriate.

Keywords: laboratory inquiry-based activity, guidebook, Multiple Intelligence, basic analytical chemistry, chemistry teacher candidates.

1. Introduction

Laboratory activities is one of the approaches in learning chemistry that can improve thinking skills, develop metacognition, work in team and improve communication (Cacciatore, 2009), According Rustaman (2007), during the learning process of science, it should be done through the exploration phase of its experience, searching for journals supporting and developing, designing work step, and being continued with the observation of primary data involving basic capabilities activity inquiry lab, up to finding conclusions into knowledge new. Laboratory activities will achieve its objectives if it is implemented systematically through the stages of inquiry.

Activities of inquiry are started with the search for information from various sources. In this step, the intelligence is associated with the effort to be able to design experiments properly, including developing intrapersonal intelligence/Multiple Intelligence. According to Wardani (2013) phases of inquiry on laboratory experiments greatly develop students’ inter-intrapersonal intelligence (Multiple Intelligence). In addition, Lazear (2004), Cacciatore &sevian (2009) also stated that the stage of experiments with inquiry in the laboratory can develop complex thinking, and interpersonal intelligence (Multiple Intelligence).

According to NCR (2005), experiment using experiment guidebook has the tendency of being verificative, therefore it is no longer effective for scientific learning. This opinion is supported with the result of the field study conducted during the odd semester in 2012-2013 for basic analytical chemistry experiment which shows the result of concept understanding of students at 80%; as their scores were under 50 (100 points), while 20% students got scores range between 50-79. Wardani (2013) stated the lack of the students’ ability in explaining what it does and the symptoms observed is due to the laboratory activity which carried out today is still verificative. Problems related toward the conditions of less useful chemistry lab including analytical chemistry was also expressed by GianpieraAdami (2006); Amarasiriwardena (2007); Kipnis&Hofstein, (2007).

Based on the description above, it is deemed necessary for the development of basic analytical chemistry lecture guidebooks inquiry-based laboratory activities which can develop Multiple Intelligence of chemistry teacher candidate. The formulated research problem is how the validity and appropriateness of the laboratory inquiry activity based lecturing guidebook which can develop the Multiple Intelligence of chemistry teacher candidate.

2. Method

The stages in this study follow the model of Borg and Gall (1983), which has been simplified; define, design, develop, and disseminate. The stages of define and design of the lecturing guidebook were validated by the experts. In order to see the appropriateness of the guidebook, the researchers conducted a limited testing. This research was conducted in Chemistry Education Study Program by considering the third semester students of chemistry education which join courses practicum of basic analytical chemistry. The test was limited to 12 semester four students.

3. Result and Discussion

This research yields aguidebook of basic analytical chemistry lecture using laboratory inquiry-based activity. As for sections in the guidebook are problem identification, hypothesis formulation, laboratory equipment and apparatus usage, the guidance of doing experiment, data presentation, discussion, and drawing the conclusion. The book consists of 38 pages which display qualitative and quantitative analysis of chemistry material. It is composed of seven chapters starting from exercise in identifying cations and anions up to the explanation about gravimetri.
In every activity in the guidebook, students are guided to have the learning model using inquiry-based model. Initially students are guided to read articles that can answer why it is necessary to identify the cations-anions (Chapter I), then students are directed to perform the separation of cations in the class (Chapter II), by making the experimental design itself and keep following the steps of inquiry in the guidebook. There are seven chapters in the guidebook of basic analytical chemistry lecture, representing each activity on a qualitative and quantitative analysis. After reading the direction of questions, students are expected to identify problems and create hypotheses or provisional estimates of the issues mentioned in the "Problems" are provided in the guidebook. Then, students are guided to read the material in the guide books as a source of hypothesis testing that has been compiled. Furthermore, the students are led to prove the truth of the hypothesis by writing explanations and conclusions of these activities in the "Let's Experiment". The design of the guidebook is shown in Table 1.

3.1 The Validation Result of the Lecturing Guidebook

The final design of the guidebook of basic analytical chemistry lecture using laboratory inquiry-based activity was then discussed with the experts to get some suggestions and corrections. The validators gave assessment and suggestions regarding the lecturing models such as syllabus, lesson plan, pretest-posttest questions, and the guidebook of basic analytical chemistry lecture using laboratory inquiry-based activity, according to the assessment rubric validated by the experts previously. There are two kinds of assessments, they are first: the assessment according to appropriateness of content, presentation, and language; and second: the assessment of readability by the students. The result of the validation which is shown in Table 2 shows the average result of 3.43-3.73 which belong to the valid criteria with some suggestions and recommendations.

| Table 1: The validation result of the guidebook of basic analytical chemistry lecture using laboratory inquiry-based activity |
| --- | --- | --- | --- | --- |
| **Section** | **Design** | **KIMIA ANALITIK DASAR** |
| | | KUALITATIF | KUANTITATIF |
| Conceptual Map |
| The Beginning Section of the Chapter or Activity |
| Indikator Praklirum Kimia Analitik Dasar |
| 1. Dapat menjelaskan prinsip-prinsip dasar dalam analisis kualitatif. Identifikasi kation dan anion dengan benar dan percaya diri dan dapat bekerja mandiri serta bertindak demokratis dan inovatif dalam menganalisis secara kualitatif. |
| 2. Dapat menjelaskan prinsip-prinsip dasar dalam analisis kuantitatif. |
| 3. Dapat menjelaskan prinsip-prinsip dasar dalam analisis kualitatif. Identifikasi kation dan anion dengan benar dan percaya diri dan dapat bekerja mandiri serta bertindak demokratis dan inovatif dalam menganalisis secara kualitatif. |
| 4. Dapat menjelaskan prinsip-prinsip identifikasi anion dengan benar dan percaya diri dan dapat bekerja mandiri serta bertindak demokratis dan inovatif dalam menganalisis secara kualitatif. |
Section

Problem Identification Stage

Hypothesis Formulation Stage

1. TAMPILAN KARBONAT-KARBONAT

MENENTUAN KADAR CAMPURAN KARBONAT-BIKARBONAT

1. TUJUAN

Mengukur kadar campuran karbonat-bikarbonat.

2. LANDASAN TEORI

Ion karbonat dapat ditentukan dengan cara titrasi dua langkah yaitu dengan menggunakan dua indikator:

- $\text{CO}_3^{2-} + \text{H}_2\text{O}$
- $\text{HCO}_3^{-} + \text{H}_2\text{O}$ (Fenolfitalein)

Fenolfitalein bekerja sebagai indikator untuk titrasi tambahan pertama, dengan perubahan warna dari merah ke hijau. Metal orange bekerja sebagai indikator tambahan kedua dengan perubahan warna dari kuning menjadi jingga. Fenolfitalein dengan jangkauan pH 8,6 sampai 9,6 merupakan indikator yang cocok untuk titik akhir pertama, karena pH larutan NaHCO₃ berada di kisaran 8,6, metal orange dengan jangkauan pH 3,1-4,4 cocok untuk titik akhir kedua. Suatu larutan jadual CO₂ mampu meningkat pH kira-kira 3,9, ketika titik akhir tersebut tidak setuju pun membentuk perubahan yang sangat tajam.

MENGENALISI KOMPONEN SODA KUE DI PASARAN

Gambar 2: Roti dan minuman berkarbonasi di Pasar

Soda kue merupakan bahan pengembang pembuat roti donut, bolu kue, dan minuman berkarbonasi. Dalam soda kue (NaHCO₃) juga terdapat asam Na₂CO₃, nan bahkan digunakan untuk mengencer ayam yahwa yang terdapat pada sampel yang akan dimakan.

Pertanyaan

1. Apa langkah awal yang digunakan untuk menentukan kandungan NaHCO₃ dan Na₂CO₃?

2. Apa usaha lakukan menggoda yang digunakan?

3. Indikator apa yang digunakan untuk menandai titik akhir?

4. Bagaimana cara menentukan kandungan NaHCO₃ dan Na₂CO₃ yang demikian yang terdapat dalam roti donut?

Mari bereksperimen

1. Tentukan numeri mikrolij yang berbeda dengan penarik panas.
 a. Zat apakah yang dapat digunakan untuk menembak cold dan P0?5
 b. ...
 c. ...
 d. ...

2. Buat hipotesis penarik panas.

3. Alat dan bahan apa saja yang diperlukan?

Volume 5 Issue 11, November 2016

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY
3.2 The Validation Result of the Lecturing Guidebook

The final design of the guidebook of basic analytical chemistry lecture using laboratory inquiry-based activity was then discussed with the experts to get some suggestions and corrections. The validators gave assessment and suggestions regarding the lecturing models such as syllabus, lesson plan, pretest-
which belong to the valid criteria with some suggestions and recommendations.

Table 2: The validation result of the guidebook of basic analytical chemistry lecture using laboratory inquiry-based activity

| Validator | Total | Average | | | | |
|-------------|-------|---------|---|---|---|
| | Appropriateness of Content | Presentation | Language | Appropriateness of Content | Presentation | Language |
| Student A | 11,40 | 14,43 | 17,83 | 3,80 | 3,61 | 3,57 |
| Student B | 10,80 | 13,98 | 16,00 | 3,60 | 3,49 | 3,20 |
| Student C | 10,90 | 14,81 | 16,50 | 3,63 | 3,70 | 3,30 |
| Lecturer A | 10,80 | 14,83 | 17,83 | 3,60 | 3,71 | 3,57 |
| Lecturer B | 12,00 | 13,64 | 17,50 | 4,00 | 3,41 | 3,50 |
| Average | 11,18 | 14,34 | 17,13 | 3,73 | 3,58 | 3,43 |

In the validation stage, there are some suggestions and recommendations from the validators. Those suggestions and recommendations are then used by the researchers to improve the guidebook in order to achieve the perfection of the guidebook of basic analytical chemistry lecture (Kimia Analitik Dasar (KAD)) using laboratory inquiry-based activity. The corrections are shown in Table 3.

Table 3: Suggestions and Corrections

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>The cover of the guidebook</td>
<td>The cover of the guidebook should use light colors and the arrangement of the book title should be corrected.</td>
<td>The background color of the book cover is changed and the book title is re-arranged.</td>
</tr>
<tr>
<td>The problems which are going</td>
<td>The problems which are going to be investigated should be more detailed.</td>
<td>The addition of cations and anions to be investigated.</td>
</tr>
<tr>
<td>to be investigated should be</td>
<td></td>
<td></td>
</tr>
<tr>
<td>more detailed.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The result after corrections from the validators is then tested for its readability to the sixth semester students who have accomplished the practicum of basic analytical chemistry (KAD) course. There are 12 students joining the readability test. The result of the readability test is mostly the correction of the problem statements which are less understood by the students. The corrections are done to the question number one and three since there were 6 of 12 students who did not answer the questions. Therefore, the researchers think that there should be the correction to the problem statement. The readability of the guidebook belongs to good, in which all of the semester sixth students are able to understand the content and the stages of laboratory inquiry activity model.
The guidebook of basic analytical chemistry lecturing laboratory inquiry-based activity which has been validated and assessed in terms of its readability, as well as corrected according to the suggestions from the experts, is then tested to see its appropriates and implementation. The test was initiated with a pretest of qualitative-quantitative material to the third semester students who join the basic analytical chemistry course. After the pretest, the students were given the guidebook of basic analytical chemistry lecturing laboratory inquiry-based activity, so that they can learn what experiments should be designed and what literature to be searched. In the next meeting, the students in each group had been ready with their designs to be discussed before doing the experiment. After the experiment, the students wrote the result report and discussed it classically.

The guidebook of basic analytical chemistry lecturing laboratory inquiry-based activity has been developed and used in every learning activity during the lecture. Percentage results obtained from this activity are that almost all the students can follow the instructions of the guide properly; therefore all groups can design experiments of the source journal that they are looking for.

The percentage of the application of the guidebook of experiment using laboratory inquiry-based activity shows that every section in the book both in the section of qualitative and quantitative analyses can be followed by students properly with the range of result as 84%-96%. The lowest rate of chapter application is shown in the alkalimetry section as the students did a mistake for misapply the sample of baking soda; it did not apply quite well therefore it is needed some instruction in choosing sample. The highest rate of percentage is achieved on acidimetry and permanganometry as there are quite sample options. It causes these two sections received better and optimum results in the experiment design.

The implementation of intrapersonal intelligence assessment has been done well since there has been the assessment rubric available. The assessment result of experimental report with five intrapersonal indicators showed the highest result on the metacognition indicator.Observation on the development of interpersonal intelligence was done by assessing the percentage of draft and experimental result report, that is the percentage to get the experimental design and reporting in accordance with the practicum guideline of laboratory inquiry-based activity. The presentation made to practice expressing opinions, respond to the opinion of friends, work in group, this activity is expected to explore and develop the interpersonal intelligence(Wardani,2013).

This result is consistent with the opinion of Kipnis (2007), Cacciatore (2009), and Wardani(2016), which states that the inquiry-based lab learning can improve student’s metacognition. Similar results also stated that the problem-based learning can improve students’ metacognition (Haryani, 2011). Similarly, the findings of Wardani (2014) that in solving complex problems required multiple intelligences including the use of metacognition.In addition, Wardani(2014), Zhang, (2002); Adami, (2006); AviHofstein, (2007)stated that study in a group can develop the skills of cooperation, skills of expressing opinion and communication skills in scientific argumentation. Neither the opinion of NRC, (2005); Aerospace, (2008); Cacciatore, (2009) that the laboratory inquiry-based learning can improve the ability to work together, the ability to communicate, skillful in asking questions and expressing their opinions (interpersonal intelligence).

4. Conclusion
The guidebook gets the validation result of 3.43- 3.73 with valid category, and the implementation percentage reaches 84%-96% with appropriate category.

References
metacognitive skills.

Author Profile

Sri Wardani is a doctor on Chemistry Education of graduate school–Indonesia University of Education. She is now a lecturer in State University of Semarang (UNNES)-Indonesia. Her recent research is in developing models of teaching chemistry, especially with practical inquiry and multiple intelligence.

Sri Susilogati Sumarti is a doctor on Chemistry Education of graduate school–State University of Semarang (UNNES)-Indonesia. She is now a lecturer in State University of Semarang (UNNES)-Indonesia.