
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 10, October 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Improving Auto Bug Triage by Effective Data
Reduction

Roshna V. Sangle1, Rajendra D. Gawali 2

1, 2Department of Computer Engineering, Lokmanya Tilak College of Engineering, Koparkhairane, India

Abstract: Large open source software projects like Mozilla, Firefox, Eclipse etc. receive huge number of submitted bug reports daily
basis. Manual Triaging of these upcoming reports is error-prone and time consuming process. The purpose of bug triaging is to assign
potentially experienced developers to upcoming bug reports. Thus to reduce cost and speedup bug triaging, this paper presents an
automatic approach to predict a developer with approximate time required to solve the upcoming report. In proposed system data set
reduction is achieved through techniques like stemming, stop word removal, Instance selection and Feature selection on bug data set,
which improve the scale and quality of bug data. The simultaneous usage of instance selection and feature selection reduces the scales
on bug dimension and word dimension which improves the accuracy of bug triage. The combination of feature selection algorithm,
statistics (CHI2) and instance selection algorithm, Iterative Case Filter (ICF) is applied in proposed paper. Then Naive Bayesian
classifier is used to predict the expert developer to fix the upcoming bug. This paper also focuses on how to assign any upcoming bug to
new developer whose bug fixing history is not available in training dataset.

Keywords: Bug Triage,Stemming,Stopwords,Instance selection, Feature Selection,Training dataset,cold-soft etc.

1. Introduction

In Software Development Life Cycle (SDLC) testing is most
crucial phase. Quality of software product is mostly depend
on testing of a product. Hence Bug triage is most essential
process in SDLC. Auto Bug Triage is process of assigning
potential developer to fix or resolve the new bug. In an
software industry a wrong bug triage can lead to huge loss of
money, time & employees efforts.

Traditional software analysis is not completely suitable for
the large-scale and complex data in software repositories.
Data mining has emerged to handle software data. By
leveraging data mining techniques, mining software
repositories can uncover interesting information in software
repositories and solve real- world software problems. A bug
repository plays an important role in managing software
bugs. Software bugs are unavoidable and fixing bug is an

expensive process in software development life cycle.

Software companies spend over 45 percent of cost in fixing

bugs [12]. Large software projects deploy bug repositories
(also called bug tracking systems) to support information
collection and to assist developers to handle bugs [13]. In a
bug repository, a bug is maintained as a bug report, which
records the textual description of reproducing the bug and
updates according to the status of bug fixing. A bug

repository provides a data platform to support many types of
tasks on bugs, e.g., fault prediction [14], bug localization
[15], and reopened bug analysis.

The proposed system introduces a new way of achieving
efficient auto bug triage over the manual bug triage which is
time consuming process. System uses various techniques like
stemming, stop word removal, instance algorithm & feature
algorithm etc to improve bug triage process. Proposed system
does not directly assign this bug to developer to solve it,
rather system suggest or recommend the name of developer
who can solve this bug efficiently. Instance selection and

feature selection algorithms are used to generate a reduced
training bug data set. It means original huge dataset is
replaced with the reduced data set for bug triage. Instance
selection is used to obtain a subset of relevant instances (i.e.,
bug reports in bug data) while feature selection aims to
obtain a subset of relevant features (i.e., words in bug data).
Finally text classification algorithm like Naive Bayesian can
be used to predict the name of developer who can fix the
upcoming bug.

Bug triaging is an essential part of developing software.
Based on features of the bug report, such as the title, priority,
severity, and affected components, developers have to assess
whether a bug report is meaningful and identify a developer
most suited for fixing the bug or implementing the required
enhancement [4], [16]. This task of identifying potential
experts for addressing bug reports is known to be time-
consuming, tedious and error-prone, in particular due to the
size and complexity of software projects and teams [17]. In
the last few years, a variety of research approaches has been
developed to automatically support bug triaging by
recommending expert developers for bug reports. These
approaches mainly differ in the way they identify the expert
developers. The one kind of approaches focuses on textual
similarity of the bug reports and bases on the assumption that
bug reports that are similar in their textual characteristic
should be fixed by the same developers. In some approaches,
the term bug reports also encompasses tasks, issues and other
work items. focus solely on discovering textual similarities
between bug reports and use machine learning and
information retrieval without looking at the code (e.g. [4]).

Bug Life Cycle:
Generally bug passes through many states during its life time
as shown in following figure 1.

Paper ID: ART20162504 1987

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 10, October 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 1: Bug Life Cycle

Sample Bug Report:

Figure 2: Mozilla Bug Report

2. Related Work

Bug Triaging typically involves two activities in open source
projects. First developers check whether the bug has been
already reported ,i.e., is it a duplicate of another existing bug
report? If it is not, then it is assigned to a developer who is
then responsible to fix the bug. Many approaches have been
proposed to automate these steps.

To detect duplicates, several approaches use natural language
processing (NLP) techniques on the bug description [5,6]. D.
Čubranić et al, proposes very first approach to perform bug

triage automatically. They used Naive Bayesian classifier for
prediction of developer[1].Further their work is extended by
john Anvik et al, they used a semi-automated approach. they
used a support vector machine (SVM) classifier for
prediction[2].In the year 2009 ,J. Xuan et al, proposed a
semi-supervised approach, where they used combination of
clustering and classification. for clustering they have used
Expected Maximization (EM) algorithm whereas for
classification they used Naive Bayesian algorithm[3]. They
used Eclipse dataset for their work. Syed Nadeem et al,[4]
proposed a methodology which uses Weka Tool for their
implementaion. They have examined their work with 7

different classification algorithm like J-48,Decision tree,
SVM, NB classifer etc. They found that Support Vector
Machine (SVM) has highest accuracy & J-48 gives lowest
accuracy among all seven algorithms. In this reduction of
feature is done by two methods, one is based on feature's
global frequency thresholding and second is Least Semantic
Indexing (LSI). Further Dominique et al ,[6] proposed a
vocabulary based model , in which they compares
vocabulary found in source code & bug report created by
same developer. If maximum similarity found then that bug is
assign to that developer. For this they have used "Diff"
command to check the similarity. For this they generated a
Term-author matrix. Tao Zhang et al, in the year 2014
proposed a bug triage methodology based on Topic model
and developer relations. In which they used Topic Modeling
Toolbox (TMT) to find the words .They also performed
preprocessing on bug reports by tokenization, stop word
removal & stemming. They used Laent Dritchlet Allocation
(LDA) to extract topics from historical bugs. In 2015 Jifeng
Xuan et al,[7] proposed a novel approach which aim on
training dataset reduction in order to enhance the
performance of their previous work[3].They used 4 different
Instance Selection & 4 Feature Selection algorithm to find
the best IS & FS algorithm ,which gives better reduction of
training dataset. They also checked reduction of dataset in
two different way first by IS-FS as well as FS-IS and they
found that order of FS-IS gives the better result. Naive
Bayesian Algorithm is used for prediction of developer by
them.

3. Methodology

This section gives overview of how will system will work in
order to achieve efficient Auto Bug Triage.

3.1 Data Processing

This step initially removes noisy & irrelevant data from bug
reports, using stemming & stop word removal. Stemming is
done in order to bring different keywords in their base form.
e.g. "computes", "computation", "computing", "computed"
are brought to their base form "Compute" and stop word
removal removes the unnecessary or least useful words like
"a", "an"', "the", "to", "of", "for" etc. from bug reports .

Figure 3: Bug Report Preprocessing

3.2 Bug data Reduction

It combines the existing techniques [7] of instance selection
and feature selection to remove certain bug reports and
words. Thus reducing the Data Scale i.e. Bug Dimension &
Word Dimension which will help to improve the accuracy to
Predict developer to solve the bug.

Paper ID: ART20162504 1988

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 10, October 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3.3 Prediction of developer to Fix the Bug

Prediction of a developer who can fix the.bug using NB
classifier. Naive Bayesian classifier perform reduction of
training dataset, which will extract different attributes to
describe each bug data set. Such attributes can be extracted
before new bugs are triaged.

3.4 System Approach

Figure 4: System Architecture

3.5 Dataset

As shown in table 1system uses following Mozilla dataset as
a training dataset. It is retrieved from Mozilla bug repository
in the form of JSON array[19].

Table 1: Dataset Details
Sr. No. Mozilla Dataset

1 DS_M1_Mozilla_400001 To 440000
2 DS_M2_Mozilla_440001 To 480000
3 DS_M3_Mozilla_480001 To 520000
4 DS_M4_Mozilla_520001 To 560000
5 DS_M5_Mozilla_560001 To 600000

3.6 Usability Metrics

Followings are the usability metrics which will evaluate the
systems performance in terms of how much redundant or
noisy reports are removed after applying instance selection
algorithm i.e. Iterative Case Filter on above mentioned
training dataset.

Table 2: Usability Metrics
Metric Definition

Recall {All Reports} Ո { Duplicate Reports}

{ Duplicate Reports}

Precision {All Reports} Ո { Duplicate Reports}

{ All Reports }

F-Measure FMeasure= 2 {Precision} ×{Recall}
{Precision +Recall}

4. Algorithms

4.1 Chi2 Algorithm

The Chi2 algorithm applies the X2 statistic test which
conducts a significance test on the relationship between

developer and their respective keywords present in that Bug
report . It consists of two phases. In the first phase, it begins
with a large significance level (a), e.g., 0.5,for each keyword
in bug report attribute, the following is performed:1)
calculate the CHI2 value as in (1) for every pair of adjacent
intervals (at the beginning, the number of intervals equals the
number of distinct values of an attribute); 2) merge the pair
of adjacent intervals with the lowest X2 value being the
critical value.

Formula for calculating CHI2 Score is given as in eq (1)

where Oij is the observed frequency and Eij is the expected
(theoretical) frequency, asserted by the null hypothesis. The
greater the value of χ2, the greater the evidence against the

hypothesis H0 is. Here our Hypothesis is that "keywords
present in upcoming bug reports are unique". It means if
system gives CHI2 score greater than significance level i.e.
0.5 then it conclude that keywords extracted from upcoming
bug report are not unique.

4.2 Iterative Case Filter Algorithm

Instance selection is algorithm used to lessen the number of
instances i.e. Bug Reports and to enhance the training set
quality. According to [8], Iterative Case Filter (ICF) [9] is
chosen as the instance selection algorithm in this work. ICF
is an instance selection algorithm based on the k-Nearest
Neighbour algorithm (KNN) [10].

4.3 Naive Bayesian Classifier

It is based on Baye's rule.This classifier work efficiently with
nominal dataset as well as efficiently handles large data. It
assumes that all attributes as independent.

The Baye's rule is given as follows in equation (2):
Given a hypothesis h and data D bears on the hypothesis:

)(
)()/(

)/(
dP

hPhDP
DhP (2)

where p(h) is Prior probability hypothesis h ,(D/h) is the
maximum likelihood and P(h/D) is the posterior probability.

5. Result

Following table 3 shows various results that system obtained
in terms of recall ,precision & FMeasure.

Table 3: Analysis Result
Sr. No. Parameters Value

1 Recall 13.64
2 Precision 86.364
3 FMeasure 53.801

6. Conclusion

Bug triage is an essential and expensive stage of software
development cycle, in terms of both labor cost and time cost.
System's objective is to provide a improved techniques to do

Paper ID: ART20162504 1989

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 10, October 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

auto bug triage efficiently. The results shows good bug data
set reduction which speedup the bug triage process .system
also gives approximate time required for developer to fix the
bug which is useful to decide to whom bug must be assigned
as per its priority and severity. system also able to assign the
upcoming bug to any new developer whose past bug fixing
history is not available.

References

[1] D. Čubranić and G. C. Murphy, “Automatic bug triage

using text categorization,” Proc. Intl. Conf. Software

Engineering & Knowledge Engineering (SEKE 04),
Jun. 2004, pp. 92-97.

[2] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix

this bug?.In Proceedings of the 28th international
Conference on Software Engineering (Shanghai, China,
May 20-28, 2006). ICSE06. ACM, New York, NY, 361-
370.

[3] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo,
“Automatic bug triage using semi-supervised text
classification,” in Proc. 22nd Int. Conf. Softw. Eng.

Knowl. Eng., Jul. 2010, pp. 209–214.
[4] Syed Nadeem Ahsan, Javed Ferzund, Franz Wotawa

"Automatic Software Bug Triage System(BTS) Based
on Latent Symentic Indexing and Support Vector
Machine",2009 IEEE.

[5] Tao Zhang, Geunseok Yang,Byungjeong Lee,eng Keong
Lua," A Novel Developer Ranking Algorithm For
Automatic Bug Triage Using Topic Model And
Developer Relations", 2014,IEEE.

[6] Dominique Matter,Adrian Kuhn,Oscar Nierstrasz
"Assigning Bug Reports Using A Vocabulary-Based
Expertise Model Of Developers",2009 IEEE.

[7] Jifeng Xuan,He Jiang,Yan Hu,Zhilei Ren, Weiqin
Zou,Zhongxuan Luo,Xindong Wu “Towards Effective

Bug Triage with Software Data Reduction
 Techniques".vol. 27, no.1,Janury 2015.

[8] M. Grochowski and N. Jankowski, “Comparison of

instance selection algorithms II, results and comments,”

Proc. Intl. Conf. Artificial Intelligence and Soft
Computing (ICAISC 04), Springer, Jun. 2004, pp. 580-
585.

[9] H. Brighton and C. Mellish, “Advances in instance

selection for instance-based learning algorithms,” Data

mining and knowledge discovery, vol. 6, no. 2, Apr.
2002, pp. 153-172.

[10] T. Mitchell, Machine Learning, McCraw Hill, 1996.
[11] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug

triage with tossing graphs,” in Proc. Joint Meeting 12th

Eur. Softw. Eng. Conf. 17th ACM SIGSOFT Symp.
Found. Softw. Eng., Aug. 2009, pp. 111–120.

[12] R. S. Pressman, Software Engineering: A Practitioner’s

Approach, 7th ed. New York, NY, USA: McGraw-Hill,
2010.

[13] B. Fitzgerald, “The transformation of open source

software,” MIS Quart., vol. 30, no. 3, pp. 587–598,
Sep. 2006.

[14] S. Shivaji, E. J. Whitehead, Jr., R. Akella, and S. Kim,
“Reducing features to improve code change based bug

prediction,” IEEE Trans. Soft. Eng., vol. 39, no. 4, pp.

552–569, Apr. 2013.
[15] S. Artzi, A. Kie_zun, J. Dolby, F. Tip, D. Dig, A.

Paradkar, and M. D. Ernst, “Finding bugs in web

applications using dynamic test generation and explicit-
state model checking,” IEEE Softw., vol. 36, no. 4, pp.

474–494, Jul./Aug. 2010.
[16] www.eclipse.org
[17] https://bugzilla.mozilla.org/rest/bug.

Paper ID: ART20162504 1990

