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Abstract: At low lattice temperature  < 𝟐𝟎 𝐊  a theory of the average rate of energy loss of non-equilibrium electrons in a two 
dimensional electron gas (2DEG) formed in semiconductor inversion layer has been developed here when the electrons interact only 
with the intravalley acoustic mode lattice vibrations. The results obtained from the theory both under low and high temperature 
conditions are compared and the utility of the theory in studying the high field electron transport in 2DEG is discussed.
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1. Introduction 

With the advent of molecular beam epitaxy (MBE) and
metal organic chemical vapour deposition (MOCVD), the 
fabrication of sophisticated semiconducting device structures 
whose dimensions are of the order of the de Broglie 
wavelength of the electrons has been realized. In such 
structures, electrons are confined in an active layer to form a 
two dimensional electron gas (2DEG) and electron motion 
normal to the layer is quantized. The study of electrical 
transport in 2DEG has assimilated much importance both 
from basic physics as well as device application of 
mesoscopic system. Such studies provide the way for 
practical realization of metal-oxide-semiconductor field 
effect transistor (MOSFET) having high mobility, better high 
frequency response and subsequently of high-speed logic 
circuits. Because of the advanced Si technology most of the 
studies made so far on 2DEG are devoted to the Si-SiO2
system [1-12]. 

The transitions of a free carrier in surface layer are induced 
by different scattering sources and their relative importance 
is determined by the lattice temperature 𝑇𝐿  and free carrier 
concentration 𝑁𝑖 . At low temperatures the free carriers are 
dominantly scattered by the intravalley acoustic phonon and 
by impurity ions. The optical and intervalley phonon 
scattering can be important only at high temperatures when 
an appreciable number of corresponding phonons are excited 
or in the presence of a high electric field when the non-
equilibrium electrons can emit high energy phonons. This 
apart, the scattering due to surface roughness may also arise 
because of non-planarity of the semiconductor interface. Of 
all these, the electron-phonon scattering is an intrinsic 
process and the scattering involving intravalley acoustic 
phonons is the most important mechanism in controlling the 
electrical transport at low lattice temperatures   𝑇𝐿 < 20 K  
if the content of the impurity atoms in the system under 
study is relatively low [10]. It should be borne in mind that 
the possibility of obtaining the materials of higher and higher 
purity is not beyond the scope of the present day advanced 
semiconductor technology. Again at such low temperatures 
the electrons become hot in relatively weak fields of the 
order of only a few volts per centimeter. The electron 
transport under these conditions is limited by the acoustic 
scattering of the non-equilibrium carriers [13,14]. Thus the 

study of the problem of electrical transport in 
semiconductors particularly in 2DEG system at low lattice 
temperatures has become interesting.  

Useful results on the study of the transport in 2DEG at low 
lattice temperatures have already been reported [7-12]. The 
2DEG in GaAs has also been realized by Störmer et al. [15],
who employed a GaAs-GaxAl1-xAs heterostructure and 
observed Shubnikov-de Haas oscillations around 4.2 K and 
reported the mobility values at the same temperatures.  A 
theory of intravalley acoustic phonon scattering of the free 
carriers has been developed in 2DEG at low temperatures 
and the corresponding  scattering rates are used to obtain the 
zero- field mobility characteristics in Si inversion layers with 
the help of Monte Carlo simulation of velocity 
autocorrelation function [10].

In this article the rate of increase of intravalley acoustic 
phonon due to scattering of the non-equilibrium electrons 
with acoustic mode lattice vibrations in a 2DEG system has 
been calculated. The rate of increase of phonon is then used 
to find out the average rate of energy loss of non-equilibrium 
electrons due to the acoustic phonon scattering of the free 
electrons. Once we know the average rate of energy loss, we
may develop the carrier transport theory to find the high field 
electron mobility or field dependence of electron temperature 
in 2DEG formed in semiconducting materials.  The same 
theory has already been developed in bulk semiconductor 
with the help of traditional practice [13] when the phonon 
energy can indeed be neglected as well as under the 
condition of low temperature when the phonon energy 
cannot be neglected in comparison to the carrier energy [16]. 

2. Theory 

Under the application of electric field 𝐸 the electron gains 
energy at the rate 𝑒𝜇𝐸2, where 𝑒 is the electronic charge and 
𝜇 is the mobility of electrons. At low lattice temperature, a 
steady state may reach when the average rate of energy loss 
    𝑑𝜖

𝑑𝑡
  𝑎𝑐  of the non-equilibrium electron due to acoustic 

phonon scattering is equal to the rate of energy gain from the 
field. Thus 

𝑒𝜇𝐸2 =   
𝑑𝜖

𝑑𝑡
 𝑎𝑐 .                                  (1)
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Again if we know the rate of increase in acoustic phonon 
number  

𝜕𝑁 𝑞   

𝜕𝑡
  then we can calculate   𝑑𝜖

𝑑𝑡
 𝑎𝑐   using the equation 

[13] 
  𝑑𝜖

𝑑𝑡
 𝑎𝑐  = −

1

𝑁𝑖𝑠
 

q
ℏ𝑢𝑙𝑞  

𝜕𝑁 𝑞   

𝜕𝑡
 ,                 (2) 

where 𝑠 is the surface area, ħ is the Dirac constant, 𝑢𝑙  is the 
acoustic phonon velocity and 𝑞  is the phonon wave vector. 

2.1 Rate of Increase in Acoustic Phonon 

In 2DEG, we consider carrier transitions between two 
electronic states of wave vectors 𝑘  and 𝑘  + 𝑞 in the course 
of a collision accompanied with either emission or 
absorption of a phonon of wave vector 𝑞 , resulting an 
increase in the number of phonons 𝑁𝑞  . The rate of increase 
in the number of phonons can be written using the 
perturbation theory as [13]

 
𝜕𝑁𝑞  

𝜕𝑡
 =

2𝜋

ℏ
    𝑘  , 𝑁𝑞  + 1 𝐻𝑎𝑐

′  𝑘  + 𝑞 , 𝑁𝑞    
2

  

𝑘  

                    𝛿 𝜖𝑘  , 𝑁𝑞  + 1 − 𝜖𝑘  +𝑞  , 𝑁𝑞   𝑓0 𝑘  + 𝑞  

−    𝑘  + 𝑞 , 𝑁𝑞  − 1 𝐻𝑎𝑐
′  𝑘  , 𝑁𝑞    

2
           

              𝛿 𝜖𝑘  +𝑞  , 𝑁𝑞  − 1 − 𝜖𝑘  , 𝑁𝑞   𝑓0 𝑘    ,            (3)

where the square of the matrix element of the electron-lattice 
scattering is given by [6]

  𝑘  + 𝑞  𝐻𝑎𝑐
′  𝑘    

2
=  

ℰ𝑎
2ℏ𝑞2

2𝑠𝑑𝜌𝑣𝜔𝑞
  𝑁𝑞  +

1

2
+

1

2
𝛿𝑁𝑞   ,

where  𝛿𝑁𝑞  = +1 for emission,
𝛿𝑁𝑞  = −1 for absorption.

Here ℰ𝑎 is the effective deformation potential constant which 
assumes a value larger than that for the bulk material for 
higher-order subbands [6]. Vass et al [17] developed a theory 
to determine the surface deformation potential constant ℰ𝑎 in 
terms of a bulk value of the deformation potential ℰ1 and 
carrier concentration 𝑁𝑖 in cm−2 as

ℰ𝑎 = ℰ1 + 2.5 10−8 𝑁𝑖
2/3

 eV.            (4)

The parameter 𝑑 is the width of the layer of lattice atoms 
with which the electrons can interact, and 𝜌𝑣 is the mass 
density. The frequency of the lattice vibration
𝜔𝑞 = 𝑢𝑙𝑞. The hot electron distribution function 𝑓0 𝑘   is 
given by the Maxwell-Boltzmann distribution at an effective 
electron temperature 𝑇𝑒 as [13]

𝑓0 𝑘   =
𝑁𝑖

𝑁𝐶
2𝐷 𝑒−𝜖

𝑘   
/𝑘𝐵𝑇𝑒 .                      (5)

Here 𝑘𝐵 is the Boltzmann constant and 𝜖𝑘  is the energy of 
the electron which can be given for spherical constant energy 
surfaces as [6]  

𝜖𝑘  =
ℏ2𝑘2

2𝑚∥
∗   ,                                   (6)

where 𝑚∥
∗ is the effective mass of the electron parallel to the 

interface. The effective density of state 𝑁𝐶
2𝐷 in 2DEG can be 

given as[18]

𝑁𝐶
2𝐷 =

𝑚∥
∗

𝜋ℏ2
𝑘𝐵𝑇𝑒 . (7)

The summation over two-dimensional lattice wave vector 
𝑘  can be transformed into integral by the transformation [6]

 →

𝑘  

 𝑑𝜃  
𝑠

 2𝜋 2
𝑘𝑑𝑘                             (8)

Using the above transformation Eq.(3) may be written as 

 
𝜕𝑁𝑞  

𝜕𝑡
 =

ℰ𝑎
2𝑚∥

∗

2𝜋𝑑𝜌𝑣𝑢𝑙ℏ
2
 

 
 
 

 
 

 𝑁𝑞  + 1 𝑓0 𝑘  + 𝑞  𝑑𝑘

 1 −  
𝑞

2𝑘
 

2

 1 +
2𝑚∥

∗𝑢𝑙

ℏ𝑞
 

2

 

1/2
 

 

𝑘

    −  𝑁𝑞  𝑓0 𝑘   𝑑𝑘

 1 −  
𝑞

2𝑘
 

2

 1 − 
2𝑚∥

∗𝑢𝑙

ℏ𝑞
 

2

 

1/2

 
 
 

 
 

 .               9 

At low lattice temperature the electrons become hot and 
highly energetic under the application of even a relatively 
weak electric field and hence the phonon energy may be 
neglected in comparison to that of electron energy under 
such conditions. Thus the limits of integration over 𝑘   as 
ascertained from the energy and momentum balance 
equations may be taken to be 𝑞/2 and ∞. If 𝑓0(𝑘  + 𝑞 ) is 
expanded in a Taylor’s series around 𝑘    then one can obtain 
from Eq.(9), the rate of increase in the number of phonons as 

 
𝜕𝑁𝑞  

𝜕𝑡
 =

𝒜𝒶𝑐𝑁𝑖

 𝑇𝑛

 1 +  𝑁𝑞  + 1  
𝑥

𝑇𝑛
 𝑒−𝑎𝑥2

                 (10)

Here 

  𝒜𝒶𝑐 =
 𝜋ℰ𝑎

2

2ℏ𝑑𝜌𝑣𝑢𝑙
2  

𝜀𝑠

𝑘𝐵𝑇𝐿
 

1/2

, 

 𝜀𝑠 =
1

2
𝑚∥

∗𝑢𝑙
2, 𝑥 = ℏ𝑞𝑢𝑙/𝑘𝐵𝑇𝐿, 

𝑇𝑛 = 𝑇𝑒/𝑇𝐿 , 𝑎 =
𝑘𝐵𝑇𝐿

16𝜀𝑠𝑇𝑛

. 

2.2 Average Rate of Energy Loss of an Electron

Once the rate of increase in the number of phonons is known 
then we may calculate the average rate of energy loss of a 
carrier to acoustic modes in 2DEG using the Eq.(2). Again 
the summation of Eq.(2) may be transformed into integral by 
the Eq.(8) and hence we the average rate of electron energy 
loss as

  
𝑑𝜖

𝑑𝑡
 𝑎𝑐  = −

𝒜𝒶𝑐ℏ𝑢𝑙

2𝜋 𝑇𝑛

 𝑞2𝑑𝑞  1 +  𝑁𝑞  + 1  
𝑥

𝑇𝑛

 𝑒−𝑎𝑥2
 

𝑞

   (11)

In presence of electric field at low lattice temperature the 
limits of 𝑞 can be taken as 0 to ∝, since  

𝜕𝑁𝑞   

𝜕𝑡
 falls of 

rapidly for large 𝑞, the upper limit is taken to be ∝.
At low lattice temperatures the phonon distribution is 

given to a good approximation by the Laurent expansion of 
the form [18] 

  𝑁𝑞 𝑥 =  
𝐵𝑚

𝑚!
𝑥𝑚−1        ;     𝑥  ≤  𝑥  ,

∞

𝑚=0

                    

≈   0                           ;     𝑥  >  𝑥  ,           (12) 
where 𝐵𝑚 ′s are Bernoulli numbers and 𝑥 < 2𝜋. For the 
practical purpose 𝑥 may be taken to be 3.5. Now carrying out 
the integration in Eq.(11) one can obtain

  
𝑑𝜖

𝑑𝑡
 𝑎𝑐  = −

ℬ𝒶𝑐

 𝑇𝑛

 
 𝜋

4𝑎3/2
+

1

2𝑎2𝑇𝑛

  +  
𝐵𝑚

𝑚! 𝑇𝑛

 
𝑥  𝑚+3 

2 𝑎𝑥 2 
𝑚+3

2

 

∝

𝑚=0

 Γ  
𝑚 + 3

2
 − Γ  

𝑚 + 3

2
, 𝑎𝑥 2   ,        (13)

where ℬ𝒶𝑐 =
𝒜𝒶𝑐 𝑘𝐵𝑇𝐿 3

2𝜋 ℏ𝑢𝑙 
2  .
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When the equipartition law is assumed for   𝑁𝑞  which is 
rather appropriate at higher lattice temperatures, the average 
rate of electron energy loss is obtained as

  
𝑑𝜖

𝑑𝑡
 𝑎𝑐  = −

ℬ𝒶𝑐

 𝑇𝑛

 
 𝜋

4𝑎3/2
 1 +

1

𝑇𝑛

 +
1

2𝑎2𝑇𝑛

   ,         (14)

3. Results and Discussion 

At low lattice temperatures, Eq.(13) shows that the average 
rate of non-equilibrium electron energy loss due to 
interaction with deformation potential acoustic phonon in a
2DEG system depends upon the electron temperature in a 
very complex manner in comparison to the results obtained 
in Eq.(14) under the approximations of high lattice 
temperatures. For an application of the above theory, an n-
channel (100) oriented Si inversion layer is considered with 
the material parameters [10]:  ℰ1 = 9 eV,
𝑢𝑙 = 9.037 103 m s−1, 𝜌𝑣 = 2.329 103 kg m−3 , the 
permittivity 𝜖𝑠𝑐 =  11.9 , longitudinal effective mass 
𝑚𝑙

∗ = 0.96𝑚0 , transverse effective mass 𝑚𝑡
∗ = 0.19𝑚0, 𝑚0

being the free electron mass. At low lattice temperatures one 
may consider presumably the electrons occupy only the 
lowest subband when the layer thickness 𝑑 is given by
 ℏ2𝜖𝑠𝑐/2𝑚⊥

∗ 𝑒2𝑁𝑖 
1/3𝛾0. Here 𝛾0 is the zeroth root of the 

Airy function 𝐴𝑖 −𝛾𝑛 .

For the (100) surface of Si the six valleys are not equivalent. 
The two equivalent valleys for which 𝑚∥

∗ = 𝑚𝑡
∗, 𝑚⊥

∗ = 𝑚𝑙
∗

occupy the lowest subband [3],[6].

In Fig.1 and Fig.2, we have plotted the electron temperature
dependence of the average rate of energy loss of electron in 
2DEG at different lattice temperatures. 

Fig.1 and Fig.2. Average rate of energy loss of non-
equilibrium electron in 2DEG. Solid line and dashed line 
represent the results due to low temperature and high 
temperature approximations respectively.

The figures show that the average rate of loss of electron 
energy due to the interaction with the acoustic phonon 
depend upon electron temperature more or less in a same 
qualitative manner both for lower or higher lattice 
temperatures. But with higher lattice temperatures, however, 
the loss increases rapidly. This apart, as we see in Fig.1, at 
low lattice temperatures the discrepancy between the results 
shows that the true phonon distribution plays a role in 
developing the theory of electron transport. This sort of 
discrepancy is almost absent at higher temperatures what we 
see in Fig.2, and hence at high temperatures the phonon 
distribution may be approximated by equipartition law. 

The theory developed here to obtain the average rate of 
energy loss of non-equilibrium electrons with the rise of 
electron temperature in 2DEG due to the applied electric 
field may be helpful to determine the field dependence of the 
electron temperature once we know the high field mobility 
data obtained experimentally. This can be done with the help 
of Eq.(1). This work would be reported elsewhere in future 
to justify the importance of the present theory.
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