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Abstract: In this paper we have considered one important distribution useful in Reliability and Life Testing namely, Galton 
distribution or Lognormal distribution. The lognormal distribution is sometimes called the antilognormal distribution. The name has 
some logical basis in that it is not the distribution of the logarithm of a normal variable (this is not even always real) but of an
exponential – that is, antilognormal-function of such a variable. It is occasionally referred to as the Galton distribution or Galton's 
distribution, after Francis Galton. In section I we give a brief introduction to their applications and in section II we explain the problem 
of estimation of minimum risk point estimation of mean of a Lognormal distribution or Galton distribution and failure of the fixed 
sample size procedure. In section III sequential solution for this problem have been provided along with study of their asymptotic 
properties. 
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1. Introduction 

The Galton distribution or Lognormal distribution is
sometimes called the antilognormal distribution. The name 
has some logical basis in that it is not the distribution of the 
logarithm of a normal variable (this is not even always real) 
but of an exponential – that is, antilognormal-function of
such a variable. It is occasionally referred to as the Galton 
distribution or Galton's distribution, after Francis Galton. 
The use of the distribution in the description of
psychophysical phenomena gave a graphical method for 
estimating parameters. Galton distribution or Lognormal 
distribution have been found to be applicable to distributions 
of particle size in naturally occurring aggregates. Further 
applications, in agricultural, entomological and even literary 
research that generate Galton distribution or Lognormal 
distribution in a variety of biological, pharmacological, 
modeling the weights of children, and construction of age - 
specific reference ranges for clinical variables. The sums of
independent Galton or lognormal variables are used in
telecommunication to study the effects of the atmosphere on
radar signals. It has also been found to be a serious 
competitor to the Weibull distribution in representing 
lifetime distribution. Aitchison and Brown (1957) cite 
various applications such as the number of persons in a 
census occupation class and the distribution of incomes in
econometrics, the distribution of stars in the universe and the 
distribution of the radical component of Chinese characters. 
The Galton or lognormal model for minerals present in low 
concentrations has been experimentally verified for many 
minerals. Chattopadhyay, B. & Kelley, K. (2016) they 
propose a general theory for a sequential estimation of the 
population coefficient of variation that considers both the 
sampling error and the study cost, importantly without 
specific distributional assumptions. In this paper the same 
distribution is revisited but we considered here the problem 
of minimum risk point estimation of location parameter of a 
Galton distribution or Lognormal distribution besides 
sequential solution for this problem have been provided 
along with study of their asymptotic properties. 

2. The Set Up of the Estimation Problems and 
the Failure of the Fixed Sample size 
Procedures 

Let us consider a sequence {Xi}, i=1,2,3,…. of
independently distributed random variable from a Galton
distribution or Lognormal distribution with the p.d.f

𝑓 𝑋;  𝜇, 𝜎 =
1

𝜎𝑋 2𝜋
𝑒𝑥𝑝  −

1

2𝜎2
 𝑙𝑜𝑔𝑋 − 𝜇 2 ;   𝑋 > 0 ,

where 𝜇 ∈ (−∞, ∞) and 𝜎 ∈ (0, ∞) are the parameters.

The mean of the distribution is 𝜁 = 𝐸 𝑋𝑖 = 𝑒𝑥𝑝 𝜇 +

𝜎2/2. Given a random sample 𝑋1, 𝑋2, 𝑋3,…..,𝑋𝑛 of size 𝑛, let
the loss incurred in estimating 𝜁 by

𝑋 𝑛 =  𝑛−1  𝑋𝑖

𝑛

𝑖=1

be
𝐿 𝜁 , 𝑋 𝑛 = 𝐴  𝑋 𝑛 − 𝜁 2 + 𝑛,               (2.1)

Having the associated risk

 𝑅𝑛 𝐴 =  
𝐴

𝑛
 𝜁2 𝑒𝜎2

− 1 + 𝑛.                      (2.2) 

The value 𝑛 = 𝑛0, which minimizes 𝑅𝑛 𝐴 , is given by

 𝑛0 = 𝐴
1

2𝜁 𝑒𝜎2
− 1 

1

2 ,                            (2.3)

and substituting 𝑛 = 𝑛0 in (2.2) , the corresponding
minimum risk is

 𝑅𝑛0
 𝐴 = 2𝐴

1
2𝜁 𝑒𝜎2

− 1 
1
2.  2.4 

However, when 𝜇 and /or 𝜎2 is unknown, no fixed sample
size procedure achieves the minimum risk (2.4).

Our problem is point estimation of the mean of a Galton
distribution or Lognormal distribution.

Paper ID: ART20162325 957



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 10, October 2016 
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3. The Sequential Procedure for the Point 
Estimation of Mean of Lognormal 
Distribution 

 
We first consider the case when 𝜎 is known and, without any 
loss of generality, we assume that 𝜎 = 1. From (2.3) and 
(2.4),

 𝑛0 = 𝐾𝐴
1

2𝜁0 ,                                     (3.1)
and  

𝑅𝑛 𝐴 = 2𝐾𝐴
1

2𝜁0 ,                                (3.2)

where 𝐾 =  𝑒 − 1 1/2 and 𝜁0 = 𝑒𝑥𝑝 𝜇 + 1/2 . Motivated 
by (3.1), the stoping time N is defined by  

 𝑁 = inf  𝑛 ≥ 1: 𝐾𝐴
1
2 𝑋 𝑛 .                            (33)

After stopping, we estimating 𝜁0 by 𝑋 𝑁  , incurring the risk  
 𝑅𝑁 𝐴 = 𝐴𝐸   𝑋 𝑁 − 𝜁0 2 +  𝐸 𝑁               (3.4)

Following Starr(1966b) and Star and Woodroofe(1969), we
define the ‘risk efficiency’ and ‘regret’ of the sequential 
procedure(3.3), by  

 𝑅𝑒 𝐴 =  
𝑅𝑁 𝐴 

𝑅𝑛0
 𝐴 

                                 (3.5)

and  
𝑅𝑔 𝐴 = 𝑅𝑁 𝐴 − 𝑅𝑛0

 𝐴  ,                    (3.6)

respectively. 

Now we prove the following theorem, which establishes the 
result that the sequential procedure (3.3) is asymptotically 
‘risk efficient’.

Theorem 1 For the stopping rule defined at (3.3) and all 𝜁0  ,  
𝐥𝐢𝐦
𝑨→∞

𝑅𝑒 𝐴 = 1.

Proof 
 Denoting by  

 𝑆𝑛 = 𝑛 𝑋 𝑁 =  𝑋𝑖

𝑛

𝑖=1

 , 

we can rewrite the stopping rule (3.3) as  
𝑁 = inf  𝑛 ≥ 1: 𝑆𝑛 ≤ 𝐾−1𝐴−

1

2 𝑛2 .               (3.7) 
From Wald’s lemma for cumulative sums, 
 𝐸  𝑆𝑁 − 𝑁𝜁0 2 = 𝐾2𝜁0

2𝐸 𝑁 . 
Hence , we obtain from (3.4) that  

𝑅𝑁 𝐴 = 𝐴𝐸   𝑆𝑁 − 𝑁𝜁0 2 𝐴𝑁−2 − 𝐾−2𝜁0
−2  

+ 2𝐸 𝑁 . (3.8)
After substitutions from (3.2) and (3.8) in (3.5), we get  

𝑅𝑒 𝐴 =  2𝐾𝐴
1
2𝜁0 

−1

𝐸   𝑆𝑁 − 𝑁𝜁0 2 𝐴𝑁−2 − 𝐾−2𝜁0
−2  

+ 𝐸  
𝑁

𝐾𝐴
1
2𝜁0

 . (3.9)

It can be seen that 𝐴−
1

2𝑁 
 𝑎 .𝑠 
   𝐾𝜁0 as A→ ∞.

It now follows from a result of Gut (1974) that  

  𝐴−
1

2𝑁 
4

: 𝐴 ≥ 1 is uniformly integrable. (3.10) 
From(3.10) and dominated convergence theorem, 

 lim
𝑨→∞

𝐸  
𝑁

𝐾𝐴
1
2𝜁0

 = 1. (3.11)

From (3.9) and (3.11), we conclude that the result follows if
we can prove that  

 𝐸  𝐴− 
1
2 𝑆𝑁 − 𝑁𝜁0 2 𝐴𝑁−2 − 𝐾−2𝜁0

−2  = 𝑜 1  𝑎𝑠 𝐴

→ ∞. (3.12)
To this end, from Holder’s inequality , 
𝐸  𝐴− 

1

2 𝑆𝑁 − 𝑁𝜁0 2 𝐴𝑁−2 − 𝐾−2𝜁0
−2  ≤ 𝐸1/2  𝐴−

1

4 𝑆𝑁 −

𝑁𝜁04𝐸1/2𝐴𝑁−2−𝐾−2𝜁0−22. (3.13)  

From (3.10) and lemma 5 of Chow and Yu (1981), 

  𝐴−
1

4 𝑆𝑁 − 𝑁𝜁0  
4

: 𝐴 ≥ 1 is uniformly integrable. (3.14) 

From the definition of N at (3.3), 𝐴𝑁−2 ≤  𝐴
1

2 𝐾𝑆𝑁   −1.

Hence, using the dominated ergodic theorem of
MarcinKiewicz and Zygmund [see Chow and Teicher 
(1978,p.35)],    𝐴2𝑁−4 : 𝐴 ≥ 1 is uniformly integrable. 
(3.15) 

Since 𝐴𝑁−2
 𝑎𝑠  
   𝐾−2𝜁0

−2 as 𝐴 → ∞, using (3.14) and (3.15), 
we obtain from (3.13) that  

𝐴− 
1
2𝐸  𝑆𝑁 − 𝑁𝜁0 2 𝐴𝑁−2 − 𝐾−2𝜁0

−2   

≤ 𝑂 1  𝐸1/2  𝐴𝑁−2 − 𝐾−2𝜁0
−2  

2

= 𝑜 1 , 𝑎𝑠 𝐴 → ∞ , 
and (3.12) holds. This completes the proof of the theorem. 

In the next theorem, we prove the bounded nature of the 
‘regret’.

Theorem 2 For the sequential procedure(3.3), 

𝐥𝐢𝐦
𝑨→∞

𝑅𝑔 𝐴 = 𝑜(𝐴 
1
2).

Proof 
From (3.2) and (3.4), substituting the values of 𝑅𝑛0

 𝐴  and 
𝑅𝑁 𝐴 in (3.6), we get  

 𝑅𝑔 𝐴 = 𝐸   𝑆𝑁 − 𝑁𝜁0 2 𝐴𝑁−2 − 𝐾−2𝜁0
−2  

+ 2𝐴 
1
2𝐸   𝐴− 

1
2𝑁 − 𝐾𝜁0  . (3.16)

By Holder’s inequality, 
𝐸   𝑆𝑁 − 𝑁𝜁0 2 𝐴𝑁−2 − 𝐾−2𝜁0

−2  

≤  𝐴 
1
2𝐸

1
2  𝐴−

1
4 𝑆𝑁 − 𝑁𝜁0  

4

𝐸
1
2  𝐴𝑁−2

− 𝐾−2𝜁0
−2  

2
.

 (3.17) 
Utilizing (3.14), (3.15) and (3.17), we obtain from (3.16) 
that, as 𝐴 → ∞,  

𝑅𝑔 𝐴 ≤ 𝐴 
1
2𝑜 1 ,

and the theorem follows. 
Now we consider the case when 𝜎 is also unknown. In this 
situation, we use the estimator of 𝜎2

as

𝜎 𝑛
2 = 𝑛−1   𝑌𝑖 − 𝑌 𝑛 2

𝑛

𝑖=1

 , 
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where 𝑌𝑖 = log 𝑋𝑖  and 

𝑌 𝑛 = 𝑛−1  𝑌𝑖

𝑛

𝑖=1

 .

Now we define the following stopping rule in conformity 
with (2.3). i.e.,  

𝑁 = inf  𝑛 ≥ 𝑚: 𝑛 ≥ 𝐴
1
2 𝑋 𝑛  𝑒𝜎 𝑛

2
− 1 

1/2

 

 =   









 2
1

ˆ22
1

1:inf
2
nenASmn n

 , (3.18)  

where ‘m’ is the starting sample size and is such that, for 
0 , 

4
1

A   m = 




 2

1
Ao as A . 

The ‘risk-efficiency’ of the sequential procedure (3.18) is
defined by  

 AR e  = 
 
 AR
AR

on

N  , (3.19)  

where  AR N  =  2NXEA  + E (N). (3.20) 

and  AR
on  = 2 2

1

AK . (3.21) 
In the following theorem, we prove that the sequential 
procedure (3.18) is ‘asymptotically risk-efficient.’

Theorem 3 For the sequential procedure (3.18). 
 ARlim eA 

 = 1.

Proof  
Combining (3.19), (3.20) and (3.21), we can write  

 AR e  = 

1

2
1

AK2















   2

NXAE   + 

1

2
1

AK2















  E (N)

 = 

1

2
1

AK2

















    




 




1222
N 1eANNSE

2

 + 

 2

1

2
1

AK2















  E (N). (3.22)  

From theorem 2 of Chow, Robbins and Teicher (1965), it is
easy to see that 

NA 2
1

 s.a   2
1

1e
2

  as A .  
Under the condition imposed on the starting sample size ‘m’,
it follows from lemma 3 of Martinsek (1983) that, for p > 0,


















 1A:NA

p
2

1
is uniformly integrable. (3.23) 

Applying (3.23), we conclude that  

1

2
1

AK















  E (N) =  

1
2

1
1e

2








  





  NAE 2

1
  

 1, as A . (3.24) 
From (3.22) and (3.24), we see that the theorem follows, if
we can prove that 

2
1

A


    




 




1222 1
2 eANNSE N  = 

o(1), as A . (3.25) 
To this end, by Holder’s inequality, 

   












 


 1222

N
2

1
1eANNSAE

2

  
4

N
4

1
2

1
NSAE 



 
21222

1
1eANE

2







 




 (3.26) 
From lemma 5 of Chow and Yu (1981), 

  









 1A:NSA
4

N
4

1
is uniformly integrable. 

(3.27) 

Since 2AN   s.a   12 1e
2 

  as A , we
obtain from (3.26), on using (3.23) and (3.27), that 

   












 


 1222

N
2

1
1eANNSAE

2

  O(1)  
21222

1
1

2







 


  eANE .  

 = o(1), as A , 
and (3.25) holds. This completes the proof of the theorem. 
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