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Abstract: Extreme rainfall events due to heavy rainfall can vary greatly. This variability can be explained by different factors such as
season of the year, temperature and local topography, among others. Statistical models using Extreme Value Theory have been used to
model extreme weather events which assume stationarity of rainfall process. However, the stationarity requirement is not met in
reality for rainfall data because rainfall time series usually exhibit seasonality. A stochastic model based on a non- homogeneous 
Poisson Process (NHPP) charactezised by a time-dependent intensity of rainfall occurrence, is employed in to study the seasonal and 
trend effects on extreme events modelling of daily rainfalls exceeding prefixed threshold value. Dataset from 14 Tanzania rainfall 
stations over the period 1981–2014 was used. The Akaike information criterion and likelihood ratio test methods were used to select 
NHPP model that best fits the data. The results showed a good fit for time–varying intensity of rainfall occurrence process by the first 
order harmonic Fourier law and improved analysis as well as modelling of extreme rainfall using NHPP intensity function.
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1. Introduction 

Extreme rainfall events cause significant damage to
agriculture, ecology and infrastructure, disruption of human 
activities injury and loss of life [2, 3, 7]. In recent years, 
floods have become more frequent in Tanzania which 
necessitate investigating their cause.  

For example, in December 2009 and January 2010, Mkonda 
river banks burst, affected Kilosa town and led to the
displacement of about 24,000 people. In Mpwapwa and 
Kongwa districts, an estimated 19,000 persons were 
displaced [1] and the cost of rehabilitation estimated at TShs 
329 billion. The April 2011 floods in Kilombero valley 
demolished 663 houses in Morogoro region and submerged 
2,942 making about 9,000 people homeless. The extreme 
rainfall in January 2008 led to floods which displaced 
hundreds of people and flooded mining pits in Mererani 
resulting in over 70 deaths [2]. In all these context, modeling 
these extreme rainfall events is of great interest to public 
safety alert, life insurance and protection, the design of civil 
infrastructures, town and regional planning, management
and loss mitigation. 

Different approaches have been used to define extreme 
rainfall events, with considerable discrepancies between the 
definitions of extreme. These definition includes; annual 
maximum [3], percentile based [4, 5] or duration of wettest 5 
days of the year [6] and thresholds rainfall exceedances [7]. 
For our study, we define extreme rainfall event as rainfall 
amount exceeding the 99th percentile of the distribution of

seasonal rainfall.

Seasonality is one of the main feature of rainfall time series. 
The rainfall over Tanzania is driven mainly by the migration 
of the Inter–Tropical Convergence Zone (ITCZ) [8] which is
over Tanzania during October–December (OND) and 
March–May (MAM) making Tanzania to have two rainy 
seasons. The southern, western and central parts of the 
country experience one wet season that starts from 
November lasting up to April or May (NDJFMA) [9]. 

Rainfall variability in Tanzania have been reported in
previous studies. Kassile et al.[10] examined the evolution of
rainfall over central Tanzania focusing on Dodoma region 
and did not find statistically significant trend in the amount
of rainfall over the period 1981–2010. Hamisi [11] analyzed 
the monthly rainfall trends and variability over Tanzania 
from 1982 to 2012 and found significant decreasing trends 
for all stations except in Mwanza, Sumbawanga, and 
Dodoma. In a recent related study by Ngailo et al. [12] of
extreme events over Tanzania found increasing intensity of
extremes rainfall and decreasing return periods over different 
regions. Studies employing Non-homogeneous Poisson 
processes (NHPP) modeling of extreme rainfall over 
Tanzania are limited which is covered in this work.

NHPP models have become an important tool for modeling 
non stationary processes. It is considered as a more realistic 
method than the classic ones to model different day-to-day 
random phenomena. This is due, to the fact that they consider 
the intensity function as time-dependent [13]. The major 
feature of Non-Homogeneous Poisson Process (NHPP) is
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that the occurrence of event is allowed to change with time 
and also related to the location. Thus the occurrence rate of
an event is function of time λ(t). The NHPP modeling has 
been applied in many disciplines e.g. in meteorology for 
modeling inter- arrival times of rainfall events [14], 
estimating containership arrival rate in harbor operation and 
management [15], storms prediction [16], modeling of hot
extreme events [17], and by Sirangelo et al. [18] to analyze 
occurrence of rainfalls. 

The major objective of this work is to assess the possibility 
of trend in extreme rainfall events over Tanzania. The 
extreme rainfall events behavior are characterized by NHPP 
to represent the occurrence. We incorporated a linear 
transform function of seasonal and trend covariates in the 
NHPP model with the peak over threshold (POT) approach 
to the daily rainfall data. The rest of the paper is presented 
as, section 2 presenting study methods and data sources, 
section 3 discussing the results and conclusion in section 4.

2. Data Sources 

In this study we used daily accumulated rainfall, as observed 
from a rain gauge network of Tanzania rainfall stations for a 
period from 1961 to 2014 obtained from Tanzania 
Meteorological Agency (TMA). These rain gauges provide 
good coverage of the area [19] and allow investigation of
rainfall variability at the regional scale [19, 20]. Since 
different parts of Tanzania have different rainfall seasons 
(i.e. November–April (NDJFMA), October– December 
(OND) & March–May (MAM)), our analysis took the 
seasonality into account and allowed NHPP model 
parameters to be seasonally dependent.

3. Methods 

3.1 Non Homogeneous Poisson Process Model(NHPP)

The Non-homogeneous Poisson Process (NHPP) model has 
been used to model the occurrence of events in time. The 
NHPP is the generalization of the Poisson process [21, 22,
23] which is characterized by a deterministic intensity 
function describing how the rate of the process changes in
time [24]. Thus, it is reasonable to model the extreme rainfall 
occurrences by a NHPP, where points occur randomly in
time, at a variable rate which depends on influential 
covariates such as seasonality and trend by incorporating 
these covariates in NHPP model. We model the intensity 

( )t , where t  denotes time measured on a daily scale, as a 
deterministic function and consider seasonality and trend 
terms ( 31)tR  and ( 15)tR of rainfall, corresponding to the 
MAM, OND and NDJFMA seasons of the harmonic 
functions describing the annual cycle as described by the 
model equation 1. 
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where n is the optimal number of harmonics for the season, 
a0, ak , bk , c1 and c2 are unknown parameters,, Rx31 and 
Rx15 are trend terms , defined as a 31 and 15 days moving 
average centered in each day, which provide information on
the local state of rainfall.

If t is time, we assume the counting process, N (t) (i.e. 
counting the total number of events that have occurred up to
time, t) is an NHPP with intensity function, λ(t) and we
require N (t) to be considered a counting process for t ≥ 0 . 
If t < s over the interval [t, s], such that N (0) = 0, then N (s) 
− N (t) is the number of events that have occurred in the 
interval [t, s]. We define N (t) as a Poisson process, [25] if; 
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The intensity function ( )t , a parameter of interest in this 
study, describes how Poisson Process changes in time and 

( )t  denotes the expected number of events of NHPP over 
time interval [0, ]t . 
For NHPP, 

E[N (t)] = Λ(t) (4) 
where, 
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(5) 
The parameter estimation is performed by maximum 
likelihood (section 3.2) and the selection of the variables to
be included in the linear predictor is based on the likelihood 
ratio test (section 3.3.2). 

3.2. Maximum Likelihood Estimation 

Given a NHPP with intensity function λ(t) in equation (1) is
observed over a fixed interval (0, T ). For each 0 < t1 < t2 , · 
· · , < tn−1 < tn ≤ T . Our intention is to find the function 
λ(t) that maximizes the Likelihood L(λ), then likelihood 
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function is given by:
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with ( ; )t  is defined as: 
λ(t; β) = exp(XT (t)β)

where, X T (t) is the row vector of covariates at time t 
known as seasonality and trend, β is the vector of parameters 
which are (ak , bk , c1 and c2) and A is the space where the 
point process is defined. Assuming that λ(t); β) is constant
in each time unit, the expression of the log likelihood is: 
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where T is the length of the observation period. The 

maximum likelihood (ML) estimation of the 


can be done 
using numerical optimization method in R.

3.3. Model Selection 

In model selection, the aim is to find the smallest set of
variables which provides an adequate description of the data. 
Several criteria are commonly used for model selection [26] 
e.g. the Aikaike Information Criterion, AIC (sec.3.3.1) and 
the Likelihood Ratio Tests, LRT (sec.3.3.2) have used in this 
work. 

3.3. 1.Akaike Information Criteria 
The AIC is a measure of goodness of fit that takes the 
number of fitted parameters into account and is an effective 
method of choosing between a given set of models [27]. A 
true model does not necessarily have to be in the set because 
the goal is to select the best approximating model of set [28]. 
It is widely used as a measure for selecting the best among 
competing models for a fixed data set e.g. in ecology [29]; 
wildlife [30] and many others. The chosen model is the one 
that minimizes the Kullback-Leibler distance between the 
model and the truth (that is a model that minimizes the loss 
of information) [31, 32]. The AIC is described by equation 
(8). 

AI C = 2K − 2 ln(L) (8) 

where, L denotes the maximum log–probability of the 
estimated model and is the likelihood evaluated in the 
estimator; K is the number of estimated parameters in the 
approximated model [33]. The AIC scores are often shown 
as ∆AI C scores, or difference between the best model 

(smallest AIC) and each model (so the best model has a ∆AI
C of zero). Therefore the model with the lowest AIC is the 
best model among all models specified for the data at hand.

3.3.2. Likelihood Ratio Test
Likelihood is the probability of the observed data given a 
selected model [32] and measures how well the data supports 
that particular value in the model. In this work we make 
comparison between the two adjustments with and without 
seasonal and trend covariates, the best parameter was 
identified by implementing the Likelihood–ratio Test (LRT ).
The LRT allows us to compare the models with and without 
covariates as explained by Drazek [13] and it is a statistical 
proof of the accuracy of the fitting between two models, 
where one fits better than the other [34]. The test statistics 
(eqn. 9) is: 

LRT = 2(ln L1 − ln L0 ) (9)

where, ln L0 is the maximum log–likelihood under the null 
model and ln L1 is the maximum log–likelihood under the 
alternative model. The null model has fewer parameters 
than the alternative model (without covariates). If the null 
model can be viewed as a special case of the alternative 
model, then statistical theory allows use of the χ

2 
distribution to compute a p–value. LRT calculates for each
covariate in the model the p-value of a likelihood ratio test 
comparing the original fitted NHPP with the model 
excluding that covariate from the linear predictor. The 
covariate with p–value < 0.05 is selected as the best 
covariate and is included in the model.  

In this work, Statistical programming software, R was used to
graphically and numerically described the data as well as
estimating the intensity functions. 

4. Results and Discussion 

4.1 General characteristics of Extreme Rainfall 
occurrences

The rainfall time series for: Dar es Salaam on both seasons; 
Morogoro (MAM); Sumbawanga, and Dodoma (NDJFMA)) 
are presented using figure (1). For the period 1981–2014,
results show that there was a changes in the intensity and 
frequency of extreme rainfall events. For Dar es Salaam on
both seasons (MAM) and (OND) we can observe a more 
frequent occurrence of rainfall amount over threshold from 
the beginning of 1990’s towards the end of the period.
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Figure 1: Daily rainfall series for MAM, OND and NDJFMA seasons 

4.2. Trend Analysis on Rainfall Amounts

We used the Mann Kendall (MK) trend test as a non-
parametric test to investigate the trend of extreme rainfall 
amounts over Tanzania seasonally. The trend analysis were 
split into seasons that are defined according to the Tanzania 
climatological criteria, from November to April (NDJFMA), 
from March to May (MAM) and from October to December 
(OND).Table 1 shows the P-values of trend test and tau in
brackets of every station. However, the variability in the data 
in some regions based on MAM, OND and NDJFMA 
seasons indicates significant increasing trend. This can be
confirmed by the p-values < 0.05 in table 1 and in some 
regions P-values are close to zero particularly in
Sumbawanga and Arusha. In Bukoba, Morogoro, Zanzibar, 
Pemba, Iringa, Songea and Mahenge shows the trend was 
insignificant.
  

Table 1: MannKendall Trend Test 
Region (MAM) (OND) (NDJFMA)
Dar es
Salaam

0.02(-0.05) 0.004(-0.04)

Tanga 0.56(0.01) 0.01(-0.04)
Mtwara 0.56(0.01) 0.00004(-0.04)
Bukoba 0.93(0.00) 0.63(-0.006)
Kigoma 0.38(-0.01) 0.49(-0.009)

Morogoro 0.09(-0.02) 0.08(-0.03)
Zanzibar 0.14(-0.02) 0.35(-0.01)

Pemba 0.85(-0.03) 0.26(-0.02)
Iringa - - 0.77(0.00)

Arusha 0.00(-0.10) 0.03(-0.03)
Songea - - 0.18(-0.01)

Sumbawanga - - 0.00(-0.10)
Mahenge - - 0.94(0.00)
Dodom - - 1.04(-0.02)

4.3. Analyzing Extreme Rainfall Events

In order to fit a model based on a point process, an
occurrence point must be associated to each event; we
choose the day of the spell where the maximum tR value is
observed. Extreme Rainfall Event (ERE) is defined as a 
spell, of arbitrary length, of consecutive days with their tR
(Rainfall) values exceeding an extreme threshold, we
selected a threshold of 99th percentile for the OND, MAM 
and NDJFMA daily rainfall data from 1961- 2014 and from 
1983-2014.The occurrence point is defined as the point
where maximum value of rainfall amount occurs within 
events. We have presented the number of events and number 
of exceedances over threshold in brackets are table 2 and 3 
for MAM and NDJFMA seasons for Dar es Salaam, Tanga, 
Iringa, Songea and Dodoma to represent other regions. 
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Table 2: Extreme rainfall Events in Tanzania for MAM 
season 

SN Decade Events in Dar es Salaam Events in Tanga
1 1961-1970 30(31) 24(29)
2 1971-1980 18(20) 23(29)
3 1981-1990 25(29) 28(39)
4 1991-2000 29(32) 26(30)
5 2001-2010 25(27) 22(24)
6 2011-2014 7(9) 7(7)

Table 3: Extreme Rainfall Events in Tanzania for NDJFMA 
season 

SN Decade Events in
Iringa

Events in
Dodoma

Events in
Songea

1 1984-1993 11(12) 25(25) 37(38)
2 1994-2003 23(24) 32(32) 38(38)
3 2004-2014 22(22) 24(24) 34(35)

The results from table 2 for Coastal regions shows that 
extreme rainfall events shows a slight increase in the 2nd to
the 4th decades, while in table 3 shows a slight increase in

extreme events in the 2nd and 3rd decades. Generally there 
are fluctuations in the number of events.  

The empirical occurrence rates on overlapping and disjoint
interval are also calculated. The occurrence rate is calculated 
as the number of points in the considered interval divided by
its length, and each rate is assigned to the mean point of the 
interval. Overlapping intervals are defined by a constant 
length (L). In this study we use the length of 92 days for 
MAM and OND and 182 days for NDJFMA seasons. The 
disjoint intervals can be specified by the number of intervals 
or by a constant length. All the intervals have the same 
length except the last one, which is shorter because the length 
is not a multiple of constant length. A plot of the empirical 
rate over time were performed. The results show that, the 
occurrence rate is neither increasing nor decreasing (it’s
constant) as shown in figure 2. The maximum excess 
position defines the occurrence point in the point process. 
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Figure 2: Empirical occurrence rates on overlapping and disjoint intervals

4.4 Fitting the model

Due to the characteristics of the ERE occurrence, seasonality 
behavior and trend was modeled by a Point Process with a 
non homogeneous intensity. The intensity function was 

modeled using equation (1), As an exploratory step to check 
which covariates are more influential, we carried out an
automatic stepwise selection by AIC in both directions. 
First, the initial model which only includes the intercept was 
fitted for Dar es Salaam and Mahenge to present other 

Paper ID: ART20162322 DOI: 10.21275/ART20162322 1863



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 10, October 2016 
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

regions are as shown in figure 3 which shows no variations in intensities. 

Figure 3: Bar graph plotted without covariates 

The AIC values for MAM season was calculated using 
optimization method in R and result is given in table 4.

Table 4: Automatic stepwise selection by AIC 
Region Cos Sin Rt31 Rt15

Dar es Salaam 1239.40 1233.83 122.94 1234.97
Tanga 1190.37 1204.52 1207.98 1208.29

Mtwara 864.19 858.01 889.37 889.37
  
According to the AIC for the MAM season, in Dar es
Salaam, the best model should only include the Rt31
covariate, for Tanga, the best model should only include the 
cosine covariate and for Mtwara, the best model should only 
include the sine covariate as shown in table 4. We combined 
also a selection based on the likelihood ratio test, using a 
forward stepwise approach controlled by the model for all 
stations, the results are shown in table 5.

Table 5: Likelihood ratio test in both directions 
Region ML Ratio Test P-Value
Dar es Salaam 21.39 0
Bukoba 14.36 0
Mtwara 32.92 0

Since the p-value is 0, the first order harmonic is included 
and the inclusion of the second order harmonic is checked. 
After the inclusion of the second order harmonics for Dar es
Salaam; ML ratio test statistics is 1.14 and P-value is
0.565.The p-value 0.565 rejects the inclusion of the second 
order harmonic. The final model resulting from this forward
covariate selection process includes the first order harmonic 
term and trend term Rt31.

The model with selected covariates were fitted in R and the 
result of the fitted intensity were plotted as shown in figure 4.

Dar es Salaam(MAM)  

 Arusha(MAM) 

 Iringa (NDJFMA) 

  

 Morogoro (MAM)  
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Sumbawanga (NDJDMA) 

  
Figure 4: Poisson rate fitted for the observed time interval 
1961 − 2014 and 1984 − 2014.

We can observe general evolution of the fitted rate of some 
regions showing slight increasing trend and majority of the 
regions showing a constant trend. This confirms with the 
values of extreme events in table 2 and 3 which shows slight
increase in extreme events in the second and third decades 
and fluctuations behavior . 

In comparing the original fitted NHPP with the model 
excluding the covariate from the linear predictor and the 
model with covariates the Likelihood Ratio test that
calculates the p-values of a likelihood ratio test (LRT) for 
each covariate in the model were used. The p-values of the 
LRT comparing the initial model and the model without the 
covariates is given in table 6.

Table 6: LRT P-Values 
p-Value Dar es Salaam Tanga Songea Bukoba
Cosine 0.00 0.00 0.00 0.00
Sine 0.00 0.00 0.01 0.01
Rt31 0.02 0.50 0.42 0.17

For all seasons and all regions the P-Value for first harmonic 
seasonality is statistically significant. In order to make 
comparable the empirical and the fitted occurrence rates, a 
cumulative fitted rate were used. This means, the fitted 
values are the sum of the intensities fitted by the model over 
the same interval where the empirical rates have been 
calculated. The cumulative curves shows statistically
significant seasonal features. Thus, the temporal variation of
rainfall occurrence intensity λ(t) are well expressed through 
the Fourier series as a function of period P = 1 year, as
shown in figure 5.

Figure 5: Empirical and Fitted intensities calculated on
disjoint seasonal intervals 

Fitting of our model requires to calculate the coefficients for 
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intensity function λ(t) (fitted parameters) and their 
corresponding confidence intervals. Table 7 contains the 
values of the fitted parameters which were estimated are 
with their standard errors in brackets. 

Table 7: Parameter Estimation 
Region a0 a1 b1 c1

Dar es Salaam -7.93(1.06) -1.57(0.49) 4.13(1.09) 0.14(0.05)
Tanga -6.94(1.05) -2.26(0.54) 2.84(1.03) 0.06(0.08)

Mtwara -7.20(1.35) 0.51(0.43) 3.67(1.42) -0.02(0.07)
Bukoba -7.81(1.39) -2.07(0.64) 3.72(1.44) 0.09(0.06)
Iringa -6.69(0.68) 1.72(0.42) 2.03(0.72) 0.20(0.16)
Songea -6.31(0.57) 2.31(0.38) 2.17(0.58) 0.02(0.03)
Arusha -12.04(2.35) -1.53(0.75) 8.20(2.43) 0.28(0.12)

Mahenge -4.91(0.35) 1.14(0.21) 1.05(0.43) 0.16(0.05)
Sumbawanga -5.58(0.57) 1.54(0.40) 0.57(0.65) 0.12(0.09)

Confidence intervals for λ(t)=exp(v(t)) was obtained by
transforming the confidence intervals for λ(t)=X T(t)β. The 
transformation approach applies an exponential 
transformation to the confidence interval of the linear 
predictor. The 95% confidence intervals of the parameters, 
based on the profile likelihood and on the properties of the 
ML estimators, was obtained, given in table 8.

Table 8: Confidence intervals for the intensity 
Region a0 a1 b1 c1

Dsm -7.93
[10.12,5.93]

-1.57
[-2.51,0.70]

4.13
[2.07,6.34]

0.14
[0.03,0.2]

Tanga -6.94
[-9.09,-4.96]

-2.26
[-3.40,-1.25]

2.84
[0.89,4.92]

0.06
[0.12,0.21]

Mtwara -7.20
[-10.02,4.70]

0.51
[-0.35,1.32]

3.67
[1.03,6.62]

-0.02
[-0.18,0.10]

Bukoba -7.81
[-10.52,5.09]

-2.07
[-3.33,-0.82]

3.72
[0.90,6.53]

0.09
[0.03,0.21]

Iringa -6.69
[-8.20,-5.52]

1.72
[0.99,2.67]

2.03
[0.73,3.57]

0.20
[0.14,0.48]

Songea -6.31
[-7.42,-5.20]

2.31
[1.57,3.06]

2.17
[1.08,3.26]

0.02
[0.03,0.08]

Arusha -12.04
[-17.11,-7.82]

-1.53
[-3.11,-0.15]

8.20
[3.44,12.96]

0.28
[0.04,0.5]

Mahenge -4.91
[-5.65,-4.26]

1.14
[0.76,1.59]

1.05
[0.19,1.90]

0.16
[0.06,0.2]

Sumba
wanga

-5.58
[-6.86,-4.60]

1.54
[0.86,2.44]

0.57
[-0.64,1.95]

0.12
[0.06,0.28]

4.5. Model Validation 

To validate the model ,we fitted NHPP with intensity λ(t) 
using residuals. There are two types of residuals; uniform (or 
exponential) and raw residuals. Both of them are useful and 
provide complementary information. The validation analysis 
was done using the uniform residuals which consists 
Kolmogorov-Smirnov test and qqplots with a 95%
confidence band based on a beta distribution. The residual 
plots were plotted which comprises the serial correlation 
based on the Pearson correlation coefficient, Ljung-Box tests 
and a lagged serial correlation . The plots for Bukoba for 
both seasons are plotted to represent other regions. 

Figure 6: Validation plots of Uniform residuals of the final NHPP model
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The results of the autocorrelation analysis and the uniform 
behaviour are satisfactory, as shown in figure 6. However the 
validation process was found to be satisfactory for the model 
fitted to Dar es Salaam, Bukoba and Tanga data. Concerning 

the NHPP checking, the uniform qq-plot, are shown, shows a 
linear behaviour inside the confidence band and the p-value 
of the corresponding Kolmogorov–Smirnov test is 0.263 for 
Dar es Salaam and 0.04 for Bukoba.

Figure 7: Uniform qqplot with beta confidence bands for Dar es Salaam 

Figure 8: Uniform qqplot with beta confidence bands for Mahenge 

5. Summary and Conclusion 

In this paper a Non-homogeneous Poisson model has been 
used for the stochastic interpretation of the seasonal and 
trend variability of extreme rainfall occurrence process in 14
rain gauges selected data series in Tanzania. Analysis of
individual stations reveal an increasing trend in accumulated 
rainfall amount. The procedure applied to the analysis time 
interval 1961- 2014 and 1983-2014 shows that a Fourier 
series with single harmonics represents a good fit for 
explaining the variability of the occurrence intensity function 
λ(t) for all the rain gauges. The fitted model shows an
important increase of the ERE occurrence rate from the 90’s,
and even greater from the late 2010’s. This result is obtained 
by carrying out both a classical approach concerning model 
validation and a more robust technique related to the 
property that a non- homogeneous Poisson process was used. 

The theoretical distribution so obtained has been adopted to
verify possible changes of λ(t) function for the validation 

period, by using the autocorrelation analysis and uniform 
residuals approach to generate synthetic series of rainfall 
occurrences. The results showed that the differences between
the observed and the fitted λ(t) behaviour were statistically 
significant.  

Moreover, a statistical test based on Mann Kendal test on
rainfall amount has shown that, there is a statistical 
significant increasing trend in most regions in Tanzania. 
However, there is no statistically significant evidence of
extreme rainfall occurrence process changes for more recent 
periods in the analyzed regions. However, for each station, 
estimated fitted parameters and confidence intervals are 
statistically significant, since all the estimates are inside their 
95% confidence interval.

Further applications of the non-homogeneous Poisson model 
is needed to model extreme rainfall intensities and the 
changes in variance arising from underlying seasonal 
behavior. 

Paper ID: ART20162322 DOI: 10.21275/ART20162322 1867



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 10, October 2016 
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

References 

[1] IFRC, International federation of red cross and red 
crescent societies. Tanzania: Floods (2010).

[2] T. Z. A. Operations, Tanzania : Floods (February) 
(2010) pp. 1–6.

[3] A. Davison, Modelling of Extreme Rainfall in Space and 
Time (2011) pp.1–24.

[4] L.-f. Chu, M. McAleer, C.-C. Chang, Statistical 
Modelling of Extreme Rainfall in Taiwan, Tinbergen 
Institute, Tinbergen Institute Discussion Papers: 13-
006/III, 2013 15
(December,2012),(2013pp.6536.doi:10.7763/IJESD.201
3.V4.302. 

[5] I. Mugume, S. Shuanghe, T. Sulin, G. Mujuni, Analysis 
of temperature variability over desert and urban areas of
northern china, J Climatol Weather Forecasting 4 
(162) (2016)2. 

[6] Y. Liu, P. Kokic, Predictive Inference for Spatio-
temporal Precipitation Data and Its Extremes (2014) 1–
27arXiv:1411.4715.  

[7] A .C. Davison, R. Huser, Statistics of Extremes, Annual 
Review of Statistics and Its Application-
doi:10.1179/003962659792003612. 

[8] A. Kijazi, C. Reason, Relationships between 
intraseasonal rainfall variability of coastal Tanzania and 
Enso, Theoretical and applied climatology 82 (3-4)
(2005) 153–176.

[9] A. L. Kondowe, Impact of Convective Parameterization 
Schemes on the Quality of Rainfall Forecast over 
Tanzania Using WRF-Model (June) (2014) 691–699.

[10] Kassile, Trend Analysis of Monthly Rainfall Data in
Central Zone, Journal of Mathematics and Statistics 9 
(1) (2013) 1–11. doi:10.3844/jmssp.2013.1.11.

[11] J. Hamisi, Study of rainfall trends and variability over 
Tanzania (PhD thesis).

[12] T. J. Ngailo, J. Reuder, E. Rutalebwa, S. Nyimvua, M.
d.S. Mesquita, Modelling of extreme maximum rainfall 
using extreme value theory for tanzania, International 
Journal of Scientific and Innovative Mathematical 
Research 4 (3) (2016) 34–45.

[13] L. C. Drazek, Intensity estimation for poisson processes, 
Ph.D. thesis, The University of Leeds (2013). 

[14] C. Agnese, G. Baiamonte, C. Cammalleri, D. Cat Berro, 
S. Ferraris, L. Mercalli, Statistical analysis of inter-
arrival times of rainfall events for Italian sub-alpine and 
mediterranean areas, Advances in Science and
Research 8 (1) (2012) 171–177.

[15] Y.-H. T. Hsien-Lun Wong, Shang-Hsing Hsieh, 
Application of non-homogeneous poisson process 
modeling to containership arrival rate, 2009 fourth 
international conference on innovative computing, in- 
formation and control.

[16] G. B. Malika Chassan, Jean-Marc Aza¨ıs, N. Suard, 
proportional hazard model for storm occurrence risk. 

[17] J. Asin, A. Cebrian, Modeling and forecasting extreme 
hot events in the central ebro valley, a continental-
Mediterranean area, global and planetary change (57), 
pp 43-58.

[18] B. Sirangelo, E. Ferrari, D. De Luca, Occurrence 
analysis of daily rain- falls through non-homogeneous 

poissonian processes, Natural Hazards and Earth 
System Sciences 11 (6) (2011) 1657–1668.

[19] G. Villarini, W. F. Krajewski, Empirically-based 
modeling of spatial sampling uncertainties associated 
with rainfall measurements by rain gauges, Advances in
Water Resources 31 (7) (2008) 1015–1023.

[20] D. I. F. Grimes, E. Pardo-Iguzquiza, R. Bonifacio, 
Optimal areal rainfall estimation using raingauges and 
satellite data, Journal of hydrology 222 (1) (1999) 93–
108

[21] L. M. Leemis, Nonparametric estimation of the 
cumulative intensity function for a non homogeneous 
poisson process, Management Science 37 (7) (1991) 
886–900.

[22] S. Lee, J. R. Wilson, M. M. Crawford, Modeling and 
simulation of a non- homogeneous poisson process 
having cyclic behavior, Communications in Statistics-
Simulation and Computation 20 (2-3) (1991) 777–809.

[23] Y. Gao, A. Parameswaran, Finish them!: Pricing 
algorithms for human computation, Proceedings of the 
VLDB Endowment 7 (14) (2014) 1965–1976.

[24] J. H. Cha, M. Finkelstein, New shock models based on
the generalized polya process, European Journal of
Operational Research 251 (1) (2016) 135–141.

[25] M. Liao, Applied stochastic processes, CRC Press, 2013.
[26] S. I. Vrieze, Model selection and psychological theory: a 

discussion of the differences between the akaike 
information criterion (aic) and the bayesian information 
criterion (bic)., Psychological methods 17 (2) (2012) 
228.

[27] H. Bozdogan, Model selection and akaike’s information 
criterion (aic): The general theory and its analytical 
extensions, Psychometrika 52 (3) (1987) 345–370.  

Paper ID: ART20162322 DOI: 10.21275/ART20162322 1868




