
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 10, October 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Understanding Dependencies and Analyze
Dependencies with DDR Algorithm

Vimal Don Bosco S1, Dr. Latha R2

1Research Scholar, Department of Computer Applications, St.Peters University, Avadi, Chennai, Tamil Nadu

2Professor & Head, Department of Computer Science and Applications, St.Peters University, Avadi, Chennai, Tamil Nadu

Abstract: In project source deployment to the application server, it is needed to analyze the dependencies of the source which is
dependent on the defined process of the application. There are three categories of dependencies available. Dependencies can be order
time, runtime, obvious, covered up, immediate, backhanded, relevant and so forth. A component that is to be reused across many
different contexts should not have any context dependencies. Standard and customized interface dependencies are also involved with
the depreciated method and interfaces. The DDR algorithm will help to find dependencies and resolving their dependencies for best
utilization.

Keywords: Dependencies, Dependency type, Dependency category, Analyzing dependencies, DDR Algorithm

1. Dependency

At whatever point class utilizations another class or interface
B, then A relies on upon B. A cannot complete its work
without B, and A cannot be reused without additionally
reusing B. In such a condition the class A is known as the
dependant and the class or interface B is known as the
dependency. A dependant relies on upon its conditions. Two
classes that utilization each other are called coupled. The
coupling between classes can be free or tight, or some place
in the middle. The snugness of a coupling is not parallel. It is
not either free or tight. The degrees of snugness are nonstop,
not discrete. Additionally describe conditions as solid or
feeble. A tight coupling prompts solid dependencies, and a
free coupling prompts frail dependencies, or even no
dependencies in a few circumstances. The Dependencies, or
couplings, are directional. That A relies on upon B doesn't
imply that B additionally relies on upon A.

1. 1. Dependencies are bad to the Application

The Dependencies are awful in light of the fact that they
diminish reuse. Diminished reuse is terrible for some reasons.
Regularly reuse has a positive effect on improving speed,
code quality, code coherence and so forth. Conditions can
hurt reuse is best shown with beneath situation. Class
Calendar Reader, that can read a timetable occasion list from
an XML document. The usage of Calendar Reader is outlined
beneath:

public class CalendarReader {
public List readCalendarEvents

(File calendarEventFile){
//open InputStream from File and read calendar events.

}
}

The technique read Calendar Events takes a File protest as a
parameter. Accordingly, this strategy relies on upon the File

class. This dependency on the File class implies that the
Calendar Reader is able just of perusing date-book occasions
from neighborhood documents in the record framework. It
cannot read schedule occasion records from a system
association, a database or a from an asset on the classpath.
The Calendar Reader is firmly coupled to the File class and
in this way the neighborhood document framework.

A less firmly coupled execution is trade the File parameter
with an InputStream parameter as beneath:

public class CalendarReader {
public List readCalendarEvents(InputStream

calendarEventFile){
//read calendar events from InputStream

}
}

As you may know, an InputStream can be gotten from either
a File question, a system Socket, a URL Connection class, a
Class protest (Class.getResourceAsStream(String name)), a
section in a database through JDBC and so on. Presently the
CalendarReader has not coupled to the nearby document
framework any longer. It can read schedule occasion records
from a wide range of sources. With the InputStream rendition
of the readCalendarEvents() technique the CalendarReader
has turned out to be more reusable. The tight coupling to the
neighborhood record framework has been expelled. Rather, it
has been supplanted with a dependency on the InputStream
class. The InputStream dependency is more adaptable than
the File class dependency, however, that doesn't imply that
the CalendarReader is 100% reusable. Despite everything, it
cannot undoubtedly read information from an NIO Channel,
for example.

Paper ID: ART20162623 1965DOI: 10.21275/ART20162623

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 10, October 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

1.2. Dependency Types

A dependency isn't just a dependency. There are a few sorts
of conditions. Every sort prompts pretty much adaptability in
the code. The dependency types are:
 Class Dependencies
 Interface Dependencies
 Method / Field Dependencies

Class dependencies are dependencies on classes. For
example, the strategy in the underneath code box takes a
String as a parameter. In this way, it relies on upon the String
class.

public byte[] readFileContents(String fileName){
//open the file and return the contents as a byte array.

}

Interface dependencies are dependencies on interfaces.

Technique or field dependencies are dependencies on solid
strategies or fields of a question. It doesn't make a difference
what the class of the question is, or what interfaces it
actualizes, the length of it has a strategy or field of the
required sort. Technique or field dependencies are regular in
API's that utilization reflection to acquire its objectives.

Hibernate (a comparable ORM API) can utilize either getters
or setters, or get to the fields specifically, likewise by means
of reflection. That way, Hibernate has either technique or
field dependencies.

Method (or function) dependencies can likewise be found in
dialects that support work pointers or technique pointers to
be passed as parameters to different strategies.

1.3 Additional Dependency Characteristics

Dependencies have other essential qualities than simply the
sort. Dependencies can be order time, runtime, obvious,
covered up, immediate, backhanded, relevant and so forth.
These extra dependency attributes will be secured in the
accompanying segments.

1.3.1. Interface Implementation Dependencies
In the event that class A relies on upon an interface I, then A
does not rely on upon the solid usage of I. But, A relies on
upon some execution of I. A cannot complete its work
without some usage of I. In this manner, at whatever point a
class relies on upon an interface, that class likewise relies on
upon an execution.c. In this manner, the more strategies an
interface has the bigger the likelihood is that developers will
simply adhere to the default usage of that interface. As it
were, the bigger and more complex an interface turns into,
the more tightly it is coupled to its default usage. On account
of interface usage conditions, you should not add usefulness
to an interface aimlessly. On the off chance that the
usefulness could be typified in its own particular segment,
behind its own interface, the developer should do as such.

1.3.2. Compile-Time and Runtime Dependencies
A dependency that can be determined at compile time is a
compile-time dependency. A dependency that cannot be
determined until runtime is a runtime dependency. Compile
time dependencies have a tendency to be less demanding for
designers to see than runtime dependencies; however, some
of the time runtime dependencies can be more adaptable.

1.3.3. Visible and Hidden Dependencies
An obvious dependency is a dependency that designers can
see from a class interface. On the off chance that a
dependency cannot be seen from the class interface, it is a
concealed dependency.

In the prior cases, the String and CharSequence dependencies
of the readFileContents() techniques are noticeable
dependencies. They are visible from the strategy
presentation, which is a part of the class' interface. The
method dependencies of the readFileContents() technique
that take an Object as parameter, are undetectable. You
cannot see from the interface if the readFileContents()
strategy calls thefileNameContainer.toString() to get the
document name, or as it really does, calls the
getFileName()method.

1.3.4. Direct and Indirect Dependencies
A dependency can be either direct or indirect dependency. In
the event that class A utilizations a class B then A has an
immediate dependency on B. In the event that A relies on
upon B, and B relies on upon C, then A has an aberrant
dependency on C. In the event that you cannot utilize A
without B, and can't utilize B without C, then you cannot
utilize A without C either. Indirect dependencies are likewise
called tied dependencies, or transitive dependencies (in
"Better, Faster, Lighter Java" by Bruce A. Tate and Justin
Gehtland).

1.3.4.1.Unnecessarily Extensive Dependencies
Once in a while components depend on upon more data than
they have to complete their occupation. For instance,
envision a login part for a web application. The login
component needs just a client name and a password and will
give back the user object, assuming any, that matches these.
In any case, the login technique now has what I call an
"unnecessarily extensive dependency" on the HttpServlet
Request interface. It relies on upon more than it needs to do
its work. The Login Manager just needs a client name and a
password to query a client yet takes a HttpServletRequest as
a parameter for the login technique. A HttpServletRequest
contains significantly more data than the Login Manager
needs.

The dependency on the HttpServletRequest interface causes
two problems:
1)The LoginManager cannot be reused (called) without

an HttpServletRequest occurrence. This can make unit
testing of the LoginManager harder. You will require a
taunt HttpServletRequest case, which could be a
considerable measure of work.

2)The LoginManager requires the names of the username and
password parameters to be called "user" and "password".
This is also an unnecessary dependency.

Paper ID: ART20162623 1966DOI: 10.21275/ART20162623

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 10, October 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

1.3.4.2.Local and Context Dependencies
At the point when creating applications it is typical to break
the application into minor components. Some of these
components are universally useful components, which could
be valuable in different applications as well. Different
components are application particular and are not of any
utilization outside of the application. For a universally useful
segment, any classes having a place with the component (or
API) are nearby. The rest of the application is the "context".
In the event that a universally useful component relies on
upon application particular classes, this is known as a context
dependency. Context dependencies are terrible on the
grounds that it makes the universally useful component
unusable outside of the application as well. It is enticing to
surmise that lone a terrible OO originator would make
context dependencies, yet this is not valid. Context
dependencies frequently happen when developers attempt to
improve the plan of their application. A decent case of this is
demand preparing applications, similar to message line
associated applications or web applications.

1.3.4.3.Standard vs. Custom Class/Interface
Dependencies

By and large, it is better for a component to rely on upon a
class or interface from the standard Java (or C# and so on.)
bundles. These classes and interfaces are constantly
accessible to anybody, making it less demanding to fulfill
these component dependencies. In addition, the classes are
more averse to change and cause your application to fall flat
accumulation. In a few circumstances, however, contingent
upon JDK classes is not the best thing to do.

2. Dependencies Analyze with DDR Alogrithm

The Dependencies Detecting and Resolving (DDR)
Algorithm will discover the dependencies and give indicate
determining structure to the deployer.

There are five objects. They are depending on some of the
other objects. The objects are called here as a software
package, that relies on upon another package which must
introduce first or it is the base hotspot for up and coming
packages. The package should be installed in correct
sequence.

Take, for instance, the following scenario: Software
package A depends on B and D. B depends
on C and E. C depends on D and E. D depends on nothing,
nor does E.

Figure 1: Dependency Graph

2.1. Representing data : Graph

So as to discover the appropriate arrangement of introducing
the software package, represent data in the program. A is the
simple data structure that consists of nodes (sometimes called
vertices) and edges. Each software package is a node. Nodes
are connected to each other by something called edges. An
edge from one node to another signifies that the first node is
dependent on the second. This relationship depends on is
implicit in the program to resolving dependencies.

Let’s define a class that can hold node information.

class Node:
def __init__(self, name):

self.name = name
self.edges = []

def addEdge(self, node):
self.edges.append(node)

This is class which can hold a name and a list of
edges. We also have a method for adding edges to the node,
which takes a node and adds it to the list of nodes which this
node is dependent on.

Create bunch of nodes:
// Add vertices, e.g. equations.
g.addVertex("A");
g.addVertex("B");
g.addVertex("C");
g.addVertex("D");
g.addVertex("E");

Next, define the relationship between the nodes.
g.addEdge("A", "B"); # a depends on b
g.addEdge("A", "D"); # a depends on d
g.addEdge("B", "C"); # b depends on c
g.addEdge("B", "E"); # b depends on e
g.addEdge("C", "D"); # c depends on d
g.addEdge("C", "E"); # c depends on e

2.2. Algorithm

2.2.1. Walking graph
Start with walking through the graph. For this, we need a
starting point, which will be a node A. We start at A, and
then we have to go through all the nodes that are connected
to A. For each of those connected nodes, we have to go
through that node’s connected node, etc. So, we write a
recursive function that calls itself for each node connected to
the current node.

def dep_resolve(node):
print node.name
for edge in node.edges:

dep_resolve(edge)
dep_resolve(a)
//cycle(s) detected
If detectCycles()//using cycleDetector

findCycles() //using cycleDetector
while cycleVertices is not Empty

iterate vertices from cycleVertices
findCyclesContainingVertex(cycle)

//using cycleDetector
for subcycle from the cycle

print vertex
remove vertex that cycle not encountered

The output of which is: A,B,C,D,E,E,D

Paper ID: ART20162623 1967DOI: 10.21275/ART20162623

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 10, October 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

2.2.2. Dependency Resolution Order
We need to determine the resolution order of dependencies.
Software A depends on B and D, so A can’t install yet. D,

however, doesn’t depend on anything, so it can be installed.
A software package can be installed when all of its
dependencies have been installed, or when it doesn’t have

any dependencies at all.

Now take two arguments: node and resolved, which is the list
of resolved nodes. So, they are always passed by reference.
So when one of the iterations of the recursive function adds a
node to the list, that change reflected in all the iterations.

2.2.3. Detecting Circular Dependencies
Suppose we add the following to the dependencies.
g.add Edge("D", "B"); # D depends on B. This makes the
graph as below:

Figure 2: Dependency Graph: Circular Dependency

Now, Node D depends on B. But B depends on C and C
depends on D and D depends on B and etc., we have now got
a circular dependency which can never be solved.

2.2.4. Optimization
Keep a list of all the nodes, we have seen in the program. We
have previously determined that a circular reference is
occurring when we see a software package more than once
unless that software package has all its dependencies
resolved. This means we do not need to remember the node
we have seen if they are already resolved. This can save us
some memory and processing time; since we only have to
check a maximum of n (where n is the number of nodes in the
graph) time each iteration. The approach to this is to just
expel the hub from the seen list once it has been determined.

def dep_resolve(node, resolved, unresolved):
unresolved.append(node)
for an edge in node.edges:

if edge not in resolved:
if the edge in unresolved:

raise Exception('Circular reference
detected: %s -> %s' % (node.name, edge.name))

dep_resolve(edge, resolved, unresolved)
resolved.append(node)
unresolved.remove(node)

3. Conclusion

On the off chance that dependency found in a project or
application, the user can characterize the dependency with
utilization dependency categories. They are defined for
resolving the dependency. The above discussion is utilized to
know a few unique sorts and attributes of dependencies. In
general interface, dependencies are preferable over class

dependencies. Method and field dependencies can be very
useful, but remember that they are also typically hidden
dependencies, and hidden dependencies make it harder for
users of your component to detect it, and thereby satisfy it. A
component that is to be reused across many different contexts
should not have any context dependencies. Meaning it should
not depend on any other components in the context in which
it is initially developed and integrated. The algorithm
determines the dependencies and for best utilization, need to
follow below rules.
 A software package can be installed when all of its

dependencies have been installed, or when it doesn’t have

any dependencies at all.
 When a package has already been resolved, we don’t need

to visit it again.
 A circular dependency is occurring when we see a software

package more than once unless that software package has
all its dependencies resolved.

References

[1] Vincenzo Musco, Martin Monperrus, and Philippe
Preux, “Generative Model of Software Dependency
Graphs to Better Understand software Evolution,”

Cornel University Library, arXiv.org, Peper Id:
1410.7921, Vol. 2 pp. 1-10, 2015.

[2] Pei Wang, Jinqiu Yang, Lin Tan, Robert Kroeger and J.
David Morgenthaler, “Generating Precise Dependencies
for Large Software”, IEEE, pp. 47-50, 2013.

[3] Rantneshwer and Anil Tripathi, “Dependence Analysis
of Component Based Software through Assumption”,

International Journal of Computer Science Issues, Vol.
8, pp. 149-159, 2011.

[4] Neeraj Sangal, Ev Jordan, Vineet Sinha and Daniel
Jackson, “Using Dependency Model to Manage
Complex Software Architecture”, Object-Oriented
Programming, System, Languages and Applications
(OOPSLA), pp. 1-10, 2005.

[5] Martin P. Robillard, “Topology Analysis of Software

Dependencies”, ACM Transactions on Software

Engineering and Methodology, Vol. 17, No.4, Article
18, 2008.

[6] Matthias Blume, “Dependency Analysis for Standard

ML”, ACM Transactions on Software Engineering and
Methodology, Vol. 21, No.4, pp.790-812, 1999.

[7] Indumathi C P and Selvamani K, “Test Cases

Prioritization using Open Dependency Structure
Algorithm”, International Conference on Intelligent
Computing, Communication and Convergence, pp. 250-
255, 2015 .

[8] Pradip S. Devan and R.K. Kamat, “ A Review – LOOP
Dependence Analysis for Parallelizing Compiler”,

International Journal of Computer Science and
Information Technologies, Vol.5(3), pp. 4038-4046,
2014.

Author Profile

Vimal Don Bosco S, Research Scholar, St. Peters University,
Avadi, Chennai.

Paper ID: ART20162623 1968DOI: 10.21275/ART20162623

