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Abstract: In recent years, there has been an intense focus on the construction of mathematical models involving certain interesting 
ecological phenomena like Allee effect. Many animal and plant species suffer a decrease of the per capita rate of increase as their 
populations reach small sizes or low densities. In this article, a three species food chain model is proposed and analysed where prey 
species is affected by strong Allee effect. I have studied the stability behaviour of the system and bifurcation analysis. The system 
exhibits saddle-node bifurcation curve. Extensive Numerical simulation results are given to support the validity of the theoretical results. 
The ecological implications of our analytic and numerical findings are discussed. 
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1. Introduction 

Allee effect that refers to a positive relationship between 
individual fitness and population density provides an 
important conceptual framework in conservation biology. 
While declining Allee effect causes reduction in extinction 
risk in low-density population, it provides a benefit in 
limiting establishment success or spread of invading species. 
Population models that incorporated Allee effect confer the 
fundamental role which plays for shaping the population 
dynamics. In population dynamics, the Allee effect (named 
after the seminal works of the zoologist and ecologist 
Warder Clyde Allee [1]) refers to a process that reduces the 
growth rate for small population densities [2].  

Allee effect can be either strong or weak [3]. Strong Allee 
effect can induce a critical density below which per capita 
growth rate is negative and extinction tends to occur, while 
weak Allee effect may result in reduced, but still positive, 
growth rate as population size or density decreases [4].

While a variety of species exhibit Allee effect, its underlying 
mechanisms still remain unclear. Because of this reason, 
determining which factors regulate or induce Allee effect 
continues to be an important subject in the field of both 
theoretical and experimental research [5-8]. Allee effect can 
arise from many ecological processes under various 
interactions of functional and aggregative responses. The 
previous work revealed that increased risk of predation at 
low population density [9-12], sexual selection [13,14], 
reduced mating efficiency [15] and reduced foraging 
efficiency [16] can give rise to Allee effect.  

My objective here is not to reveal which species has Allee 
effect or which factor can cause Allee effect, but to evoke 
the importance of Allee dynamics and its potential 
consequences in population dynamical models. I analyze the 
stability of three-species food chain model with strong Allee 
effect. 

The rest of the article has been organized as follows. In 
Section 2, I state the formulation of the model under 
consideration and its assumptions. Section 3 contains some 
preliminary results. Then in Section 4 the model is analyzed, 

identifying its equilibrium points, giving conditions for their 
feasibility, stability and bifurcation. Numerical simulation 
has been carried out in Section 5. The article concludes with 
a discussion of the results obtained. 

2. The Mathematical Model 

The general food chain model system interaction is 
represented by the system of following differential equations 

𝐷𝑋

𝐷𝑇
= 𝑅𝑋𝑔 𝑋 − 𝐹1 𝑋, 𝑌 𝑌                        ……… .    (2.1𝑎)

𝐷𝑌

𝐷𝑇
= 𝐸1𝐹1 𝑋, 𝑌 𝑌 − 𝐷1𝑌 − 𝐹2 𝑌, 𝑍 𝑍    ……… . .      (2.1𝑏)

𝐷𝑍

𝐷𝑇
= 𝐸2𝐹2 𝑌, 𝑍 𝑍 − 𝐷2𝑍           ………   (2.1𝑐)    

𝑋 0 > 0, 𝑌 0 > 0, 𝑍 0 > 0,                       
where 𝑋, 𝑌, 𝑍 are the population densities of prey, predator 
and top-predator respectively; 𝑅, 𝐸1, 𝐸2, 𝐷1, 𝐷2, 𝐹1, 𝐹2  are 
positive constants that stands for prey intrinsic growth rate, 
conversion factors, death rates and functional responses for 
representing predation process of respective predator. 

In this paper, an attempt has been made to update the food 
chain model (2.1) incorporating Allee effect in the prey 
species. Thus, I obtain the following model 

𝐷𝑋

𝐷𝑇
= 𝑅𝑋𝑔 𝑋  𝑋 − 𝐿 − 𝐹1 𝑋, 𝑌 𝑌    …… .      (2.2𝑎)      

𝐷𝑌

𝐷𝑇
= 𝐸1𝐹1 𝑋, 𝑌 𝑌 − 𝐷1𝑌 − 𝐹2 𝑌, 𝑍 𝑍   ……        (2.2𝑏)

𝐷𝑍

𝐷𝑇
= 𝐸2𝐹2 𝑌, 𝑍 𝑍 − 𝐷2𝑍            …… . .    (2.2𝑐) 

𝑋 0 > 0, 𝑌 0 > 0, 𝑍 0 > 0,                         

where 𝐿  is the survival threshold of the prey and other 
parameters are defined in the previous model (2.1). Here, we
consider the predation functions 𝐹1 𝑋, 𝑌 = 𝐴1𝑋 ,
𝐹2 𝑌, 𝑍 = 𝐴2𝑌 , that is , the  Holling type-I functional 
responses where the constants 𝐴1 , 𝐴2  are two parameters 
characterising the functional response.  
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Using the transformation 𝑥 =
𝑋

𝐾
 , 𝑦 =

𝑌

𝐾𝐸1
 , 𝑧 =

𝑍

𝐾𝐸1𝐸2
 , 𝑡 =

𝐾𝑅𝑇, the model (2.2) tales the following form 
𝑑𝑥

𝑑𝑡
= 𝑥 1 − 𝑥  𝑥 − 𝑚 − 𝑎1𝑥𝑦     … . .      (2.3𝑎)

𝑑𝑦

𝑑𝑡
= 𝑎1𝑥𝑦 − 𝑑1𝑦 − 𝑎2𝑦𝑧   …… .            (2.3𝑏)

𝑑𝑧

𝑑𝑡
= 𝑎2𝑦𝑧 − 𝑑2𝑧   … .              (2.3𝑐)  

𝑥 0 > 0, 𝑦 0 > 0, 𝑧 0 > 0,      (2.3𝑑)

where 𝑚 =  
𝐿

𝐾
, 𝑎1 =

𝐴1𝐸1

𝑅
, 𝑎2 =

𝐴2𝐸1𝐸2

𝑅
, 𝑑1 =

𝐷1

𝐾𝑅
, 𝑑2 =

𝐷2

𝐾𝑅
 .

3. Preliminary Results 

3.1. Existence and positive invariance 

Theorem: Every solution of system (2.3) with initial 
conditions (2.3d) exists in the interval [0, ∞)  and 𝑥 𝑡 ≥
0, 𝑦 𝑡 ≥ 0, 𝑧 𝑡 ≥ 0 for all 𝑡 > 0.

Proof. Since the right hand side of system (2.3) is 
completely continuous and locally Lipschitzian on C, the 
solution of (2.3) with initial conditions (2.3d) exists and is 
unique on [0, 𝜂), where 0 < 𝜂 ≤ ∞ [3]. From system (2.3)
with initial conditions (2.3d), we have 

𝑥 𝑡 = 𝑥 0 exp  { 1 − 𝑥 𝜃   𝑥(𝜃) − 𝑚 
𝑡

0

− 𝑎1𝑦(𝜃)}𝑑𝜃 ≥ 0,

𝑦 𝑡 = 𝑦 0 exp  {𝑎1𝑥(𝜃) − 𝑑1 − 𝑎2𝑧(𝜃)}𝑑𝜃
𝑡

0

 ≥ 0,

𝑧 𝑡 = 𝑧 0 exp  {𝑎2𝑦(𝜃) − 𝑑2 }𝑑𝜃
𝑡

0

 ≥ 0,

which completes the proof. 

3.2. Equilibrium points and their feasibility 

The system (2.3) has the following positive equilibrium 
points: 
i)  The trivial equilibrium point 𝐸0 0,0,0 , the origin, exists 
always; 
ii) The predators free equilibrium points 
𝐸𝑚 𝑚, 0,0 , 𝐸1 1,0,0  exist provided 𝑚 > 0; 
iii) The  top-predator free equilibrium point 
𝐸2 𝑥2, 𝑦2, 0 provided 𝑚 ≤

𝑎1

𝑑1
≤ 1 ; where 𝑥2 =

𝑎1

𝑑1
,𝑦2 =

 𝑑1−𝑎1 (𝑎1−𝑚𝑑1)

𝑎1𝑑1
2 . 

iv) The system has two distinct co-existence equilibrium 
points 𝐸3 𝑥3, 𝑦3, 𝑧3 , 𝐸4 𝑥4, 𝑦4, 𝑧4 , where 

 𝑥3 =
1+𝑚+   1−𝑚 2−4𝑎1𝑦3

2
, 𝑦3 =

𝑎2

𝑑2
 , 𝑧3 =

𝑎1𝑥3−𝑑1

𝑎2
 , 𝑥4 =

1+𝑚−   1−𝑚 2−4𝑎1𝑦4

2
, 𝑦4 =

𝑎2

𝑑2
 , 𝑧4 =

𝑎1𝑥4−𝑑1

𝑎2
.

4. Statement of the Main Results 

The main properties and qualitative behaviour of the system 
(2.3) are given in this section. Local stability of equilibrium 
points are determined by the Jacobian matrix: 

𝐽 𝑥, 𝑦, 𝑧 =  

 1 − 𝑥  𝑥 − 𝑚 + 𝑥 1 − 𝑥 − 𝑥 𝑥 − 𝑚 − 𝑎1𝑦 −𝑎1𝑥 0
𝑎1𝑦 𝑎1𝑥 − 𝑑1 − 𝑎2𝑧 −𝑎2𝑦

0 𝑎2𝑧 𝑎2𝑦 − 𝑑2

 

4.1. 𝐸0 is always stable in nature. 

Proof. The jacobian matrix 𝐽0  of the system (2.3) at 𝐸0  is 
given by  

𝐽0 =  

−𝑚 0 0
0 −𝑑1 0
0 0 −𝑑2

 . 

The eigen values of 𝐽0  are −𝑚, −𝑑1, −𝑑2.  Hence, the 
equilibrium point 𝐸0 is always stable in nature. 

4.2. 𝐸𝑚  is unstable in nature. 

Proof. The jacobian matrix 𝐽𝑚  of the system (2.3) at 𝐸𝑚  is 
given by  

𝐽𝑚 =  

𝑚(1 − 𝑚) 0 0
0 −𝑑1 0
0 0 −𝑑2

 . 

The eigen values of 𝐽𝑚  are 𝑚(1 − 𝑚), −𝑑1, −𝑑2.  Since, 
0 ≤ 𝑚 < 1, the first eigenvalue is always positive. Hence, 
the equilibrium point 𝐸𝑚  is unstable in nature. 

4.3. 𝐸1 is unstable in nature. 

Proof. The jacobian matrix 𝐽1  of the system (2.3) at 𝐸1  is 
given by  

𝐽1 =  

1 − 𝑚 0 0
0 −𝑑1 0
0 0 −𝑑2

 . 

The eigen values of 𝐽1 are 1 − 𝑚, −𝑑1, −𝑑2. Since, 0 ≤ 𝑚 <
1 , the first eigenvalue is always positive. Hence, the 
equilibrium point 𝐸1 is unstable in nature. 

4.4. 𝐸2  is stable if 𝜃 = 𝑥2 1 − 𝑥2 − 𝑥2 𝑥2 − 𝑚 < 0  and 
𝑎2𝑦2 − 𝑑2 < 0. 
Proof. The jacobian matrix 𝐽2  of the system (2.3) at 𝐸2  is 
given by  

𝐽2 =  
𝑥2 1 − 𝑥2 − 𝑥2 𝑥2 − 𝑚 −𝑎1𝑥2 0

𝑎1𝑦2 0 −𝑎2𝑦2

0 0 𝑎2𝑦2 − 𝑑2

 . 

The eigen values of 𝐽2  are 𝜆1,2 =
 𝜃  {  𝜃 2−4𝑎1

2𝑥2𝑦2}

2
,

𝑎2𝑦2 − 𝑑2 , where 𝜃 = 𝑥2 1 − 𝑥2 − 𝑥2 𝑥2 − 𝑚 . If
𝜃 < 0, 𝜆3 = 𝑎2𝑦2 − 𝑑2 < 0, then, the equilibrium point 𝐸2

will be locally asymptotically stable in nature. 

4.5.The system experiences Hopf-bifurcation around 𝐸2  for 
𝑎1 = 𝑎1

[ℎ𝑏] where 𝑎1
[ℎ𝑏] =

𝑑1(1+𝑚)

2
. 

Proof. From sub-section 4.4, we see that 𝜆3is real and 𝜆1,2

will be purely imaginary if and only if there is a 𝑎1 = 𝑎1
[ℎ𝑏]
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such that 𝑎1
[ℎ𝑏] =

𝑑1(1+𝑚)

2
. Now for = 1, 2;

𝑅𝑒  
𝑑𝜆𝑖

𝑑𝑎1
 
𝑎1=𝑎1

[ℎ𝑏]
≠ 0 . Therefore, the system experiences 

Hopf-bifurcation around 𝐸2 for 𝑎1 = 𝑎1
[ℎ𝑏]. 

  
4.6. 𝐸3  is locally asymptotically stable if  𝑐11 = 𝑥3 1 −
𝑥3−𝑥3𝑥3−𝑚<0. 
Proof. The jacobian matrix 𝐽3  of the system (2.3) at 𝐸3  is 
given by  

𝐽3 =  

𝑐11 𝑐12 𝑐13

𝑐21 𝑐22 𝑐23

𝑐31 𝑐32 𝑐33

 ,

where 𝑐11 = 𝑥3 1 − 𝑥3 − 𝑥3 𝑥3 − 𝑚 , 𝑐12 = −𝑎1𝑥3,  𝑐13 =
0, 𝑐21 = 𝑎1𝑦3, 𝑐22 = 0,   𝑐23 = −𝑎2𝑦3, 𝑐31 = 0, 𝑐32 =
𝑎2𝑧3, 𝑐33 = 0. 

The characteristic equation of 𝐽3 is 𝜆3 + 𝐵1𝜆
2 + 𝐵2𝜆 + 𝐵3 =

0 , where 𝐵1 = −𝑐11 , 𝐵2 = −𝑐23𝑐32 − 𝑐12𝑐21, 𝐵3 =
𝑐11𝑐23𝑐32 .
Therefore, 𝐵1𝐵2 − 𝐵3 = 𝑐11𝑐12𝑐21 . Now, we choose 𝑐11 <
0 , then  𝐵1 > 0 , 𝐵3 > 0 and 𝐵1𝐵2 − 𝐵3 > 0.  Hence, the 
proof. 

4.7. 𝐸4  is locally asymptotically stable if  𝑥4 1 − 𝑥4 −
𝑥4 𝑥4 − 𝑚 < 0. 
The proof is similar with the proof of 4.5. 

4.8. System (2.3) undergoes a saddle-node bifurcation 
around interior equilibrium point 𝐸3  with respect to 
bifurcation parameter 𝑚 with bifurcation threshold 𝑎1

[𝑠𝑛 ] if  
Proof: One eigenvalue of the Jacobian matrix 𝐽3 will be zero 
if det(𝐽3) = 0 which gives 𝑎1

[𝑠𝑛 ] =
𝑑2 1−𝑚 2

4𝑎2
. The other two 

eigenvalues of 𝐽3  are evaluated at 𝑎1
[𝑠𝑛 ]  and one of them 

must be negative in order to get a saddle-node bifurcation. 
Let 𝑢  and 𝑣  are the eigenvectors corresponding to the
eigenvalue 0 of the matrix 𝐽3 and its transpose respectively. 
We obtain that 𝑢 =  𝑢1,𝑢2, 𝑢3 

𝑇
 and 𝑣 =  𝑣1,𝑣2, 𝑣3 

𝑇
where 

𝑢2 = 0, 𝑢3 = −
𝑐21

𝑐23
𝑢1, 𝑣2 = 0, 𝑣3 = −

𝑐12

𝑐32
𝑣2 in which 𝑢1

and 𝑣1 are any two real numbers. Since 
𝑣𝑇 𝐹𝑎1

 𝐸3, 𝑎1
 𝑠𝑛   = −𝑥3𝑦3𝑣1 ≠ 0 ,

𝑣𝑇 𝐷2𝐹 𝐸3, 𝑎1
 𝑠𝑛  (𝑢, 𝑢) ≠ 0, then the system experiences 

a saddle-node bifurcation around 𝐸3 𝑎1 = 𝑎1
[𝑠𝑛 ] [17].

5. Numerical Simulation 

Analytical results can never be completed without numerical 
justification of the derived results. In this section, we present 
computer simulations of some solutions of the system (2.3).
Beside justification of our analytical findings, these 
numerical simulations are very important from practical 
point of view. 

Figure 1: Locally asymptotically stable behaviour of the system (2.3) around boundary equilibrium point 𝐸2 for the set of 
parameters 𝑎1 =  0.6, 𝑎2 =  0.5, 𝑑1 =  0.38, 𝑑2 =  0.8, 𝑚 =  0.2. 

Figure 2: Hopf-bifurcation behaviour of the system (2.3) around boundary equilibrium point 𝐸2 for the set of parameters 
𝑎1 = 0.6 , 𝑎2 = 0.5 , 𝑑1 = 0.35 , 𝑑2 = 0.8 , 𝑚 = 0.2 . 
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Figure 3: Locally asymptotically stable behaviour of the system (2.3) around interior equilibrium point for the set of 
parameters 𝑎1 = 0.7, 𝑎2 = 1.5, 𝑑1 =  0.18, 𝑑2 =  0.2, 𝑚 = 0.2 . 

Figure 4: Periodic behaviour of the system (2.3) around boundary equilibrium point 𝐸3 for the set of parameters 𝑎1 =
 1.178765, 𝑎2 =  2.95, 𝑑1 =  0.27, 𝑑2 =  0.4, 𝑚 =  0.2. 

6. Conclusion and Comments 

In this paper, three species food chain model where prey 
species is affected by strong Allee effect is analyzed and 
possible dynamical behaviour of this system investigated at 
equilibrium points. It has been shown that, the solutions 
posses Saddle-node and Hopf-bifurcations. Both analytically 
and numerical simulation shown that in certain regions of 
the parameter space, three species food chain model is 
sensitively depending on the parameter values. 
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