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Abstract: Variance reduction technique that is particularly well suited for simulating rare events and, more specifically, estimating 
rare event probabilities. Properly applied, it often results in tremendous efficiency improvements compared to direct simulation schemes.
Markovian process is a process of decision making through Poisson arrivals and exponential service to facilitate easy analyzing and get 
usable results. It representing the number of customers in a system is known as a birth and death process, which is widely used in 
population models. The birth death terminology is used to represent increase and decrease in the population size. The corresponding 
events in queueing systems are arrivals and departures.  In the present paper we consider the performance analysis of network of queues 
using variance reduction technique. A variance reduction technique essentially transform the underlying simulation model into a related 
one; the letter permitting more accurate estimation of the parameter of interest. The most variance reduction techniques typically reduce 
the variance by a constant factor and the exception to this rule is the importance sampling approach, which lead to dramatic variance 
reduction in many non-trivial cases of interest. 

Keywords: Point-estimation, confidence interval, finite horizon and steady-state simulation 

1. Introduction 

System with more queues or more servers where the 
customer may be served more than once is said to be 
network of queues. Variance reduction technique can be 
viewed as a mean of utilizing known information of the 
models in order to obtain more accurate estimators of its 
performance. In fact, variance reduction technique cannot be 
achieved without prior knowledge of a system implies zero 
variance and obviates the need for simulation. Generally the 
more, we know about the system, the more affective the 
variance reduction.  One way of gaining this knowledge is 
through an initial crud simulation of the model. Result from 
this used simulation can then be used to formulate variance 
reduction technique that will be subsequently improving the 
accuracy of the estimator in the second simulation stage. 
Variance reduction techniques is basically include the 
control variates, stratified sampling and importance 
sampling, common and antithetic variates methods, 
conditional Monte Carlo method (for instance Fishman [7]). 
Rubinstein et al [21] discussed the solution for 
corresponding minimal variance problem, which show that if 
L1 & L2 are monotonic in the same direction in each 
component of vectors X = (X1,….. Xn) and Y = (Y1,… Yn), 
respectively, and if dependence is permitted only between 
like components, then the vectors of CRVs (common 
random variables) are optimal. For additional references on 
common and antithetic variables, see Pflug [19], Kleijnen 
[14], [15]. The common variates method is one of the most 
widely used variance reduction technique. A sampling and
its applications may be found Asmussen and Rubinstein [2], 
Lavenberg and Welch [17] and Wilson [23]. Dussault at el 
[6] discussed combining the stochastic counterpart and 
stochastic approximation, discrete events dynamic system, 
theory and application. L’ Ecuyer [16] defined the 
convergence rate for steady-state derivative estimators; 
Marti [18] considered structural design for stochastic 

optimization methods. Gal et al [8] defined on the optimality 
and efficiency of common random numbers, in queueing 
networks. Rubinstein [21] discussed Monte Carlo 
optimization simulation and sensitivity of queueing 
networks. Cao [3] defined Convergence of parameter 
sensitivity estimates in a stochastic environment, Chung [5] 
discussed on a stochastic approximation method. Glynn and 
Whitt [9] discussed estimating the asymptotic variance with 
batch mean while Glynn [10] considered Likelihood ratio 
gradient estimation for the sensitivity analysis for network of 
Markovian queue.  

2. Preliminaries 

The motivation of the use of common and antithetic variates 
in simulation, consider the example as follows: 
Let X and Y be variates with cumulative distribution 
function F1 & F2 respectively, then estimation of the 
expected value of their difference, E[X-Y], with minimal 
variance 

Var {X-Y} = Var{X} –Var{Y} – 2 Cov{X,Y} (2.1) 
where marginal cumulative density function (cdf) of X and 
Y have been prescribed, it follows that the variance X-Y is 
minimized by maximized the covariance in (2.1). Let X and 
Y both are generated by the inverse transformation method 
as

X = }U)x(F:xinf{)U(F 111
1

1 


; Y = 

}U)x(F:xinf{)U(F 222
1

2 


 (2.2) 
where U1 and U2 are uniformly distributed on (0, 1). 

Definition 1.[1] The common random variable (CRVs) are 
used when U2 = U1 and antithetic random variables are used 
when U2 = 1- U1 where U1 ~ Ʋ(0, 1) implies U2= 1- U1 ~
Ʋ(0, 1). 
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 Since both 
1

1F
and 

1
2F

are monotonic non decreasing 
function of U, it is readily seen that CRVs implies  

Cov{ )U(F 1
1


, )U(F 1
2


} ≥ 0; and consequently, 

variance reduction is achieved in the sense that the estimator 

)U(F)U(F 1
2

1
1


 of E[X-Y] has smaller variance, then 

crud Monte Carlo (CMC) estimator X -Y = 

)U(F)U(F 2
1

21
1

1


  which may be seen Whitt [22] 
that using CRVs does, in fact, max cov {X, Y}, so that var 
{X-Y} is minimized as well, similarly var {X+Y} is 
minimized when ARVs are used. 

3. Main Results 

Let X and Y are unidimensional variates with known 
marginal cdf’s F1 and F2 respectively, and functions L1 and 
L2 are real valued monotonic function Chen and Chen [4], 

Theorem 1: Within the set Ƒ2 of all two dimensional joints 
cdf’s of random variable pairs, (X1, X2) there exist two 
dimensional distribution function F* (say) so as to  

min var {L1(X) – L2(Y)}  (3.1) 
subject to the prescribed marginal cdf’s F1 and F2. 

Proof: Let L1 and L2 are real valued monotonic functions in 
the same directions; the statement is proofed by Gal et al [8],
then 

min
n2FF

 var {L1(X) – L2(Y)} = var [L1{ )U(F 1
1

1
 } –

L2{ )U(F 2
1

2
 }]         (3.2) 

from (3.2) it follows the use of CRVs, i.e. U2 = U1 = U, lead 
again to optimal variance reduction. Proof of (2.2) uses the 
fact that if L(U) is monotonic function, then L{F-1(U)} is 
monotonic as well since F-1(U) is. By symmetry, if L1 and L2
are monotonic in opposite directions, then the use of ARVs, 
i.e. U2 = 1 - U1 is optimal for the variance minimizing 
problem (3.1). Extension of variance minimizing problem of 
(3.1) to multidimensional case is as follows. 

Theorem 2: Within the set of all 2n dimensional joint cdf’s 

F Ƒ2n of random vector pairs, (X,Y), where each random 
vector has independent components, then there exist a 2n 

dimensional distribution function such that 
*F Ƒ2n so as 

to
minimize var {L1(X) – L2(Y)} (3.3) 

subject to the prescribed n- dimensional distributions 

F1(x1, x2…….. xn) =  


n

1i
ii1 xF   and  F2 (y1, y2…….. 

yn) =  


n

1i
ii2 yF

Where X = )U(F 1
1

1
 =  )U(F......).........U(F n1

1
n111

1
11

 , 

and Y = )U(F 2
1

2
 =  )U(F......).........U(F n2

1
n221

1
21

 . 

Proof: Assume in addition that within the set of all cdf’s 

F Ƒ2n on R2n, we permit dependence only between like 
components of the vectors X and Y. The solution of 
corresponding minimal variance problem is defined by 
Rubinstein [21], which shows that if L1 and L2 are 
monotonic in the same directions in each component of the 
vectors X= (X1, X2, ……… Xn) and Y = (Y1, Y2, … Yn)
respectively, and if dependence is permitted only between 
like components, then 

min
n2FF

 var {L1(X) – L2(Y)} = var [L1{ )U(F 1
1


} –

L2{ )U(F 1
2


}]   (3.4) 
is attained as the solution of (3.3), when U2 = U1 = U, (here 
and elsewhere, vector equality is component wise). The 
vector of CRVs U is optimal again. If L1 and L2 are 
monotonic in opposite directions, then U2 = 1- U1 (the vector 
of ARVs) is optimal where 1 is a vector of 1’s. Finally, if L1
and L2 are monotonic increasing with respect to some 
components and decreasing with respect to the others, then 
one can find a proper combination of common and antithetic 
variates, which is again optimal for the statement (3.3). 
Many researchers discussed, the components of random 
vectors X and Y either dependent or the sample performance 
functions, L1(x) and L2(y), are not monotonic (or both). The 
use of CRVs (ARVs) for the case of dependent components 
of X and Y are strictly monotonic functions, L1 and L2 was 
described in Rubinstein et al [21], while the use of CRVs 
(ARVs) for piecewise monotonic functions, L1 and L2 was 
treated in Rubinstein [20]. For additional use of common 
and antithetic variates, see Pflug [19] and Kleijnen [14]. 

Theorem 3: If L1 and L2 are monotonic functions and that 
the components of the random vectors X and Y are 
independent, then CRVs (ARVs) are more accurate then 
crud Monte Carlo (CMC), estimator and an efficiency 
measure Ԑ may be calculated as 

Ԑ =























)2(var

)1(var

N

N





, for a bridge network of queue. 

Proof: Let L(X) be sample performance defined as 
L(X) = 

 ji
i

m..2,1j
Xmin               (3.5) 

where j  is the jth complete path from source to the sink of 

the network; Xi: i = 1, …n, are the duration of the activities 

(links); and m is the number of complete path in the 
network. Assuming that L(x) is non-decreasing in each 
component of vector x. The coherent life function L(X) can 
be written as 

L(X) = max
m..2,1j


 ji

iXmin  (3.6) 

where j  and Xi are analogous to their counterpart in (3.6), 

and a coherent life function, L(X), is non-decreasing in each 
component of the vector x. Let we seek to estimate the 

 )X(LE , X is random vector with independent 
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component and sample functions, (3.5) and (3.6), are 
monotonic function in each component of X. 

An unbiased estimator of   is the crud Monte Carlo (CMC) 
estimator is given by 

,)X(L
N
1 N

1i
iN 





 (3.7) 

where X1, …… XN is an independent identically distributed 
(iid) sample from the cumulative distribution function (cdf) 
F(x). An alternative unbiased estimator of  , for N even, is 

 ,)X(L)X(L
N
1 2/N

1i

)a(
ii

)a(

N  




  (3.8) 

where Xi = )U(F i
1  and )U1(FX i

1)a(
i 

  are 

generated by (2.2). The estimator 
)a(

N


 is called an antithetic 
estimator of  . 

Since )X(L)X(L )a(
  is a particular case of L1(X) –

L2(Y) in (3.4) [with L2(Y) replaced by –L(X(a))], one 

immediately obtains 



















 

N

)a(

N varvar  . 

That is, the ARVs estimator 
)a(

N


 , is more accurate then the 

CMC estimator N


 .  Assume now that one seeks to 
estimates the expected value of the difference of a pair of the 
function L1(X) and L2(Y) that is 

 )Y(L)X(LE 21  , (X, Y) n2R

The CMC estimator of  is

N


=   


N

1i
i2i1 )Y(L)X(L

N
1

  (3.9) 

while the CRV estimator of  is
)c(

N


=   


N

1i

)c(
i2i1 )Y(L)X(L

N
1

  (3.10) 

where Xi = )U(F i
1

1
  and )U(FY i

1
2

)c(
i


 , that is  Xi and 

)C(
iY  are generated by using the same uniform random 

vector Ui. 

Again, from (3.4), where Xi =














 

N

)c(

N varvar  , so 

that the CRV estimator
)c(

N


, is more accurate then CMC 

estimator, N


, provided that both X and Y have independent 
components, and both L1 and L2 are monotonic functions in 
the same direction.  

Let )1(N


and )2(N


 be two estimator of  . To compare 

)1(N


 with )2(N


, define an efficiency measure 

Ԑ =





















)2(var

)1(var

.t

.t

N

N

2

1




, (3.11) 

where t1 and t2 are the CPU times consumed in calculating 

the estimators )1(N


 and )2(N


, respectively. To fix the 
ideas, let t1 and t2 be the CPU times required to calculate the 
CMC and the ARV estimators respectively. Since the ARV 

estimators
)a(

N


, needs only half as many random numbers as 

its CMC counterpart, N


, it is readily seen that t2   t1.

Ignoring this advantage of
)a(

N


, the efficiency measure 
(3.11) reduce to 

Ԑ =





















)2(var

)1(var

N

N




, (3.12) 

The following table (3.1) displays the efficiency Ԑ of the 

estimator 
)a(

N


for various combinations of λX in Exp(λX)
and λY in Exp(λY), resulting from estimating the expected 
sample performance   for the bridge network of queue in 
figure (3.1).  

Table (3.1): Efficiency Ԑ for the bridge network of queues 
λX λY = 1 λY = 2 λY = 3 λY = 4 λY = 5
1 2.01 1.24 1.01 1.19 1.11
2 2.93 2.95 1.72 1.59 1.26
3 1.20 3.02 4.29 1.63 1.33
4 1.06 1.89 4.01 2.40 2.28
5 1.01 1.52 2.62 4.07 3.24

  

Figure 3.2: Bridge network of queues 

Remark: The bridge network of queue (3.5) and (3.6) 
become 

L(X) = min(X1 + X2,  X1 + X5 + X4, X3 + X4) (3.13) 
and  

L(X) = max {min(X1 , X2), min (X1 , X5 , X4), min (X3 ,
X4)} (3.14) 

Respectively. The component of five dimensional vectors X 
and Y are independent and that each of their components is 
distributed exponentially with parameters λ1i and λ2i, i = 1, 
….5, respectively. The table (3.1) is obtained from 
simulation runs of 500 replications each, and the results are 
self-explanatory. 

Example (3.3): GI/GI/1 queue: From Lindley’s equation 

(Gross and Harris, [11])
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Lt+1 = max{0, Lt + Ut},  L0 = 0

For the waiting time of the (t+1)th customer in a GI/GI/1 
queue. Here Uj = Y1j –Y2((j+1); Y1j and Y2j are the service and 
the interarrival times of the jth customer, respectively.  
Y2j = Aj – Aj-1 for j   2, Y2j = 0 for j = 1; and Aj is the 
arrival time of the jth customer. Since Lt = L(Y1t, Y2t) is 
monotonic in each component of the two dimensional 
vector,  Xt = (Y1t, Y2t), one can obtain variance reduction 
relative to the CMC method by using the ARV estimator 
(3.8). 

4. Conclusion 

In the present paper we discussed the performance analysis 
of network of queue via variance reduction technique. The 
variance-reducing techniques provide a much more precise 
estimator of the mean than straightforward simulation (the 
crude Monte Carlo technique). We consider that variance 
reduction technique as a mean of utilizing known 
information of the model in order to obtain more accurate 
estimator of its performance. Using table (3.1) the efficiency 
measure is discussed from estimating the expected sample 
performance for the bridge network of the queue. In 
comparison with straightforward simulation, these 
techniques (including several more complicated ones not 
presented here) do indeed provide a much more precise 
estimator with the same amount of computer time, or they 
provide an equally precise estimator with much less 
computer time. Although the example was particularly 
simple, it is often possible, though more difficult, to apply 
these techniques to much more complex problems. 
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