
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 10, October 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Survey on Dynamic Scheduling Method for
Heterogeneous, Multi-Core Processors

Dr. S. Sai Satyanarayana Reddy1, Debashree Rupalin2, K. Sravanthi3

1Professor, Vardhaman College Of Engineering, Department of Computer Science and Engineering,
Shamshabad, Hyderabad, Telangana, India -501218

2Assistant Professor, Vardhaman College Of Engineering, Department of Electronics and Communication
Engineering, Shamshabad, Hyderabad Telangana, India -501218

3Assistant Professor, Vardhaman College Of Engineering, Department of Electronics and Communication
Engineering, Shamshabad, Hyderabad, Telangana, India -501218

Abstract: Heterogeneous system create unlimited opportunities and challenges in the field of parallel processing or parallel computing
for design of algorithms, partitioning and mapping of parallel tasks where scheduling plays an important role. In the other hand multi
core processors /multi core technologies is offering a great potentials for computational power for scientific and industrial applications,
however another challenge for software development. In this work, we provide a survey on current multi core technology and threaded
building blocks. The goal of scheduling is to utilize all the processors with minimum execution time by proper allocation of tasks to the
processors. Scheduling of task gives the high performance in heterogeneous system. We motivate the necessity of dynamic scheduling
and summarize the challenges arising from high performance heterogeneous computing. Because of two main factors such as
performance and power consumption, Heterogeneous multi core processors (HMP) are better to schedule the job as compare to
homogeneous multi core processors.

Keywords: Multi core processors; Heterogeneous systems; Task Scheduling and Load balancing; Threaded building blocks

1. Introduction

Heterogeneous multi core processor which may expose a
common ISA (Instruction set architecture) but different in
size, feature, performance and energy consumption. It has
potential to reduce the power consumption and improve the
performance. In the architecture individual cores have
different computational capabilities though architecture
consists of a combination of small and big cores. Another
challenge that it opens up the possibilities for thread
scheduling , load balancing and energy management.

The HMP decreases the frequency of the processors which
reduce the temperature of the system. In these processors the
amount of parallelism increased because there is a
simultaneous execution of instructions on individual cores.
The scheduler can dynamically select the relevant core to
fulfill power and performance requirements. In general small
cores provide good performance for compute intensive
workloads.

2. Multi Core Processor

A multi core processor is one which combines two or more
independent processors into a single package often a single
integrated circuit.
An independent processor = a core
So, More cores = better performance
Multiple cores are made to work in parallel to achieve better
performance.

It has a lot of advantages such as,
a) Performance upgrade, it means if each core is working at

say 2.5 GHz, then a dual core processor can work at

speeds from 4-4.5GHz,which is never achievable using a
single core processor.

b) Low power usage and overheating issues.
c) Multi core processor gave rise to multi core programming

which is said to be an important leap in software
development.

 2.1 Structure of a Multi-Core Processor

A simple multi-core consists of 2 independent working
processors. Each thread is assigned to each and individual
respective cores. All the cores use a common shared L2
Cache which is connected to main memory (RAM).

Figure 1: Multi core processor

3. Heterogeneous System

A Heterogeneous computing system consists of a number of
autonomous and independently scheduled heterogeneous
computers. A primary objective in many research projects
dealing with heterogeneous computing is the minimization of
the job completion time. It consists of applications running
on a platform that has more than one computational unit with
different architectures, such as a multi-core CPU and a many

Paper ID: ART20162232 684

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 10, October 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

core GPU. A Heterogeneous system involves multiple
heterogeneous modules that interact with one another to
solve a problem. In a heterogeneous system applications
have sub tasks that have diverse execution requirements. The
subtasks must be assigned to machines (processors) and
ordered for execution such that overall application execution
time is minimized.

Figure 2: Heterogeneous system architecture

4. Task Scheduling and Load Balancing

4.1 Task Scheduling

When a large multi user cluster needs to access very large
amount of data, task scheduling becomes a challenge. In a
heterogeneous CPU-GPU cluster with a complex application
environment, the performance of each job depends on the
characteristics of the underlying cluster. Therefore mapping
tasks onto CPU cores and GPU devices provides significant
challenges. This is an area of ongoing research.

The two key concepts involves in scheduling a task are
triggers and actions. A trigger causes a task to run and an
action is the work that is performed when the task is run.

In dynamic scheduling, tasks are allocated to processors
upon their arrival and scheduling decisions must be made at
runtime. Scheduling decisions are based on dynamic
parameters that may change during run-time. In dynamic
scheduling tasks can be reallocated to other processors
during the run time. The problem of scheduling is a weighted
directed acyclic graph (DAG) also called a task graph or
macro dataflow graph. The objective of this study include
proposing a set of benchmarks and using them to evaluate
the performance of a set of DAG scheduling algorithms with
various parameters and performance measures.
 Performance measurement : The performance of a DSA(

DAG scheduling algorithm) is usually measured in terms
of the quality of the schedule(total duration of the
schedule) and the running time of scheduling algorithm.
Sometimes the number of target processors allocated is
also taken as a performance parameter.

 Use of benchmarks: There does not exist any set of
benchmarks that can be considered as a standard to
evaluate and compare various DSAs on a unified basis.
The most common practice is to use random graphs. The
use of task graphs derived from various parallel
application. However, in both cases there is again no
standard that can provide a robust set of test cases.
Therefore, there is a need for a set of benchmarks that are
representative of various types of synthetic and real test
cases.

4.1.1 DAG Model
An example of Directed Acyclic Graph G = (V, E) where V
is a set of v nodes or vertices and E is a set of directed edges.
Source node of an edge is called parent node and sink node is
called child node

Figure 3 : A Sample DAG model

A node with no parent is called entry node. A node with no
child is called exit node. A sample DAG model is shown in
Figure 4 which contains T1, T2, T3, T4, T5, T6, T7, T8, T9 and
T10 tasks. T1 is an entry node which has no parent node and
T9 is an exit node , with no child node. T2 is a parent node of
T4 and T5.

4.2 Load Balancing

Our research in load balancing focuses on two primary areas
: object migration and seed balancing.

Object migration
 Periodic load balancing for bipartite object networks.
 Adaptive use of workstations clusters.
 Optimal object migration to handle background load
variation.

A major reason showing the deployment of parallel programs
is that efficient parallel programs are difficult to write. A
vast number of parallelizable applications do not have a
regular structure for efficient parallelization. Such
application require load balancing to perform efficiently in
parallel. The load in these applications may change over
time, requiring rebalancing.

Seed Load Balancing
Seed load balancing involves the movement of object
creation messages or seeds to create a balance of work across
a set of processors. Several variation of strategies are being
analyzed. Some strategies use averaging of loads to
determine how seeds should be distributed, while others use
receiver initiated strategies, where a processor requests work
from elsewhere when it is about to go idle. A strategy that
places seeds randomly when they are created and does no

Paper ID: ART20162232 685

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 10, October 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

movement of seeds thereafter is used as a baseline for
comparison on numerous benchmarks.

5. Threaded Building Blocks

Threading building blocks offers a rich and complete
approach to expressing parallelism in a C++ programs. It is a
library that helps the multi core processors for performance
and scalability without having to be a threading expert. TBB
implements work stealing to balance a parallel work load
available processing cores in order to increase core
utilization and therefore scaling. Initially, the workload is
evenly divided among the available processor cores. If one
core completes its work while other cores still have a
significant amount of work in their queue. TBB reassigns
some of the work from one of the busy cores to the idly core.
This dynamic capability decouples the programmer from the
machine, allowing application written using the library to
scale to utilize the available processing cores with no
changes to the source code or the executable file.
TBB is a C++ library developed by Intel for making use of
multi core processors.

It has some key features as follows,
 It relies on generic programming to deliver high

performance parallel algorithms with broad applicability.
 It provides a high level abstraction for parallelism.
 It facilitates scalable performance which strives for

efficient use of cache and balances load.
 It can be used in concert with other packages such as

native threads and OpenMp.

TBB parallel algorithms map tasks onto threads
automatically. Task scheduler manages the thread pool. It is
unfair to favor tasks that have been most recent in the cache.
Oversubscription and under subscription of core recourses is
prevented by task-stealing technique TBB scheduler.

6. Generic parallel Algorithms

1. Loop parallelization: -
Parallel_ for and parallel_ reduce are used as a load
balanced parallel execution of fixed number of independent
loop iterations.
Parallel_ for partitions original range into sub ranges and
deals out sub ranges to worker threads in a way that which
balances the load, scales and uses cache efficiently.
Parallel_ Scan is a template function that computes parallel
prefix (y[i] = y[i-1]).

A processor is a container for threads, as far as the OS
scheduler is concerned. Each process has at least one thread.
When there are multiple threads in a single process, there
may be extra rules on which threads get scheduled. Other
than that running multiple processes and running multiple
threads are mostly the same thing: after each time slice, the
OS scheduler determines the next thread to run for each CPU
core and switches the context to the thread.

7. Conclusion and Future Scope

 Tasks on different micro-architectures will be assigned.

 Traces can be generated by considering different micro-
architectures, profiling and performance counters.

 Scheduling algorithms will be designed and implemented.

References

[1] V. Jimi´enez, L. Vilanova, I. Gelado, M. Gil, G. Fursin,
and N. Navarro. Predictive runtime code scheduling for
heterogeneous architectures. In Proceedings of the 4th

International Conference on High Performance
Embedded Architectures and Compilers, pages 19–33.
Springer, 2008.

[2] F. A. Bower, et al. "The Impact of Dynamically
Heterogeneous Multicore Processors on Thread
Scheduling", IEEE Micro, pp 17-25, May 2008.

[3] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The
Impact of Performance Asymmetry in Emerging
Multicore Architectures. In Proceedings of the 32nd
Annual International Symposium on Computer
Architecture (Madison, Wisconsin USA, June 04–08,
2005). ISCA „05. IEEE Computer Society, Washington,
DC, USA, 506–517.

[4] M. Becchi and P. Crowley. Dynamic Thread Assignment
on Heterogeneous Multiprocessor Architectures. In
Proceedings of the 3rd Conference on Computing
Frontiers (Ischia, Italy, May 02–05, 2006). Computing
Frontiers „06. ACM, New York, NY, USA, 29– 40.

[5] K. Hoste and L. Eeckhout. Microarchitecture-
Independent Workload Characterization. IEEE Micro,
27(3), 2007. IEEE Computer Society Press, Los
Alamitos, CA, USA, 63–72.

[6] R. Kumar et al. Single-ISA Heterogeneous Multi-Core
Architectures for Multithreaded Workload Performance.
In Proceedings of the 31st Annual International
Symposium on Computer Architecture (München,
Germany, June 19–23, 2004). ISCA „04. IEEE Computer
Society, Washington, DC, USA, 64.

[7] D. Shelepov and A. Fedorova. Scheduling on
Heterogeneous Multicore Processors Using Architectural
Signatures. In Proceedings of the Workshop on the
Interaction between Operating Systems and Computer
Architecture, in conjunction with the 35th International
Symposium on Computer Architecture (Beijing, China,
June 21–25, 2008). WIOSCA „08.

[8] K. Asanovic et al. The Landscape of Parallel Computing
Research: A View from Berkeley. UC Berkeley
Technical Report UCB/EECS- 2006-183, 2006.

[9] M.Maheswaran and H.J.Siegel, “A Dynamic Matching
and Scheduling Algorithm for Heterogeneous Computing
Systems”, Proc. Heterogeneous Computing Workshop,
pp. 57-69, 1998.

Author Profile

Dr. S. Sai Satyanarayana Reddy, Principal and
Professor in the Department of Computer Science and
Engineering, B.E in Civil Engineering, M.E in Systems
and Information from BITS, Pilani and PhD in Data

Warehousing area, Having 22 years of teaching experience. He was
Principal Investigator of 3 projects of AICTE, DST and published
20 papers in international journals, attended 10 international
conferences and recipient of Vidya Rathna Award.

Paper ID: ART20162232 686

