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1. Introduction 

One of the fundamental problems of statistics, often 
encountered in applications, is the two-sample location 
problem. In the two-sample location problem the application 
of the t-test depends on very restrictive assumptions such as
normality and equal variances of the two random variables 
X1 and X2. If the assumptions of the t-test are not satisfied it
is more appropriate to apply a robust version of the t-test, 
like the Welch test or the trimmed t-test, or a nonparametric 
test, like the Wilcoxon. But usually we have no information 
about the underlying distribution of the data. Therefore, an
adaptive test should be applied. It would be desirable, 
therefore to use data itself to determine the nature of F(.), 
and on the basis of that information, we could choose an
appropriate set of scores. We would then use that same data 
to perform the test. Such two-stage analyses are termed as
adaptive test.  

In the past seven decades many important distribution free 
tests for differences in location between samples had been 
developed. In the mid 1940s the Wilcoxon -Mann- Whitney 
test was introduced for testing differences in location 
between two samples and it was developed by Wilcoxon and 
extended by Mann and Whitney. But further, it turns out that 
there exist simple adaptive rank tests that can discover 
differences between distributions more easily than WMW 
tests. These adaptive non parametric procedures display 
significant improvements in power over the parametric t- 
test in samples of large and moderate sizes.  

The purpose of this chapter is two folds , first to introduce 
the selector statistics , secondly compare the t-test with 
adaptive distribution-free test like Wilcoxon test, test based 
on scores under normality and under different models of
nonnormality, like heavy tailed or asymmetric distributions 
Adaptive tests are important in applications because the 
practicing statistician usually has no information about the 
underlying distribution . The adaptive testing procedures that 
are truly nonparametric distribution-free. That is, the two 
stages of the inference process are constructed in such a way 
that it control the overall 𝛼 -level . Monte-Carlo simulations 
are used for comparison of the tests with respect to level 𝛼
and power 𝛽. 

2. Selector statistics for selection of test  

We apply the concept of Hogg(1974) that is based on
following lemma:
(i) Let F denote the class of distributions under 

consideration. Suppose that each of k tests T1, T2, …, Tk
is distribution –free over F , that is 𝑃𝑟𝐻𝑜 𝑇𝑖 ∈ 𝐶𝑖 = 𝛼 for 
each F∈F , h = 1, . . ., k.

(ii) Let S be some statistic (called a selector statistic) that is, 
under Ho, independent of T1, . . . , Tk for each F∈F . 
Suppose we use S to decide which test Th to conduct. 
Specially, let Ms denote the set of all values of S with the 
following decomposition: Ms = 𝐷1 ∪ 𝐷2 ∪ … ∪ 𝐷𝑕 , 𝐷𝑖 ∩
𝐷𝑗 = ∅ 𝑓𝑜𝑟 𝑖 ≠ 𝑗. So that 𝑆 ∈ 𝐷𝑕  corresponds to the 
decision to use test 𝑇𝑕 .

The overall testing procedure is then defined by: If 𝑆 ∈ 𝐷𝑕

then reject Ho if 𝑇𝑕  ∈ 𝐶𝑕 . This two-staged adaptive test is
distribution-free under Ho over the class F ,i.e. it maintains 
the level 𝛼 for each F∈F . 

The proof of this lemma is given by Randle and 
Wolfe(1979).Using the lemma, as a selector statistic, we use 
a function of order statistics of combined sample. We choose 
the selector statistic as

 S = ( 𝑄1 
  , 𝑄2

  ) 

Table 1.1: Theoretical values of Q1 and Q2 for selected 
distributions 

Distribution Q1 Q2
Uniform(0,1)
Normal
Exponential(with λ=1)

1
1
4.569

1.9
2.585
2.864

Where 𝑄1
 =

𝑈 0.05−𝑀 0.5

𝑀 0.5−𝐿 0.05

and 𝑄 2 =
𝑈  0.05−𝐿 0.05

𝑈 0.5−𝐿 0.5

And Hogg’s(1974) measures for skewness and tailweight, 
and 𝐿 𝛾  , 𝑀 𝛾  and 𝑈 𝛾  denote the average of the smallest , 
middle and largest 𝛾𝑁 order statistics, respectively, in the 
combined sample; fractional items are used when 𝛾𝑁 is not 
an integer. Obviously 𝑄 1= 1 if the data are symmetric and 
𝑄 1<1 (>1) if the data are skewed to the left(right) . The 
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longer the tails the greater is 𝑄 2. Table 1 shows the 
theoretical measures of Q1 and Q2 for selected distributions. 

As in Buning (1996) , we define the adaptive test as follows 
(Fig2..1) 

If 𝑄 1 ≤ 2, 𝑄 2 ≤ 2 perform the Gastwirth test, 
If 𝑄 1 ≤ 2, 2 < 𝑄 2 ≤ 3 perform Wilcoxon test, 
If 𝑄 1 > 2, 2 < 𝑄 2 ≤ 3 perform HFR test, and 
If 𝑄 2>3 perform the LT test. 

However, sometimes a larger critical value for 𝑄 2 was used 
to differentiate between tests(Hogg1975). Therefore, we
define a second adaptive test as follows: 
If 𝑄 1 ≤ 2, 𝑄 2 ≤ 2 perform the Gastwirth test, 
If 𝑄 1 ≤ 2, 2 < 𝑄 2 ≤ 5 perform Wilcoxon test, 
If 𝑄 1 > 2, 2 < 𝑄 2 ≤ 5 perform HFR test, and 
If 𝑄 2>5 perform the LT test. 

3. Test Procedures 

 Let xi1,xi2, ..., xin i , i = 1,2 be independent random samples 
from parent populations with continuous distribution 
function F[(x- i )] . Let  i represent the location 

parameters and i  the scale parameters of the populations 
assumed to be same. The problem is to test Ho:  1 =  2

against H1:  1   2 or  1 >  2 or  1 <  2 . In our 
case we have considered only the alternative  1 >  2 . 
For testing this hypothesis the procedures are  

3.1 Student’s t- test 

 t = 

)11(
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2

_

2

_
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’s are the means and variances of the two samples. The 

statistic t follows Student’s t distribution with 1n  + 2n -2 
degrees of freedom. 

3.2 Wilcoxon Test 

W =  𝒊𝒁𝒊
𝑵
𝒊=𝟏  , N= n1 + n2

Where Zi is a indicator variable. It take the value 1, if the ith 
observation from first sample and zero ,otherwise. 

3.3 Two sample tests based on some scores 

T=  𝑔 𝑖 𝑉𝑖
𝑁
𝑖=1

where 𝑔(i) are real valued scores, and Vi = 1 when the ith 
smallest of the N=n1+n2 observation s is from the first 
sample and Vi = 0 otherwise. Two-sample tests on T are 
distribution –free , under Ho , we have 
E(T) = 𝑛1

𝑁
 𝑔(𝑖)𝑁

𝑖=1   
Var(T) = 𝑛1𝑛2

𝑁2(𝑁−1)
 𝑁  𝑔2 𝑖 − ( 𝑔(𝑖)2𝑁

𝑖=1
𝑁
𝑖=1  

And the standardized statistic 
𝑇−𝐸(𝑇)

 𝑉𝑎𝑟 (𝑇)

Follows asymptotically a standard normal distribution 
(Hajek et al. 1999).When some condition about the scores 
𝑔(i) are fulfilled, T can be asymptotically normal under an
alternative, too (Chernoff and Savage,1958). However, in
general, the rejection probability under the alternative 
depends on the distribution of the data. Therefore, different 
choices for scores 𝑔(𝑖) were proposed. 

Now we will discuss some scores on which adaptive tests 
A(s) based such as short tailed test , medium tests, long 
tailed tests and right skewed tail tests.  

Gastwirth test (short tails) 

𝑔 𝑖 =

 
 
 

 
 𝑖 −

𝑁+1

4
 𝑓𝑜𝑟 𝑖 ≤

𝑁+1

4

0 𝑓𝑜𝑟 
𝑁+1

4
≤ 𝑖 ≤

3(𝑁+1

4

𝑖 −
3(𝑁+1)

4
 𝑓𝑜𝑟 𝑖 ≥

3(𝑁+1)

4

 

Wilcoxon test (median tails): 𝑔 𝑖 = 𝑖

Long tails Test (long tails): 

𝑔 𝑖 =

 
 
 

 
 −  

𝑁

4
 + 1  𝑓𝑜𝑟 𝑖 <  

𝑁

4
 + 1

𝑖 −
𝑁+1

2
 𝑓𝑜𝑟  

𝑁

4
 + 1 ≤ 𝑖 ≤ [

3 𝑁+1 

4
]

 
𝑁

4
 + 1 𝑓𝑜𝑟 𝑖 > [

3 𝑁+1 

4
]

 

Hogg-Fisher- Randles(HFR) test (right skewed): 

𝑔 𝑖 =   
𝑖 −

𝑁+1

2
 𝑓𝑜𝑟 𝑖 ≤

𝑁+1

2

0 𝑓𝑜𝑟 𝑖 >
𝑁+1

2

   

4. The Monte Carlo Study 

For the simulation study of the t- test , Wicoxon test, 
Gastwirth test, Long-tail test and short-tail test(HFR) six 
families of distributions are selected. These are – the 
Normal, the Cauchy, the Double exponential, the Logistic , 
the Lognormal and the Exponential. 
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The study was conducted on computer at the Department of
Statistics, Dibrugarh University. To generate the standard 
normal deviate, the method described in Monte Carlo 
Method by Hammersly and Handscomb(1964) were used 
and deviate from the other distributions were generated by
using the inverse distribution function on uniform deviates. 

In studying the significant levels, we first considered 
distributions with location parameter equal to zero and with 
equal scale parameters. Specifically, we considered the 
distribution functions F(x -𝜇𝑖  ) , where 𝜇𝑖  were the location 

parameters. For each set of sample N = 
i

ni , i =1,2 , the 

experiment was repeated 5,000 times and proportion of
rejection of the true null hypothesis was recorded and 
presented in table 1.2 to 1.13.  
For the power study of the tests, random deviates were 
generated as above for each group and added to  i . 
Proportion of rejections based on 5000 replications at the 
levels .05 and .01 for different combinations of  i were 
recorded and presented in the table 1.2 to table 1.13. 

Table 1.2: Empirical Level and power of tests under Normal distribution for equal sample sizes: 

Table 1.3: Empirical Level and power of tests under Normal distribution for unequal sample sizes: 
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Figure 1.2: Empirical power of tests under Normal distribution for n1=n2=30 at 5% Level 
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Figure 1.3: Empirical power of tests under Normal distribution for n1=25, n2=30 at 5% level 

Table 1.4: Empirical level and power of tests under Cauchy distribution for equal sample sizes 
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Table 1.5: Empirical level and power of tests under Cauchy distribution for unequal sample sizes 
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Figure 1.4: Empirical power of tests under Cauchy distribution for n1=n2=30 at 5% Level 
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Figure 1.5: Empirical power of tests under Cauchy distribution for n1=25, n2=30 at 5% level 
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Table 1.6: Empirical level and power of tests under Logistic distribution for equal sample sizes: 

  
Table 1.7: Empirical level and power of tests under Logistic distribution for unequal sample sizes: 
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Figure 1.6: Empirical power of tests under Logistic distribution for n1=n2=30 at 5% Level 
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Figure 1.7: Empirical power of tests under Logistic distribution for n1=25 n2=30 at 5% level 

Table 1.8: Empirical level and power of tests under Lognormal distribution for equal sample sizes 

Table 1.9: Empirical level and power of tests under Lognormal distribution for unequal sample sizes: 
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Figure 1.8: Empirical power of tests under Lognormal distribution for n1=n2=30 at 5% level 
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Figure 1.9: Empirical power of tests under Lognormal distribution for n1=25, n2=30 at 5% level 

Table 1.10: Empirical level and power of tests under Exponential distribution for equal sample sizes: 
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Table 1.11 : Empirical level and power of tests under Exponential distribution for unequal sample sizes 
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Figure 1.10: Empirical power of tests under Exponential distribution for n1=n2=30 at 5% level
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Figure 1.11: Empirical power of tests under Exponential distribution for n1=25, n2=30 at 5% level 

Paper ID: ART20162024 112



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 10, October 2016 
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Table 1.12: Empirical level and power of tests under Double Exponential Distribution for equal sample sizes

Table 1.13: Empirical level and power of tests under Double Exponential Distribution for unequal sample sizes 
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Figure 1.12: Empirical power of tests under Double Exponential distribution for n1=n2=30 at 5% level 
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Figure 1.13: Empirical power of tests under Double Exponential distribution for n1=25,n2=30 at 5% level 

5. Discussion 

For comparison purposes we have considered various 
combinations of sample sizes with equal and unequal sample 
sizes. We have also considered different sets of µi’s for the 
study.

From Tables 1.2 - 1.13 it is observed that the parametric t-
test maintain the nominal level except the Cauchy and skew 
distribution lognormal. In these cases t-test seems to be
conservatives. Wilcoxon test and all other score based test 
are found to be robust against the distributions in terms of
the level concerned.  

Table 1.2 and table 1.3 shows the power of tests under 
normal distribution for equal and unequal sample sizes 
respectively. We have seen that power of t- test is higher 
than the other tests in this distribution in presence of various 
combinations of location parameters and sample sizes. 
Power of Wilcoxon test is found to be slightly less than the 
t-test but more than other score base tests in both the two 
cases. 

Table 1.4 and Table 1.5 gives the power of tests statistics 
under Cauchy distribution for equal and unequal sample 
sizes respectively. Here ,we observe that LT test is more 
powerful than other tests both in case of equal and unequal 
sample sizes at 5% and 1% level of significance. Second 
highest power is shown by the Wilcoxon test. 

Table 1.6 and Table 1.7 displays the power of tests under 
logistic distribution. We have seen that Wilcoxon , t- test 
and LT test are more powerful than other two tests with both 
equal and unequal sample sizes and at 5% and 1% level. 
However, power of W test is more than all tests. 

Table 1.8 and Table 1.9 shows the power of tests under 
lognormal distribution. Here ,HFR test i.e. right tailed test 
(RT) is more powerful than the all other tests both in case of
equal and unequal sample sizes at 5% and 1%
level.However for large sample sizes and for large shift in
mean power W-test and G-test come nearer and near to the 
HFR test. 

Table 1.10 and Table 1.11 shows the empirical power of
tests under exponential distribution. Here we obtained 
similar results as like the lognormal distribution. That is, 
power of HFR is the highest of all followed by Wicoxon, G 
and others. 

Table 1.12 and Table 1.13 shows the empirical power of
tests under double exponential distribution. Here it is seen 
that long tail test (LT) and Wilcoxon test are more powerful 
than the other tests both in case of equal and unequal sample 
sizes and at 5% and 1% level. Power of t- test found to be
less than these two tests but more than other score based 
tests. 

6. Conclusion 

In case of normal distribution , under equal variances t-test 
is most the preferable test, as it maintain levels and shows 
more power than other tests. In case of other distribution s 
rank test or score based test may be more preferable. The 
choice of a suitable rank test or score based test which is
more efficient than t-test depends on the underlying 
distribution of data. Because the practicing statistician 
usually has no clear idea about the distribution, an adaptive 
test should be applied which takes into account the given 
data set. 
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